1. K-State home
  2. »Biochemistry & Molecular Biophysics
  3. »Finnigan Lab
  4. »Publications

Finnigan Lab

Finnigan Lab Mailing Address

Dept. of Biochemistry & Molecular Biophysics
Kansas State University
141 Chalmers,
1711 Claflin Rd.
Manhattan, KS 66506-3902

Dr. Greg Finnigan's Office: (785) 532-6939
Lab: TBD
Fax: (785) 532-7278




Takagi, J., Cho, C., Duvalyan, A., Yan, Y., Halloran, M., Hanson-Smith, V., Thorner, J., and Finnigan, G.C. (2021) Reconstructed evolutionary history of the yeast septins Cdc11 and Shs1. G3 (Bethesda) 11(1). PMCID: PMC7849910.


Heffel, M.G., and Finnigan, G.C. (2019) Mathematical modeling of self-contained CRISPR gene drive reversal systemsSci Rep 9, 20050 doi:10.1038/s41598-019-54805-8. PMCID: PMC6934693.

Yan, Y. and Finnigan, G.C. (2019) Analysis of CRISPR gene drive design in budding yeast. Access Microbiology. doi: 10.1099/acmi.0.000059. PMCID: PMC7472540.

Goeckel, M.E., Basgall, E.M., Lewis, I.C., Goetting, S.C., Yan, Y., Halloran, M., and Finnigan, G.C. (2019) Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in S. cerevisiae. Fungal Biol Biotechnol. 6:2. doi: 10.1186/s40694-019-0065-x. PMCID: PMC6360766.


Yan, Y. and Finnigan, G.C. (2018) Development of a multi-locus CRISPR gene drive system in budding yeast8(1):17277. doi: 10.1038/s41598-018-34909-3. PMCID: PMC6250742.

Finnigan, GC. (2018) Multi-locus gene drive system. Provisional U.S. Patent, filed July 13, 2018.

Turnquist, E, Schrock, M.N., Halloran, M., and Finnigan, G.C. (2018) Characterization of septin protein interactions at the yeast bud neck using a tripartite split GFP detection system. Microscopy and Microanalysis, 24(S1), 1348-1349. doi:10.1017/S1431927618007225.

Graham, L.A., Finnigan, G.C., and Kane, P.M. (2018) Some assembly required: contributions of Tom Stevens' lab to the V-ATPase field. Traffic 19: 385-390. PMCID: PMC5957294.

Basgall*, E.M., Goetting*, S.C., Goeckel*, M.E., Giersch, R.M., Roggenkamp, E., Schrock, M.N., Halloran, M., and Finnigan, G.C., (2018) Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164: 464-474. PMCID: PMC5982135.

Roggenkamp*, E., Giersch*, R.M., Schrock*, M.N., Turnquist, E., Halloran, M., and Finnigan, G.C. (2018) Tuning CRISPR/Cas9 gene drives in Saccharomyces cerevisiaeG3 (Bethesda) 

Finnigan, GC. (2017) Programmed modulation of CRISPR/Cas9 activity. U.S. Patent, filed September 29, 2017.

Giersch, R.M. and Finnigan, G.C. (2017) Yeast still a Beast: Diverse Application of CRISPR/Cas Editing Technology in S. cerevisiae. Yale J Biol Med 90(4): 643–651. PMCID: PMC5733842.

Giersch, R.M. and Finnigan, G.C. (2017) Method for Multiplexing CRISPR/Cas9 in Saccharomyces cerevisiae Using Artificial Target DNA Sequences. Bio Protoc 7(18): e2557. DOI: 10.21769/BioProtoc.2557. PMCID: PMC5659391.

Roggenkamp*, E., Giersch*, R.M., Wedeman*, E., Eaton*, M., Turnquist, E., Schrock, M.N., Alkotami, L., Jirakittisonthon, T., Schluter-Pascua, S.E., Bayne, G.H., Wasko, C., Halloran, M., and Finnigan, G.C. (2017) CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains. Front Microbiol 8, doi: 10.3389/fmicb.2017.01773. PMCID: PMC5611381.

Roelants, F.M., Leskoske, K.L., Pedersen, R.T.A., Muir, A., Liu, J., Finnigan, G.C., and Thorner, J. (2017) TOR Complex 2-regulated protein kinase Fpk1 stimulates endocytosis via inhibition of Ark1/Prk1-related protein kinase Akl1 in Saccharomyces cerevisiae. Mol Cell Biol, 37: 1-22. PMCID: PMC5359421.


Perez, A.M., Finnigan, G.C., Roelants, F., and Thorner, J. (2016) Septin-associated protein kinases in the yeast Saccharomyces cerevisiaeFront Cell Dev Biol, 4: 1-12. PMCID: PMC508841.

Finnigan, G.C., Duvalyan, A., Liao, E.N., Sargsyan, A., and Thorner, J. (2016) Detection of protein-protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system. Mol Biol Cell 27: 2708-2725.

Finnigan, G.C., Sterling, S.M., Duvalyan, A., Liao, E.N., Sargsyan, A., Garcia III, G., Nogales, E., and Thorner, J. (2016) Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae. Mol Biol Cell 27: 2213-2233.

Finnigan, G.C. and Thorner, J. (2016) mCAL: a new approach for versatile multiplex action of Cas9 using one sgRNA and loci flanked by a programmed target sequence. G3 (Bethesda) 6: 2147-2156.


Garcia III*, G., Finnigan*, G.C., Heasley*, L.R., Sterling, S.M., Aggarwal, A., Pearson, C.G., Nogales, E., McMurray, M.A., and Thorner, J. (2015) Assembly, molecular organization, and membrane-binding properties of development-specific septins. J Cell Biol 212: 515-529.

Finnigan, G.C., and Thorner, J. (2015) Complex in vivo ligation using homologous recombination and high-efficiency plasmid rescue from Saccharomyces cerevisiae. Bio Protoc. 5(13). pii: e1521.

Finnigan, G.C., Booth, E.A., Duvalyan, A., Liao, E.N., and Thorner, J. (2015) The carboxy-terminal tails of septins Cdc11 and Shs1 recruit myosin-II binding factor Bni5 to the bud neck in Saccharomyces cerevisiae. Genetics 200: 843-862.

Finnigan, G.C., Tagaki, J., Cho, C., and Thorner, J. (2015) Comprehensive genetic analysis of paralogous terminal septin subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 821-841.


Finnigan, G. C., Cronan, G., Park, H. J., Srinivasan, S., Quiocho, F. A., and Stevens, T. H. (2012) Sorting of the yeast V-ATPase: Identification of a necessary and sufficient Golgi/endosomal retention signal in Stv1p. J Biol Chem 287: 19487-500.

Finnigan*, G. C., Hanson-Smith*, V., Stevens, T. H., and Thornton, J. W. (2012) Evolution of increased complexity in a molecular machine. Nature 481: 360-364.


Finnigan*, G. C., Hanson-Smith*, V., Houser, B. D., Park, H. J., and Stevens, T. H. (2011) The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in S. cerevisiae. Mol Biol Cell 22: 3176-3191.

Finnigan, G. C., Ryan, M., and Stevens, T. H. (2011). A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomycescerevisiae. Genetics 187: 771-783.

*Authors contributed equally