1. K-State home
  2. »Schrick Lab
  3. »Schrick Lab Publications

Schrick Lab


Subedi, B., and Schrick, K. 2022. EYFP fusions to HD-Zip IV transcription factors enhance their stability and lead to phenotypic changes in Arabidopsis. Plant Signal Behav. 17(1):2119013. doi: 10.1080/15592324.2022.2119013

Mukherjee, T., Subedi, B., Khosla, A., Begler, E.M., Stephens, P.M., Warner, A.L., Lerma-Reyes, R., Thompson, K.A., Gunewardena, S., and Schrick, K. 2022. The START domain mediates Arabidopsis GLABRA2 dimerization and turnover independently of homeodomain DNA binding. Plant Physiol. (published online 8-19-2022). doi: 10.1093/plphys/kiac383  

Lusk, H.J., Neumann, N., Colter, M., Roth, M.R., Tamura, P, Yao, L., Shiva, S., Shah, J, Schrick, K., Durrett, T., and Welti, R. 2022. Lipidomic analysis of Arabidopsis T-DNA insertion lines leads to identification and characterizationof C-terminal alterations in FATTY ACID DESATURASE 6. Plant Cell Physiol: pcac088. doi: 10.1093/pcp/pcac088

Shiva, S., Samarakoon, T., Lowe, K.A., Roach, C., Vu, H.S., Colter, M., Porras, H., Hwang, C., Roth, M.R., Tamura, P., Li, M., Schrick, K., Shah, J., Wang, X, Wang, H., and Welti, R. 2020. Leaf lipid alterations in response to heat stress of Arabidopsis thaliana. Plants 9(7): 10.3390/plants9070845.

Velazhahan, V., Glaza, P., Herrera, A.I., Prakash, O., Zolkiewski, M., Geisbrecht, B.V., and Schrick, K. 2020. Dietary flavonoid fisetin binds human SUMO1 and blocks sumoylation of p53. PLOS One 15:e0234468. doi:10.1371/journal.pone.0234468.

Mukherjee., T., Lerma-Reyes, R., Thompson, K.A., and Schrick, K. 2019. Making glue from seeds and gums: Working with plant-based polymers to introduce students to plant biochemistry. Biochem Mol Biol Educ 47:468-475. doi:10.1002/bmb.21252. F1000

Paper, J.M., Mukherjee, T., and Schrick, K. 2018. Bioorthogonal click chemistry for fluorescence imaging of choline phospholipids in plants. Plant Methods 14:31.

Pook, V.G., Nair, M., Ryu, K., Arpin, J.C., Schiefelbein, J., Schrick, K., and DeBolt, S. 2017. Positioning of the SCRAMBLED receptor requires UDP-Glc:sterol glucosyltransferase 80B1 in Arabidopsis roots. Sci Rep. 7(1): 5714.

Msanne, J., Chen, M., Luttgeharm, K., Bradley, A.M., Mays, E.S., Paper, J.M., Boyle, D.L., Cahoon, R.E., Schrick, K., and Cahoon, E.B. 2015. Glucosylceramide is critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. Plant J. 84: 188-201.

Stucky, D.F., Arpin, J.C., and Schrick, K. 2015. Functional diversification of two UGT80 enzymes required for steryl glucoside synthesis inArabidopsisJ. Exp. Bot.66:189-201.

Schrick, K., Bruno, M., Khosla, A., Cox, P.N., Marlatt, S.A., Roque, R.A., Nguyen, H.C., He, C., Snyder, M.P., Singh, D., and Yadav, G. 2014. Shared functions of plant and mammalian StAR-related lipid transfer (START) domains in modulating transcription factor activity. BMC Biology 12: 70. F1000

Khosla, A., Paper, J.M., Boehler, A.P., Bradley, A.M., Neumann, T.R., and Schrick, K. 2014. HD-Zip proteins GL2 and HDG11 have redundant functions in Arabidopsis trichomes and Gl2 activates a positive feedback loop via MYB23. Plant Cell 26: 2184-2200. F1000

Schrick, K., DeBolt, S., and Bulone, V. 2012. Deciphering the molecular functions of sterols in cellulose biosynthesis. Front. Plant Sci. 3: 84. doi: 10.3389/fpls.2012.00084

Schrick, K., Shiva, S., Arpin, J.C., Delimont, N., Isaac, G., Tamura, P., and Welti, R. 2012. Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry. Lipids47: 185-193.

Schrick, K., Cordova, C., Li, G., Murray, L., and Fujioka, S. 2011. A dynamic role for sterols in embryogenesis of Pisum sativum. Phytochemistry72: 465-475.

DeBolt, S., Scheible, W.-R., Schrick, K., Auer, M., Beisson, F., Bischoff, V., Bouvier-Navé, P., Carroll, A., Hematy, K., Li, Y., Milne, J., Nair, M., Schaller, H., Zemla, M. and Somerville, C. 2009.  Mutations in UDP-glucose:sterol-glucosyltransferase in Arabidopsis cause transparent testa phenotype and suberization defects in seeds. Plant Physiology151: 78-87.

Venkata, B.P. and Schrick, K. 2006. START domains in lipid/sterol transfer and signaling in plants. In C. Benning and J. Ohlrogge (eds.): Current Advances in Biochemistry and Cell Biology of Plant Lipids: Proceedings of the 17th International Symposium on Plant Lipids, Michigan State University Press, East Lansing, Michigan. ISPL2006, pp. 57-61. 

Schrick, K., Nguyen, D., Karlowski, W.M. and Mayer, K.F.X. 2004. START lipid/sterol binding domains are amplified in plants and are predominately associated with homeodomain transcription factors. Genome Biology5: R41.

Schrick, K., Fujioka, S., Takatsuto, S., Stierhof, Y.-D., Stransky, H., Yoshida, S. and Jürgens, G. 2004. A link between sterol biosynthesis, the cell wall and cellulose in Arabidopsis. Plant J. 38: 227-243.

Schrick, K., Mayer, U., Martin, G., Bellini, C., Kuhnt, C., Schmidt, J. and Jürgens, G. 2002. Interactions between sterol biosynthesis genes in embryonic development ofArabidopsis. Plant J. 31: 61-73. (article featured in cover illustration)

Schrick, K. and Laux, T. 2001. Zygotic Embryogenesis: The formation of an embryo from a fertilized egg. In S.S. Bhojwani & W.Y. Soh (eds.) Current Trends in the Embryology of Angiosperms, Kluwer Academic Publishers, Dordrecht, pp. 249-277.

Schrick, K. 2000. Perspective: Plant developmental biologists show their colors: Toward a virtual understanding of green development. Science´s STKE (Dec. 5).

Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., Schmidt, J. and Jürgens, G. 2000. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev. 14: 1471-1485. (article featured in cover illustration)

Schrick, K., Garvik, B. and Hartwell, L.H. 1997. Mating in Saccharomyces cerevisiae: The role of the pheromone signal transduction pathway in the chemotropic response to pheromone. Genetics147: 19-32.

Dorer, R., Pryciak, P., Schrick, K. and Hartwell, L.H. 1994. The induction of cell polarity by pheromone in Saccharomyces cerevisiae. Harvey Lect. 90: 95-104.

Bennetzen, J. L., Schrick, K., Springer, P.S., Brown, W.E. and SanMiguel, P. 1994. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome37: 565-576.