1. K-State home
  2. »Institute for Commercialization
  3. »Patents
  4. »Patent Description
  5. »Increasing Rate of Enzyme Catalyzed Equilibrium Reactions

Institute for Commercialization

Increasing Rate of Enzyme Catalyzed Equilibrium Reactions

Reference Number: K 07-33

Inventors: Rezac, Mary; Nemser, Stuart

Owner: Kansas State University Research Foundation

USPTO Link:7,838,267

Invention Summary

It has been discovered that in the systems of enzyme catalyzed equilibrium reactions in which water or methanol is a byproduct, extraordinarily beneficial reaction productivity can be obtained by removing the byproduct from the reaction mass using selectively permeable perfluoropolymer membranes. That is, the net rate of producing the desirable product compound is dramatically increased relative to the net rate achieved without removing the byproduct. The initial net rate of producing the desirable product, i.e., the rate at which the desired product is formed at up to about 50% conversion, is especially enhanced.

Accordingly this invention provides, a method of conducting a chemical reaction to make a reaction product and a byproduct comprising the steps of (A) providing reactants for a reversible, enzyme catalyzed, chemical reaction in which the byproduct is selected from the group consisting of water, methanol and a mixture thereof, (B) providing an enzyme catalyst for the chemical reaction, (C) reacting the reactants in the presence of the enzyme catalyst to form a reaction mass comprising the reaction product, the byproduct and residual reactants, (D) contacting a membrane comprising a selectively permeable layer comprising a perfluoropolymer with the reaction mass, (E) applying a driving force across the membrane effective to selectively permeate the byproduct and to retain a reaction mass depleted of the byproduct relative to the reaction mass of step (C), (F) continuing the chemical reaction of the reaction mass depleted of the byproduct, (G) collecting reaction mass, and (H) optionally, adding reactants to the reaction mass of step (G) and repeating steps (C)-(G).