Small quantities (3 grams) of seed of KS12WGGRC56 are available upon written request. We request that the appropriate source be given when this germ plasm contributes to research or development of new cultivars. Seed stocks are maintained by the Wheat Genetic and Genomic Resources Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506.

Notice of release of KS12WGGRC57 (TA5617) stem rust-resistant wheat germ plasm.

B. Friebe, L.L. Qi (USDA–ARS, Northern Crop Science Laboratory, Fargo, ND 58102-2765, USA), C. Qian (National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, PR China), P. Zhang (Plant Breeding Institute, University of Sydney, Camden, NSW 2570, Australia), D.L. Wilson, W.J. Raupp, M.O. Pumphrey (Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA), J. Poland and R.L. Bowden (USDA–ARS Hard Winter Wheat Genetic Research Unit), A.K. Fritz (Department of Agronomy), and B.S. Gill.

The Agricultural Research Service, U.S. Department of Agriculture and the Kansas Agricultural Experiment Station announce the release of KS12WGGRC57 hard red winter wheat germ plasm with the stem rust resistance gene Sr52 for breeding and experimental purposes. KS12WGGRC57 is derived from the cross ‘TA3060/TA7682 F₃’, where TA3060 is a Chinese Spring wheat stock monosomic for chromosome 6D (CSM6D) and TA7682 is a Chinese Spring–*Dasypyrum villosum* disomic chromosome addition line for the *D. villosum* chromosome 6V#3 (DA6V#3). KS12WGGRC57 has the long arm 6V3#L derived from *D. villosum* translocated to the short arm of wheat chromosome 6AS in the form of a Robertsonian T6AS·6V#3L translocation. The 6V3#L arm in T6AS-6V#3L has a gene conferring resistance to stem rust (*Puccinia graminis* f. sp. *tritici* Eriks. & E. Henn.) races RKQQC and TTKSK designated as Sr52. Sr52 is temperature-sensitive and is most effective at 16°C, partially effective at 24°C, and ineffective at 28°C. The T6AS-6V#3L stock is a new source of resistance to Ug99, is cytogenetically stable, and may be useful in wheat improvement.

Small quantities (3 grams) of seed of KS12WGGRC57 are available upon written request. We request that the appropriate source be given when this germ plasm contributes to research or development of new cultivars. Seed stocks are maintained by the Wheat Genetic and Genomic Resources Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506.

Notice of release of KS12WGGRC58 (TA5630, TA5625, TA5643) stem rust-resistant wheat germ plasm.

B. Friebe, W. Liu (Laboratory of Cell and Chromosome Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, PR China), D.L. Wilson, W.J. Raupp, M.O. Pumphrey (Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA), J. Poland and R.L. Bowden (USDA–ARS Hard Winter Wheat Genetic Research Unit), A.K. Fritz (Department of Agronomy), and B.S. Gill.

The Agricultural Research Service, U.S. Department of Agriculture and the Kansas Agricultural Experiment Station announce the release of KS12WGGRC58 wheat germ plasm with resistance to stem rust Sr53 for breeding and experimental purposes. KS12WGGRC58 has a segment of the long arm 5M₄L derived from *Ae. geniculata* in the form of an interstitial translocation Ti5DS·5DL-5M₄L·5M₅S (KS12WGGRC58-Ti, TA5630) and terminal translocations T5DL-5M₅L·5M₄S (KS12WGGRC58-T1, TA5625) and T5DL-5M₅L·5M₄S (KS12WGGRC58-T2, TA5643). KS12WGGRC58-Ti is derived from the cross ‘TA5599/Lakin F₃’, where TA5599 is a wheat–*Ae. geniculata* terminal translocation stock consisting of part of the long arm of wheat chromosome 5D, part of the long arm of the *Ae. geniculata* chromosome arm 5M₄L, and the complete short arm 5M₅S, and Lakin is a Kansas hard red winter wheat cultivar. KS12WGGRC58-T1 and KS12WGGRC58-T2 are derived from the cross ‘TA5599/TA3808 F₃’ where TA3808 is the Chinese Spring stock homozygous for the homoeologous pairing mutant allele *ph1b*, with 5M₄L shortened by 10% and 20%, respectively, compared to that of TA5599. The 5M₄L arm has a gene conferring resistance to stem rust (*Puccinia graminis* f. sp. *tritici* Eriks. & E. Henn.) races RKQQC and TTKSK designated as Sr53. The Ti5DS·5DL-5M₄L·5M₅S and T5DL-5M₅L·5M₄S stocks are new sources of resistance to Ug99, are cytogenetically stable, and may be useful in wheat improvement.