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Abstract

Background and Objectives: Flour quality is a key target of hard winter

wheat breeding. The Farinograph is important for assessing quality before

cultivar release in the United States, but large sample size requirements and

long test times render it impractical for early‐stage selection relative to the

GlutoPeak. To improve GlutoPeak utility for breeding, we calculated new

parameters from device raw output and used random forest regression to

predict key Farinograph parameters in a winter wheat population containing

wild relative introgressions.

Findings: The key quality parameters of absorption, bake absorption, tolerance

stability, and mixing tolerance index were moderately well predicted (R2 ranging

from 0.488 to 0.745). Classification of samples as acceptable or unacceptable for

mixing tolerance index and tolerance stability was more accurate than prediction of

numeric values.

Conclusions: New features calculated from the GlutoPeak raw data were

useful predictors of quality. Prediction accuracies are sufficient to improve

breeding populations.

Significance and Novelty: This study is the first to use wheat wild relative

introgressions in GlutoPeak Farinograph prediction, the first to generate fea-

tures from raw data, and is one of the few random forest models for quality

prediction. The tools that we provide will improve ability to cull poor‐quality
lines early in the breeding pipeline can support efficient wheat cultivar

development.
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1 | INTRODUCTION

Suitability for bread making is a key characteristic for hard
winter wheat (HWW) cultivars. Before release, all HWW
cultivar candidates must be subjected to rigorous milling,
mixing, and baking tests. Failing to meet key quality
thresholds may result in the rejection of the cultivar can-
didate by end‐users, decreasing its desirability to growers.
Therefore, evaluating end‐use quality early in the cultivar
development process may allow breeders to avoid expend-
ing trial resources on wheat lines that ultimately will not be
commercially viable. Early‐stage quality evaluations must
have high sample throughput for both time‐ and cost‐
effectiveness in a breeding pipeline. To meet this need, the
end‐use quality technology industry continually seeks to
develop tools for high‐throughput methods.

In the United States, a key quality evaluation is the
Farinograph (Brabender, Anton Paar) test, which measures
torque during dough mixing to evaluate a wheat flour's
development time, stability time, and water absorption
capacity. Four key Farinograph measurements that we will
consider are as follows: (1) absorption—the mass of water
that must be added to the flour to bring the torque mea-
surement to 500 Brabender Torque Units (BU), expressed
as a percentage of the flour mass; (2) bake absorption—
absorption plus any additional water added during the
Farinograph test to maintain proper dough consistency; (3)
Mixing Tolerance Index (MTI)—the reduction in torque
5min after the dough reaches maximum torque; and (4)
tolerance stability (TS), which is the length of time for
which the torque remains above 500 BU (Bock, 2022). One
drawback of the Farinograph is a large sample size (Wang
et al., 2021). Depending on the lab and chosen method,
300 g or more of refined flour from each sample may be
necessary to run the test (AACC Method 54‐21.02). While
breeders typically have sufficient grain samples to spare in
the late stages of selection, the early selection stages typi-
cally produce a much smaller sample size, insufficient for
both Farinograph testing and for subsequent generations of
yield testing. Additionally, the time required for the far-
inograph (up to 30min per sample, plus setup, and clean‐
up) test limits daily throughput of testing laboratories.
Further constraints are imposed by the time required to
prepare refined flour on an experimental mill. The
throughput of experimental milling operations in quality
labs typically ranges from 8 to 20 samples per workday.
Consequently, early in the selection process, when breeders
have hundreds to thousands of samples, it is typically
impractical to identify those genotypes that will show the
desired Farinograph traits. The ability to make quality
selections earlier could save breeders the time, labor, and
cost of carrying a commercially unacceptable genotype to
the later stages of selection. Presently, many in the wheat

improvement industry look to the GlutoPeak and its
potential to provide an early screening method.

The GlutoPeak is a high‐shear flour testing method that
uses a dry flour or whole‐meal sample, combined with
deionized water, to measure the required time for complete
gluten aggregation, via the measurement of torque (Melnyk
et al., 2011). The GlutoPeak has been shown to have reliable
correlations of Farinograph water absorption and stability
between white flour and whole wheat meal (Wang
et al., 2021). Whole meal requires less time and labor to
produce, further contributing to the potential utility. A typ-
ical GlutoPeak method will require less than 10 g of sample,
potentially allowing breeders to distinguish between desir-
able and undesirable breeding lines (Sissons & Smit, 2018).
The smaller sample requirement also provides the oppor-
tunity to use small‐scale milling for flour preparation. Small‐
scale milling procedures (e.g., Brabender Quadrumat Junior)
can have throughput of 50–100 samples in an 8‐h workday.
The shorter run time contributes to the efficiency of the
GlutoPeak: a test run on the GlutoPeak typically takes
5–7min, including setup and clean‐up. This is much shorter
than the Farinograph, which can take up to 30min (plus
setup and clean‐up), depending on the sample size, mixing
speed, and dough properties. Therefore, the GlutoPeak could
enable breeders to accelerate the selection process to more
efficiently identify the genotypes that will produce grain that
expresses the desired quality traits in milled flour.

Previous work has sought to predict some Farino-
graph characteristics from GlutoPeak parameters. These
studies have either focused on predicting Farinograph
trait values per se (Daba et al., 2021; Marti et al., 2015) or
a binary classification based on evenly splitting the data
(Malegori et al., 2018). These studies have shown rea-
sonably high prediction accuracies for three key Farino-
graph parameters in relatively narrow germplasm pools:
absorption, bake absorption, and TS.

Here, we build on previous work by calculating new
features from short (150 s) GlutoPeak runs to predict the key
Farinograph parameters of absorption, bake absorption, TS,
and MTI, as well as industry‐guided categories for stability
and MTI, using a random forest approach (Breiman, 2001).
By calculating novel summary statistics (n=14) from the
raw torque value at each time point, we add to the small
(n=9) number of features calculated by the included Glu-
toPeak software (peak maximum time, maximum torque,
torque 15 s before and after maximum, and area under
torque curve between four consecutive milestone curve
features), a method that we believe increases the utility of
this device. The germplasm pool for this study is an intro-
gression population of the wheat ancestral species wild
emmer (Triticum turgidum subsp. dicoccoides) crossed into a
HWW (Triticum aestivum L.) background, thus highlighting
the utility of this method for trait discovery in diverse
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material. Our goal is to expand the utility of the GlutoPeak
as a tool for early‐generation evaluation of breeding germ-
plasm, improving breeders' ability to cull low end‐use quality
lines early in the cultivar development process.

2 | MATERIALS AND METHODS

2.1 | Plant material

This study included four Kansas‐adapted hard red winter
wheat cultivars: Bob Dole (PI 690435), Zenda (PI 683512),
KanMark (PI 675456), and KS090387K‐20 (pedigree
‘Winterhawk’/KS011020‐6//‘Hitch’), and 13 introgression
lines of wild emmer introduced into bread wheat with
KanMark or KS090387K‐20 as recurrent parents in a first
backcross.

Wheat was grown in four Kansas trial locations for
harvest in 2022: Ashland Bottoms (39.14216, −96.63222),
Colby (39.38689, −101.07709), Hutchinson (37.92983,
−98.02888), and Hays (38.85195, −99.33479). Trials were
grown using standard management practices for rainfed
small plot testing within a wheat improvement program.
Trials were harvested with a Zürn 150 (Zürn Harvesting
GmbH & Co.) small plot combine or a Hege 140 (Hans‐
Ulrich Hege Saatzuchtmaschinen GmbH) small plot
combine. For Colby, Hays, and Hutchinson and some
Ashland Bottoms plots, two field replications of each
genotype were composited to produce a 1.5 kg sample for
milling and baking evaluation. For the remainder of the
genotypes at Ashland Bottoms, the two field replications
were processed as independent samples. In practice, a
number of genotypes yielded poorly at one or more
locations, so all four locations of harvest were not used
for all genotypes. A total of 67 samples were evaluated.

2.2 | Sample processing

Milling and Farinograph testing was conducted by the Great
Plains Analytical Laboratory (GPAL), following AACC‐
approved methods (AACC 26‐21.02; AACC 54‐21.02). Bake
absorption was calculated as initial absorption plus any
additional water added during the Farinograph test to
maintain proper dough consistency: this trait is not outlined
in AACC methods but is accepted as a proxy for a baker's
experience with the flour (Bock, 2022; T. Fontana, GPAL,
personal communication, May 24, 2024). Samples were
milled using a Bühler laboratory mill (Bühler MLU‐202).
Before milling, whole‐grain protein and moisture data were
collected using near‐infrared spectrometry (Foss Infratec
1241 Grain Analyzer). Protein was estimated from the total
nitrogen content and adjusted to 12% moisture content.

2.3 | GlutoPeak

Milled flour samples received from GPAL were evaluated
using a GlutoPeak (Brabender GlutoPeak, Model 803420).
Nine grams of flour was mixed with 9 g of deionized water
and run at 2700 rpm and 34°C (Bouachra et al., 2017). Run
length varied; all features were calculated from the first
150 s of output from the GlutoPeak, as peak formation was
consistently observed before this mark, and increased
torque, possibly due to starch gelatinization, was
inconsistently observed at longer time points.

2.4 | Feature calculation

Feature calculation and all subsequent data analyses
were conducted using the R language (R Core
Team, 2022). Other than protein concentration, all fea-
tures used for model construction were calculated from
the raw torque/time output from the GlutoPeak. First, to
aid in further calculations, a series of sliding window
summary statistics were calculated for each 1 s interval,
using the R package “slider” (Vaughan, 2021). These
were (1) the maximum torque for a 10‐second sliding
window centered on the time point and (2) the mean
torque of the 7 s sliding window after the time point.
These summary statistics were then used to identify peak
time points, which were defined as time points where the
measured torque is within 95% of the 10 s sliding‐window
maximum, and the difference between the torque at the
time point and the 7 s leading mean is greater than 2.5%
of the torque at the time point. These criteria were
selected based on visual assessment of time × torque
plots to most consistently find peaks, rather than shoul-
ders before true peaks. Typically, either one or two peaks
occurred in the 150 s time frame. If a second peak oc-
curred, it was always at a higher torque than the first
peak. Thus, these peaks were labeled “first peak” and
“max peak,” and subsequent features were calculated
based on these peaks (Table 1). The area under the curve
was calculated as the sum of the average torque between
each 1 s interval, effectively providing a trapezoidal esti-
mate of the integral.

2.5 | Applying industry‐relevant
thresholds for quality categorization

In consultation with industry and USDA cereal chemists,
it was determined that categorizing flour samples as
“unacceptable”, “acceptable,” or “excellent” for MTI and
TS would be valuable. The threshold values that define
these categories are presented in Table 2.
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TABLE 1 Description of all model features calculated from raw GlutoPeak torque/time output.

Features Description

A01* Area under the curve before the first peak.

A12* Area under the curve from the first peak to trough.

First_peak_time & First_peak_torque The first peak is defined as the first time point where the measured torque is within 95% of the
maximum torque in a 10 s sliding window around the point, and the difference between the
torque at the time point and the mean of the torque 7 s after that time point is greater than 2.5%
of the torque at the time point. These criteria were selected based on visual assessment of
time × torque plots to most consistently find the first peak, rather than shoulders before the peak.

Firstpeakarea Area under the curve around the first peak, defined as all points contiguous with the first peak
where the difference between the torque at the time point and the mean of the torque in a 15 s
sliding window around the time point is positive.

Max_before60_torque Maximum torque before 60 s.

Max_dif Maximum difference between the torque at a time point and the mean of the torque in a 15 s
sliding window around the time point.

Max_dif_time Time where “max_dif” occurs.

Max_time* Time of maximum torque.

Max_torque* Maximum torque.

Maxpeakarea Area under the curve around the max peak, defined the same way as the area under the
first peak.

Peak_slope Slope from the first peak to trough.

PMslope Slope from the first peak to 15 s after the peak.

Time_near_max Number of seconds where torque remains within 80% of max.

Torque_at_150 Torque at 150 s.

Torque_decrease Difference between the first peak torque and torque at 150 s.

Trough_time and trough_torque Trough is defined as the lowest torque after the first peak.

Note: Traits denoted with an (*) are also provided in standard GlutoPeak summary statistics from Brabender software (Brabender, Metabridge Glutopeak BMB:
2.2.0 CV 2).

TABLE 2 Category thresholds for mixing tolerance index
(MTI) and tolerance stability.

Class
MTI
threshold (BU)

Tolerance stability
threshold (min)

Unacceptable Value ≥ 40 Value < 7.5

Acceptable 20 ≤ value < 40 7.5 ≤Value < 14

Excellent Value < 20 Value ≥ 14

2.6 | Model construction and evaluation

For each trait of interest, random forest regression or
classification was carried out using the R packages
“randomForest” and “caret” (Kuhn, 2022; Liaw &
Wiener, 2002). For all traits, fivefold cross‐validation
was used to evaluate model accuracy. For the tuning
parameter “mtry” (number of variables randomly
selected at each tree split), all values from 2 to 14,

advancing by 2, were tested. To obtain the most
repeatable values possible for accuracy and feature
importance, the reported values for each trait are the
median of 30 independent replications of the model
construction and cross‐validation. Generally, reported
accuracy statistics are the out‐of‐bag (OOB) estimates
generated during cross‐validation referring to the subset
of samples that are held out as a test set during model
training. During cross‐validation, each sample is held
out at least once, allowing for the calculation of pre-
diction accuracies for the population while still allowing
every sample to be used in the final model construction.
Following model construction, the least‐informative
predictor was then held out, and model construction
was repeated. If OOB accuracy increased, this process
was repeated until removing features decreased model
accuracy. The set of features that yielded the maximum
OOB accuracy was then used.

For each trait, all calculated GlutoPeak parameters lis-
ted in Table 1, as well as flour protein concentration, were
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supplied as potential predictors for random forest regres-
sion or classification. For traits that were predicted through
regression, the median OOB root mean square error
(RMSE) and R2 of the 30 model constructions are reported.
Feature importance is reported as the increase in node
purity (reduction in RMSE) due to the inclusion of the
feature, again reporting the median of 30 model construc-
tions. For classification traits, the median OOB accuracy of
30 model constructions and the Spearman rank correlation
between observed class predicted from one randomly
selected model construction are reported. A single model
construction was used for observed versus predicted eva-
luations to better replicate the way such a model would be
used in practice by breeders. Feature importance is reported
as mean decrease in the Gini index, which measures the
accuracy of classification based on the inclusion of a given
variable (Menze et al., 2009).

2.7 | Calculation of Best Linear
Unbiased Estimates (BLUES)

To summarize trait values for each genotype across
locations, BLUEs were calculated for both observed and
predicted Farinograph traits (Henderson, 1975). Here,
BLUEs are the estimated fixed effect for each genotype in
the linear mixed model Trait = Genotype + Location,
where Location is treated as a random effect.

3 | RESULTS

3.1 | Summary of key parameters

For several Farinograph traits, introgression lines
increased the range of trait values that would be avail-
able for breeding (Table 3). This observation highlights
the merit of evaluating larger diversity panels for these
traits.

3.2 | Predicting Farinograph absorption
and bake absorption

Both Farinograph absorption and bake absorption
were relatively well predicted (Figure 1). Importance
measures for all features in all prediction models are
reported in Supporting Information S1: Table 1. Ran-
dom forest regression is not intended to prove causal-
ity; any mechanistic inferences drawn from the relative
importance different model features are potential in-
sights to guide future work, but should not be under-
stood directly as causal relationships. In addition,
Pearson's correlation coefficients between all traits and
predictors are reported in Supporting Information S1:
Table 2: while these correlations do not relate directly
to feature importance in random forest regression, they
may aid in interpretation. Across 30 independent

TABLE 3 Mean, range, and variance for key traits.

Trait Germplasm group Mean Range Variance

Absorption (%) Combined 64.09 58.2–72.8 7.09

Checks 63.5 58.2–68 7.41

Introgression lines 64.3 60.4–72.8 7.01

Bake absorption (%) Combined 66.23 62.5–75 5.23

Checks 65.9 62.5–70 5.89

Introgression lines 66.3 63–75 5.09

Mixing Tolerance Index (BU) Combined 26.18 6–63 172.45

Checks 20.9 6–53 146.25

Introgression lines 27.8 7–63 171.93

Tolerance stability (min) Combined 13.12 3.37–30a 49.71

Checks 16.2 5.05–30 48.69

Introgression lines 12.1 3.37–30 47.02

Protein (%) Combined 13.54 11.44–18.18 1.83

Checks 12.8 11.5–15.4 1.14

Introgression lines 13.8 11.4–18.2 1.84

Note: Summary statistics are given for the combined population of all lines, as well separately for the set of check cultivars and set of introgression lines.
aThe Farinograph measurement was ended at 30min, artificially capping all tolerance stability measures at this time point.
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model constructions, the median OOB RMSE for Far-
inograph absorption was 1.43 percentage points or 10%
of the observed range for the trait. The median model
R2 was 0.745. For bake absorption, the median OOB
RMSE across 30 model constructions was 1.26, again
10% of the range for the observed values of the trait.
The median model R2 was 0.726. For Farinograph
absorption, the two most important predictors, both
with more than double the increase in node purity
relative to the third most important feature, were
PMslope (the slope from the first peak to 15 s after
the first peak), and A12, the area under the curve from
the first peak to the trough. For bake absorption, the
two most important predictors were trough_torque
(the lowest torque value observed after the first torque
peak) and Max_torque (the maximum torque value
observed).

3.3 | Predicting the MTI

3.3.1 | Numeric trait

The MTI was predicted both as a numeric trait through
regression (Figure 2) and with classification of the sam-
ples into three categories (Table 2). For the numeric trait,
the median RMSE was 9.47 Brabender torque units (BU),
or 15.8% of the range observed for the trait. The median
model R2 was 0.521. The two most important predictors
were the PMslope and A12.

3.3.2 | Classification

Samples were categorized into one of three MTI categories.
“Unacceptable” samples had an MTI equal to or above 40
BU, “acceptable” samples had an MTI below 40 BU and
equal to or greater than 20 BU, and “excellent” samples had
an MTI below 20 BU. This method produced a relatively
high prediction accuracy, with a median OOB prediction
accuracy of 0.734 across 30 independent model construc-
tions. A confusion matrix of the model predicted classifica-
tion for each sample is shown in Table 4. The Spearman's
rank correlation between the observed and predicted clas-
sification was lower than the OOB prediction accuracy, at
0.647. Crucially, no samples that were observed to have an
“unacceptable” MTI were classified as “excellent” and vice
versa. Therefore, either culling all “unacceptable” lines or
only retaining “excellent” lines would not result in the
inclusion of the opposite extreme class in the culled or
retained material. The two best predictors for this trait were
PMslope and A01, or the area under the torque curve before
the first peak. A12, the second most important predictor for
the numeric value of the trait, was the third best predictor.

3.4 | Predicting Farinograph TS

3.4.1 | Numeric trait

Like MTI, Farinograph TS was predicted both as a
numeric and as a categorical trait (Figure 2). For the

FIGURE 1 Observed versus out‐of‐bag predicted absorption and bake absorption values for all samples. Predicted values are extracted
from a single random forest model construction (rather than a median of 30 independent constructions). Color is used to differentiate bread
wheat cultivars from bread wheat lines containing introgressions from wild emmer wheat. The trendlines through data points represent the
linear regression of predicted values on observed values.

6 | PRICE ET AL.
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numeric trait, the median OOB RMSE was 5.13 min, or
19.5% of the range observed. The median model R2 was
0.486. The two most important predictors were PMslope
and A12.

3.4.2 | Classification

Samples were categorized into one of three TS cate-
gories. “Unacceptable” samples had a TS below
7.5 min, “acceptable” samples had a TS above or equal
to 7.5 min and below 14 min, and “excellent” samples
had a TS equal to or above 14 min. This method was
relatively accurate, with a median OOB prediction
accuracy of 0.634 across 30 independent model

constructions. A confusion matrix of the predicted
classification for each sample is shown in Table 5: the
Spearman's rank correlation between the observed
and predicted classification was lower than the OOB
prediction accuracy, at 0.56. In this case, one sample
that was observed to have an “unacceptable” TS was
classified as “excellent.” The two most important
predictors for this trait were PMslope and A01, the
same as the best predictors for MTI classification.
Again, as for MTI classification, A12 was the third
best predictor.

Following industry guidance, a second classification
method was attempted, adding a fourth “Long” category,
for samples over 20 min. The overall accuracy of this
classification was similar to the three‐class TS classifi-
cation, with a median OOB accuracy of 0.64, and a cor-
relation between predicted and observed classes of 0.585.
However, this method only identified one sample in the
relatively narrow “Excellent” class between 14 and
20min (Table 6).

3.5 | Combined analysis of the MTI
and TS

TS and MTI are related traits and can be considered
together to provide a more complete picture of quality.
When the two are combined, 55% of samples are placed
in the correct category for both traits and 76% of samples

FIGURE 2 Observed versus out‐of‐bag predicted tolerance stability and mixing tolerance index for all samples. Predicted values are
extracted from a single random forest model construction (rather than a median of 30 independent constructions). Color is used to
differentiate bread wheat cultivars and bread wheat lines containing introgressions from wild emmer wheat. The trendlines through data
points represent the linear regression of predicted values on observed values.

TABLE 4 Confusion matrix for mixing tolerance index
classification.

Observed class Predicted class Count

Unacceptable Unacceptable 7

Unacceptable Acceptable 3

Acceptable Unacceptable 2

Acceptable Acceptable 32

Acceptable Excellent 3

Excellent Acceptable 10

Excellent Excellent 10

PRICE ET AL. | 7
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are classified correctly for at least one of the two traits
(Table 7).

3.6 | Correlation of BLUES

For the purposes of model construction and evaluation, all
samples have been treated independently. However, for
breeders, the ultimate goal is to make selections among
genotypes, using information gained from observations of
the same genotype set in multiple environments. To this
end, we then calculated BLUEs of both observed and
predicted trait values for the 17 genotypes used in this
study (Supporting Information S1: Table 3). Spearman's
rank correlations were then calculated between the
BLUEs for observed and predicted traits. These correla-
tions were all high and statistically significant (Table 8).

4 | DISCUSSION

4.1 | Comparison to previous studies

Since 2015, efforts have been made to relate GlutoPeak
measurements to key Farinograph parameters (Marti
et al., 2015). These methods have typically made use of a
GlutoPeak run time between 5 and 10min, as opposed to the

TABLE 5 Confusion matrix for tolerance stability
classification.

Observed class Predicted class Count

Unacceptable Unacceptable 10

Unacceptable Acceptable 3

Unacceptable Excellent 1

Acceptable Unacceptable 4

Acceptable Acceptable 23

Acceptable Excellent 5

Excellent Acceptable 12

Excellent Excellent 9

TABLE 6 Confusion matrix for tolerance stability (TS)
classification, including a fourth class of “Long” sample, with a
TS value over 20min.

Observed class Predicted class Count

Unacceptable Unacceptable 10

Unacceptable Acceptable 4

Acceptable Unacceptable 3

Acceptable Acceptable 26

Acceptable Excellent 1

Acceptable Long 2

Excellent Acceptable 12

Long Acceptable 5

Long Excellent 3

Long Long 1

TABLE 7 Combined confusion matrix for mixing tolerance
index (MTI) and tolerance stability (TS) classification.

Observed class
(MTI/TS)

Predicted class
(MTI/TS) Count

Unacceptable/
Unacceptable

Unacceptable/
Unacceptable

7

Unacceptable/
Unacceptable

Acceptable/Unacceptable 3

Acceptable/Unacceptable Acceptable/Acceptable 3

Acceptable/Unacceptable Acceptable/Excellent 1

Acceptable/Acceptable Acceptable/Acceptable 21

Acceptable/Acceptable Unacceptable/
Unacceptable

2

Acceptable/Acceptable Acceptable/Unacceptable 2

Acceptable/Acceptable Acceptable/Excellent 3

Acceptable/Acceptable Excellent/Acceptable 1

Acceptable/Acceptable Excellent/Excellent 1

Acceptable/Excellent Acceptable/Acceptable 2

Acceptable/Excellent Excellent/Acceptable 1

Excellent/Acceptable Acceptable/Acceptable 1

Excellent/Acceptable Excellent/Excellent 1

Excellent/Excellent Acceptable/Acceptable 9

Excellent/Excellent Excellent/Excellent 9

TABLE 8 Spearman rank correlation coefficients between
BLUEs for observed and predicted trait. All values are statistically
significant (p< .01).

Trait Correlation

Absorption 0.799

Bake absorption 0.792

MTI (numeric) 0.865

MTI (categorical) 0.659

TS (numeric) 0.775

TS (categorical) 0.766

Abbreviations: MTI, Mixing Tolerance Index; TS, tolerance stability.
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150 s measurement used here. Marti et al. (2015) reported a
great deal of success in predicting absorption and TS
(R2 = 0.96 and 0.88) in 120 commercial Italian wheat vari-
eties using a partial‐least‐squares regression model. Further
studies have obtained lower prediction accuracies, compa-
rable to or somewhat higher than those obtained in the
present study (Daba et al., 2021; Rakita et al., 2018; Zawieja,
Makowska & Gutsche, 2020). Other authors have also
adopted a classification approach to predicting Farinograph
values from GlutoPeak parameters. Malegori et al. (2018)
obtained a high prediction accuracy for stability on splitting
samples into “high” and “low” stability groups; however, the
threshold values for these two categories were determined by
evenly splitting the training data rather than being deter-
mined by industry standards, and thus may be less imme-
diately relevant to breeding efforts.

Although the prediction accuracies reported here are
not as high as others in the literature, we believe that this
study makes several valuable contributions to this area.
This is the first model relating GlutoPeak and Farinograph
characteristics in a wild relative introgression population.
We predict the key Farinograph parameter of MTI and
present methods for using the raw output of GlutoPeak
runs. A second advantage of this study is the use of runs
terminated at a standardized 150 s, rather than the stan-
dard 5–10min. This change allows for increased sample
throughput, further increasing the utility of this method
for early‐generation testing. Finally, this is the first report
to use industry‐derived thresholds for MTI and TS classi-
fication, increasing relevance to breeding efforts.

4.2 | Utility for breeding

End‐use quality is a key set of parameters in HWW cultivar
development. In many cases, this characteristic may best be
thought of as a threshold selection trait. Rather than seeking
a maximal value, a released variety should consistently be
above a minimum level of quality (Seabourn, 2006). This
prediction method, particularly categorizing MTI and TS, is
well suited to this paradigm. Combining the categorical
classification for MTI and TS is one scenario in which a
breeder could apply this method for selection. In this data
set, 55% of samples were correctly classified for both traits
and 76% were correctly classified for at least one trait.

One complication in using the results of this study to
illustrate applications to breeding is the small number of
unique genotypes in the training data set: 17 genotypes
replicated across four environments. The high degree of
genetic and quality diversity represented by these lines also
add to the challenges for prediction. In practice, a breeder
applying this method to early generation selection would be
selecting from a much larger pool of genotypes, using only

one or two locations of data. In the development of predic-
tion models for this study, neither the genotype nor the
source location of a flour sample was ever used as a pre-
dictor. Because quality traits can vary significantly by loca-
tion, even within genotypes, there is a limited extent to
which illustrating the application of this method to a
breeding population by treating each sample as a unique
“line” is useful. Scenarios 1 and 2 below follow this
approach. In Scenario 3, BLUE values calculated for each of
the 17 genotypes for predicted and observed trait values are
used to illustrate the utility of this method where it applied to
the training data set as actually constructed.

4.2.1 | Scenario 1: High selection intensity

A realistic selection criterion could be to advance lines that
are classified as “Excellent” for both traits. Here, 18 of
67 samples were observed to be “Excellent” for both traits,
while 11 samples were predicted to meet this criterion, and
so would be selected. Of these 11 samples, 9 were in fact also
observed to be “Excellent” for both traits. One remaining
sample was “Acceptable” for both traits and one sample was
“Excellent” for one trait and “Acceptable” for the other.
However, this also means that nine of the samples observed
to be “Excellent” for both traits would not have been
selected. In this instance, the selection criterion would have a
low rate of false positives (18%) but a relatively high rate of
false negatives (50%). This selection scheme would remove
84% of the population from the breeding program and it
would increase the frequency of samples that are “Excellent”
for both traits from 0.269 to 0.81. This level of selection
intensity may be advantageous in a recurrent selection or
parental development context, or when breeding for a high‐
quality market niche.

4.2.2 | Scenario 2: Low selection intensity

Conversely, this method could be used to cull lines that
are unacceptable for either trait. In this scenario, 14 of
67 samples would be culled. Of these, 12 were actually
observed to be “Unacceptable” for a trait, while the
remainder were observed to be “Acceptable” for both
traits, meaning that no “Excellent” samples would be
removed. This would also remove all samples that were
observed to be “Unacceptable” for both traits, and it
would leave four samples that were “Unacceptable” for
one trait. This removal of 20% of the population would
reduce the proportion of the population with an
“Unacceptable” trait from 0.21 to 0.07, while not re-
moving any “Excellent” samples. This relatively low
selection intensity could be appropriate to cull lines

PRICE ET AL. | 9
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early in the breeding pipeline. Alternatively, it could be
used as a first threshold selection step late in the
breeding pipeline, with remaining lines then selected
for agronomic performance, disease resistance, and
other traits more immediately relevant to growers'
variety selection decisions.

4.2.3 | Scenario 3: Selection among
genotypes using BLUE values for predicted
traits

The training data used for this experiment comprised of 17
genotypes, replicated over four environments. Realisti-
cally, a breeder seeking to make quality selections in this
context would create bulked samples, combining multiple
environments, and evaluate them using a Farinograph.
However, given data for each line × environment combi-
nation, BLUEs could be calculated to compare genotype
values (Supporting Information S1: Table 3).

Here, the correlations between BLUEs for observed
and predicted trait values were actually higher for
numeric TS and MTI values, rather than the categori-
cal trait. This, combined with the lack of statistical
clarity of linear estimates calculated for ordinal, cate-
gorical trait values, suggests that BLUEs for the
numeric trait values should be used for selection. In
this example, selecting only lines with a BLUE for
predicted TS or MTI that falls in the “Excellent” cate-
gory would result in the selection of 10 of the 17 gen-
otypes. This selection scheme would result in keeping
all lines with an “Excellent” BLUE for the observed
value of either MTI or TS; in this selected subset, the
maximum BLUE for observed MTI is 24.4 BU and the
minimum BLUE for observed TS is 13.14 min. Both of
these values are near the threshold between “Accept-
able” and “Excellent” for their respective traits, further
highlighting the ability of the prediction method to
identify high‐preforming lines.

This scenario helps to highlight an advantage of this
approach, relative to Farinograph evaluation in breeding
populations. Because of the time savings offered by milling
much smaller grain samples and by much shorter tests, we
estimate that it would be possible to use our method to
obtain several environments' worth of data on a set of
breeding lines in less time than would be required to obtain
Farinograph measurements on an equivalent number of
lines in one location. This would enable the routine cal-
culation of BLUEs for predicted Farinograph parameters,
allowing better estimates of end‐use quality for breeding
lines: this high correlation between BLUEs for observed
and predicted Farinograph values further highlights the
potential value of this approach.

4.3 | Developing an updating model for
Farinograph parameters

Because the Farinograph more directly replicates the
commercial baking process than the GlutoPeak, measure-
ments from this tool will likely remain the predominant
quality parameters for wheat variety acceptance in the
United States for the foreseeable future. Therefore, rather
than directly adopting GlutoPeak parameters to select for
end‐use quality in the final evaluation stages of wheat
breeding, we believe that continuing to build on this pre-
diction procedure is worthwhile. To this end, we envision
developing a “testing/training” breeding method similar to
that used for genomic selection. For a given breeding
program, we envision that a small number of representa-
tive lines (checks, important parents, elite progeny) would
be evaluated using both the Farinograph and GlutoPeak
each year, while a larger test set of lines would be evaluated
with only the GlutoPeak. These Farinograph data, com-
bined with GlutoPeak data for the tested lines, would be
used by breeders to continuously update and evolve the
prediction models for their own breeding germplasm in
their particular testing environments.

In all, we believe that the tools provided here have the
potential to increase the utility of the GlutoPeak for
breeding programs. Standardizing all GlutoPeak runs to
150 s would increase sample throughput, relative to the
previous standard of 300 s (Bouachra et al., 2017). This
would allow for relatively large breeding populations and
multiple environments to be evaluated for end‐use quality
through the prediction of Farinograph characteristics. The
application of these methods can contribute to the devel-
opment of wheat cultivars that combine excellent end‐use
quality with high yield, disease resistance and stress tol-
erance, serving wheat growers and processors.
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