1. K-State home
  2. »Biochemistry & Molecular Biophysics
  3. »Department
  4. »Directory
  5. »Karl Kramer

Department of Biochemistry and Molecular Biophysics

Department of Biochemistry & Molecular Biophysics
141 Chalmers Hall
1711 Claflin Rd.
Manhattan, KS 66506
785-532-7278 fax

Biotechnology Core Facility
206 Burt Hall
785-532-6297 fax

Biomolecular NMR Facility
37 Chalmers Hall

Karl Kramer, Ph.D., Adjunct Professor Emeritus
Research Chemist (retired) at CGAHR

Iamge of Karl Kramer, Ph.D.

Contact information

E-mail: kjkramer@ksu.edu


B.S. 1964, Purdue University
Ph.D. 1971, University of Arizona

Areas of specialty

  • Insect biochemistry and physiology
  • Cuticle sclerotization and molting
  • Chitin and catecholamine metabolism
  • Digestive enzymes
  • Stored product insect pest control
  • Biopesticide development in transgenic plants

Dr. Kramer is a biochemist internationally recognized for his comprehensive research program investigating insect cuticle structure, chitin metabolism, tanning chemistry, neuropeptides, molting, digestion and the use of biopesticides and insect growth regulators for insect pest control. Results of his research have had major impact in insect molecular science and also preharvest and postharvest insect pest management programs, including the development of insect growth regulators, biopesticides, transgenic plants and biological control agents by the agricultural biotechnology industry. Until his retirement in 2003, he was a research chemist at the ARS-USDA Center for Grain and Animal Health Research and Adjunct Professor of Biochemistry at K-State.

Selected publications

Mi Young Noha, Sung Hyun Kimb, Maureen J. Gorman, Karl J. Kramer, Subbaratnam Muthukrishnan, Yasuyuki Arakane. Yellow-g and Yellow-g2 proteins are required for egg desiccation resistanceand temporal pigmentation in the Asian tiger mosquito, Aedes albopictus. Insect Biochemistry and Molecular Biology 122 (2020) 103386.

Mun, S., Noh, M. Y., Kramer, K. J., Muthukrishnan, S., Arakane, T. Gene functions in adult cuticle pigmentation of the yellow mealworm, Tenebrio molitor. 2020. Insect Biochem. Molec. Biol. 117, 103291 doi: 10.1016/j.ibmb.2019.103291

Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y (2018) A chitinase with two catalytic domains is required for organization of the cuticular extracellular matrix of a beetle. PLoS Genet 14(3):e1007307. https://doi.org/10.1371/journal.pgen.1007307

Noh, M. Y., Muthukrishnan, S., Kramer, K. J., Arakane, Y. 2017. Development and ultrastructure of the rigid dorsal and flexible ventral cuticles of the elytron of the red flour beetle, Tribolium castaneum. Insect Biochem. Molec. Biol. 91, 21-33.

Noh, M. Y., Koo, B. W., Kramer, K. J., Muthukrishnan, S. and Arakane, Y. 2016. Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum. Insect Biochem. Molec. Biol. 79, 119-129.

Arakane, Y., Noh, M. Y., Asano, T., and Kramer, K. J. 2016. Tyrosine metabolism for insect cuticle pigmentation and sclerotization. In Extracellular Composite Matrices in Arthropods. E. Cohen and B. Moussian, eds., Springer International, p. 165-220.

Noh, M. Y., Muthukrishnan, S., Kramer, K. J. and Arakane, Y. 2016. Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 17, 1-9.

Sprouse, P. A., Dittmer, N. T., Kramer, K. J., Kanost, M. R., Dhar, P. and Gehrke, S. H. 2015. Characterization of the secondary structure of CP30, a highly repetitive ampholytic protein in beetle elytral cuticle. Macromolecular Symposia 358, 212-216.

Mun, S., Noh, M. Y., Dittmer, N., Muthukrishnan, S., Kramer, K. J., Kanost, M. R., Arakane, Y. 2015. Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Sci. Rep. 5, 10484; doi: 10.1038/srep10484.

Chaudhari, S. S., Noh, M. Y., Moussian, B., Specht, C. A., Kramer, K. J., Beeman, R. W., Arakane, Y. and Muthukrishnan, S. 2015. Knickkopf and Retroactive proteins are required for formation of laminar serosal procuticle during embryonic development of Tribolium castaneum. Insect Biochem. Molec. Biol. 60, 1-6.

Noh, M. Y., Muthukrishnan, S., Kramer, K. J. and Arakane, Y. 2015. Tribolium castaneum RR-1 cuticular protein TcCPR4 is required for formation of pore canals in rigid cuticle. PLoS Genet 11(2): e1004963. doi:10.1371/journal.pgen.1004963.

Noh, M. Y., Kramer, K. J., Muthukrishnan, S., Beeman, R. W., Kanost, M. R. and Arakane, Y. 2015. Loss of function of the yellow-e gene causes dehydration-induced mortality of adultTribolium castaneum. Devel. Biol. 399, 315-324.

Noh, M. Y., Kramer, K. J., Muthukrishnan, S., Kanost, M. R., Beeman, R. W. and Arakane, Y. 2014. Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle ofTribolium castaneum. Insect Biochem. Molec. Biol. 53, 22-29.

Mun, S., Noh, M. Y., Osanai-Futahashi, M., Muthukrishnan, S., Kramer, K. J. and Arakane, Y. 2014. A Major Facilitator Superfamily protein encoded byTcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum. Insect Biochem. Molec. Biol. 49, 43-48.

Chaudhari, S., Arakane, Y., Specht, C.A., Moussian, B., Kramer, K.J., Beeman, R.W., and Muthukrishnan, S. 2013. Retroactive maintains cuticle integrity by promoting the trafficking of Knickkopf into the procuticle of Tribolium castaneum. PLoS Genet. 9(1):e1003268. doi:10.1371/journal.pgen.1003268.

Jasrapuria, S., Specht, C.A., Kramer, K.J., Beeman, R.W. and Muthukrishnan, S. 2012. Gene families of cuticular proteins analogous to peritrophins (CPAPs) in Triboliumcastaneum have diverse functions. PLoS ONE 7(11):e49844. doi:10.1371/journal.pone.00498443

Merzendorfer, H., Kim, H.S., Chaudhari, S.S., Kumari, M., Specht, C.A., Butcher, S., Brown, S.J., Manac, J.R., Beeman, R.W., Kramer, K.J., and Muthukrishnan, S. 2012. Geneomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. Insect Biochem. Molec. Biol. 42, 264-276.

Arakane, Y., Lomakin, J., Gehrke, S.H., Hiromasa, Y., Tomich, J.M., Muthukrishnan, S., Beeman, R.W., Kramer, K.J., and Kanost, M.R. 2012. Formation of rigid, non-flight forewings (elytra) of a beetle requires two major cuticular proteins. PLoS Genet 8(4):e1002682. doi:10.1371/journal.pgen.1002682.

Dittmer, N.T., Hiromasa, Y., Tomich, L.M., Lu, N., Beeman, R.W., Kramer, K.J., and Kanost, M.R. 2012. Proteomic and transcriptomic analyses of rigid and membranous cuticles from the elytra and hindwings of the red flour beetle, Tribolium castaneum. Journal of Proteome Research. 11, 269-278.

Complete Publications List