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ABSTRACT

To localize wheat (7Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific
ESTs were identified by physically mapping 7965 singletons from 37 ¢cDNA libraries on 146 chromosome,
arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions
(bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043
(loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The
number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected
orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus
physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward
higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified
rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present
on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6
bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes.
These rice-block contigs were used to resolve the order of wheat ESTs within each bin.

OMMON wheat (Triticum aestivum L.) is an allo-
hexaploid (2n = 6x = 42, AABBDD) containing
three homoeologous genomes (SEARS 1954). Among
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important cereals, the wheat genome with 16,000 Mb is
the largest and rice (Onyza sativa L..) with 415 Mb is the
smallest (ARUMUGANATHAN and EARLE 1991). The wheat
genome is ~~100 times larger than the model plant Arabi-
dopsis. Even in Arabidopsis only ~45% of the genome
represents the gene-containing fraction that is inter-
spersed with noncoding DNA primarily composed of ret-
rotransposon-like repetitive sequences (BARAKAT et al.
1997; BENNETZEN et al. 1998; SipHu and GiLL 2004).
Estimates for the gene-containing fraction of the
wheat genome range from 1 to 5% obtained from the
available sequence data comparisons with other plant
genomes to 15% by DNA reassociation kinetics experi-
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ments (FLAVELL ef al. 1974; SaANDHU and GiLL 2002;
SipHU and GiLL 2004). Deletion mapping of ~2000
gene marker loci showed that genes on wheat chromo-
somes are also unevenly distributed (GILL et al. 1996a,b;
FaRis et al. 2000; SANDHU et al. 2001; SANDHU and GILL
2002; AKHUNOV et al. 2003a,b). About 30% of the wheat
genome appears to contain >85% of the genes (ErRAY-
MAN et al. 2004). The remaining 70% of the genome,
present as large blocks interspersed by the gene-rich
regions, appears to be gene empty. Therefore, targeting
the expressed portion of the genome is particularly im-
portant for wheat.

Obtaining partial ¢cDNA sequences [expressed se-
quence tags (ESTs)] from various developmental stages
and in response to various biotic and abiotic stresses of
the plant is an efficient, economical, and quick ap-
proach to target the expressed portion of any genome.
About 19 million ESTs representing 600,000 unigenes
from >80 organisms are available (http:/www.ncbi.nlm.
nih.gov; Apams et al. 1991). For wheat, >500,000 ESTs
corresponding to ~22,000 unigenes have been isolated.
However, the full potential of the utility of ESTs in
genomics cannot be realized without revealing their
physical location on chromosomes. Physical mapping
of ESTs is particularly important in wheat because of the
highly uneven distribution of genes on chromosomes.

Physical mapping of DNA markers is relatively easy
in wheat because a wealth of aneuploid stocks is avail-
able. A complete series of nullisomic-tetrasomic (NT; a
line lacking a pair of chromosomes, loss of which is
compensated for by an extra pair of one of its homoeo-
logs) and ditelosomic (DT) lines (SEARs 1954) can be
used to reveal arm location of markers (ANDERSON et
al. 1992). In addition, 436 chromosome deletion lines
are available for the 21 wheat chromosomes that can be
used for intrachromosomal mapping (ENpO and GILL
1996). These stocks have been extensively used to physi-
cally map >2000 DNA markers (WERNER et al. 1992;
GILL et al. 1993; KoTa et al. 1993; HoOHMANN et al. 1994;
DELANEY et al. 1995a,b; MICKELSON-YOUNG ¢t al. 1995;
GILL et al. 1996a,b; FAris et al. 2000; WENG et al. 2000;
SANDHU ef al. 2001; DILBIRLIGI ¢t al. 2004; ERAYMAN et
al. 2004).

A National Science Foundation-funded collaborative
project was initiated with a goal to physically map 10,000
wheat unigene ESTs using the aneuploid and deletion
stocks. Wheat homoeologous group 6 data are reported
in this article. Similar data for the other six homoeolo-
gous groups are presented in the accompanying articles
in this issue. We also report identification of rice chro-
mosomal regions homologous to wheat group 6 chro-
mosomes and the use of rice to reveal EST order within
each wheat bin.

MATERIALS AND METHODS

Genetic stocks: Chromosome arm locations of the selected
ESTs were revealed using 21 NT and 24 DT lines (SEARs 1954,

1966; SEArs and SEARs 1978). For sub-arm localization of
ESTs, 101 deletion lines carrying 120 breakpoints were se-
lected (ENDO and GILL 1996). Of these, 17 were for homoeolo-
gous group 6 that, along with 6 DT breakpoints, divided the
group 6 chromosomes into 26 bins. All the aneuploid and
deletion stocks used for the study were in cultivar Chinese
Spring (CS) background. The deletion breakpoints were ex-
pressed as a fraction length (FL) value of the arm retained
in the deletion chromosome. The stocks were provided by
the Wheat Genetics Resource Center (WGRC), Kansas State
University, Manhattan, KS.

EST selection: As of February 2, 2004, 8318 singletons from
~117,000 ESTs derived from ~387 cDNA libraries were
mapped by the whole project. Details concerning the cDNA
libraries, ESTs, and singletons are given elsewhere (http:/
wheat.pw.usda.gov/NSF; Lazo et al. 2004; ZHANG et al. 2004).
For the analysis presented here and in the accompanying
articles in this issue, the March 17, 2003, data set of 4485
mapped and verified ESTs was used. From this data set, 882
ESTs mapped to homoeologous group 6.

Deletion mapping: Genomic DNA isolation, restriction en-
zyme digestion, and gel-blot analysis were performed as de-
scribed by SaAnpHU ef al. (2001). Gel-blot analysis was per-
formed using 15 ng of genomic DNA digested with EcoRI
enzyme. The NT, DT, and the deletion lines were used in a
single hybridization reaction on a set of five filters. The lane
order for the filters is provided at http:/wheat.pw.usda.gov/
NSF. Each fragment band (locus) was mapped to a chromo-
some region (bin) flanked by breakpoints of the largest dele-
tion possessing the fragment and the smallest deletion lacking
it. The chromosome size data of CS were taken from B. S.
GILL et al. (1991). The number of expected loci per arm was
calculated on the basis of its physical length. The mapping
data along with the gel-blot analysis images are available at
http:/wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi.

Consensus physical map: A consensus physical map of ho-
moeologous group 6 chromosomes was constructed using the
criteria described in GILL et al. (1996a,b) except that only the
ESTs that detected orthologous loci on all three chromosomes
were used. The breakpoints of all group 6 deletions were
placed on a hypothetical chromosome drawn to scale on the
basis of the mean length of group 6 chromosomes. The dele-
tion mapping data from the three chromosomes were then
combined to position each EST to the shortest possible chro-
mosome interval. In case of a discrepancy, a location consistent
with two homoeologs was used.

Wheat-rice comparisons: The 882 group 6 ESTs were com-
pared with the rice genomic sequence using “blast” (http:/
www.ncbi.nih.gov/; ALTSCHUL et al. 1997). A cutoff Evalue of
E <10~ and sequence length >100 bases (for values < E <
107%) were used to identify rice homologs that were equivalent
to >65% nucleotide sequence homology. Rice bacterial artifi-
cial chromosome (BAC) and P1-derived artificial chromosome
(PAC) contigs (http:/rgp.dna.affrc.go.jp) corresponding to
each group 6 bin were identified and used to order 385 group
6 wheat ESTs.

RESULTS

Distribution of ESTs: Of the March 7, 2003 data set
of 4485 mapped and verified project ESTs, 882 ESTs
mapped to homoeologous group 6 chromosomes, using
only the EcoRI enzyme. These group 6 ESTs detected
5154 restriction fragment bands, and each fragment
band was considered as alocus. The NT and DT analyses
mapped 2849 (55%) of these loci to specific chromo-
some arms. The remaining 2305 (45%) fragment bands
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were not mapped, as these were monomorphic among
the NT lines. The 882 ESTs, mapped on homoeologous
group 6, detected 2043 loci on group 6 and 806 loci on
other homoeologous groups. Among the homoeologs,
chromosome 6B had the highest number of loci and
6D had the lowest. Of the 882 ESTs, 518 detected 665
loci on chromosome 6A, 601 detected 777 loci on 6B,
and 488 ESTs detected 601 loci on chromosome 6D
(Figure 1).

Distribution of the group 6-specific EST loci on the
three homoeologous chromosomes showed that 264
EST probes detected 873 loci on all three homoeologs,
192 detected 472 on two, and the remaining 426 de-
tected 698 loci on only one of the chromosomes (Figure
2). The number of loci mapping on the long arms was
significantly higher than that on the short arms. The
numbers of short-arm loci were 289, 311, and 255 for
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Ficure 2.—Distribution of 2043 homoeologous group
6-specific EST loci by genome. The actual number of loci is
shown at the top of each bar.

6A, 6B, and 6D, respectively, compared to 369, 461,
and 336 for the long arms (Figure 3). Twenty-two loci
mapped in the centromeric region, of which 7 were on
6A, 5 on 6B, and 10 on 6D (Figure 1). A comparison
of these numbers with the expected number based on
the physical length of the arms showed significant differ-
ences (x?, P = 0.012) between the observed and the
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F16Ure 3.—Comparison of observed and expected numbers
of homoeologous group 6-specific EST loci. The shaded and
solid bars represent the short and long arms, respectively. The
actual numbers are given at the top of the bars; not counted
are the 22 loci that mapped to centromere bins.



680 H. S. Randhawa et al.

1200 4

w2
per)

7 Total NGroup6 0O Others

1000 4
800

600
400 <

Frequency

200

AR U NN NN

P

Pz
AN RN NN

AR

12 34 56 78 910 11-12 13-14 15-16 17-18 1920 >21

Number of fragments

F1GURE 4.—Comparison of the frequency of the bands (frag-
ments) detected by ESTs mapping on group 6 with that of
those mapping on other wheat homoeologous groups. The
percentage of ESTs detecting the number of fragments is
given at the top of the bars.

expected numbers (Figure 3). In general, the observed
number of loci for the short arms was lower than ex-
pected. For example, 46% of the loci were expected to
be present on 6BS whereas only 40% were observed.
Consequently, the long arm had ~11% more loci than
expected. Similar observations were made for the other
two chromosomes.

The distribution of ESTs was uneven along the group
6 chromosomes. Distal bins had more EST loci per unit
size compared to the proximal bins (Figure 1). The
bin proximal to deletion C-6DL-6 had the lowest EST
density. This bin is ~~1.6 wm in length and that translates
to ~~106 Mb DNA (B. S. GiLL et al. 1991). The calculated
EST density based on the 27 loci mapped to the bin
was ~0.25 loci/Mb. The bin distal to deletion 6DS-6
had the highest density, 16 loci/Mb, with 47 loci and a
size of ~3 Mb. Similarly, EST density in the 6A bin distal
to deletion 6AL-8 was 4.38 loci/Mb compared to 0.63
loci/Mb for the bin proximal to deletion 6AL-4. De-
tailed mapping information for all the ESTs in each
group 6 bin can be accessed from the GrainGenes data-
base website (http:/wheat.pw.usda.gov/wEST).

Copy number of expressed sequences: On average,
each EST detected 5.8 fragment bands with a range
from 1 to 39. Frequency of loci detected by group 6
ESTs in comparison with other homoeologous groups
showed that only 37% of the ESTs detected the expected
3 or 4 fragment bands (Figure 4). About 11% of the
ESTs detected only 1-2 loci, suggesting deletion of ho-
moeologous sequences. The remaining 52% of the ESTs
detected 5 or more fragment bands. From the total 2849
loci, 2043 mapped to group 6 chromosomes and the
remaining 806 mapped on the other chromosomes. Ap-
proximately 30% of loci were duplicated. Of these, 6%
were intrachromosomal duplications and the remaining
were on other chromosomes. Among the 30 intrachro-
mosomal duplications, 15 were on opposite arms. No
difference was observed among homoeologs for the rate
of intrachromosomal duplications. However, >75% of
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FIGURE 5.—A consensus physical map of homoeologous
group 6 chromosomes. The physical map on the left was gener-
ated on the basis of the actual number of ESTs per bin, whereas
the map on the right was based on EST density. Deletion
breakpoints are indicated by lines and FL values on the left.
The numbers in the boxes and color scheme for the left side
of the consensus physical chromosome represent the number
of ESTs present in that region and the right side represents
the gene density based on the percentage of the chromosome
arm.
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these duplications were observed in the proximal 50%
of the chromosomes. The proximal bins C-6AL4, C-6DS2,
and C-6AS1 showed the greatest number of duplica-
tions.

Consensus physical map: The consensus physical map
containing 262 ESTs is presented in Figure 5. Location
of 223 ESTs was consistentamong the three homoeologs
(Table 1). For the remaining 39 that showed discrepan-
cies (marked by * in Table 1), the physical location
consistent with two homoeologs was used. Of the 39
ESTs with discrepant map locations among homoeologs,
21 mapped to the adjacent bins, suggesting that the dis-
crepancy was due to FL value variation among the homo-
eologs. The remaining 18 ESTs mapped to nonadjacent
bins, of which 13 mapped on the opposite arm.

Uneven distribution of ESTs was even more distinct
on the consensus physical map. The distal 60% of the
consensus map contained ~80% of the ESTs (Figure
5). The number of ESTs per bin ranged from zero (in
the long-arm bin 0.36-0.40 and the short-arm bin 0.79-
Sat) to 49 (in the long-arm bin 0.55-0.68). Because of
significant size differences among bins, EST density was
calculated per unit size. The EST density per unit chro-
mosome length ranged from 0% in consensus regions
0.36-0.40 of the long arm and 0.79-Satellite (Sat) of
the short arm to 23% in the short-arm region Sat-0.99
(Figure 5). In general, the smallersized bins had a
higher EST density. For example, the short-arm regions
Sat—0.99 and 0.99-1.00 (~3 Mb each) accounted for
20-23% of the ESTs.

Comparative mapping: To find rice regions corre-
sponding to each of the group 6 bins, 882 group 6 ESTs
were compared against the available rice sequences. At
the level of stringency used for comparison, only 385
(43%) of the 882 wheat ESTs identified rice homologs;
of these, 225 (58%) showed homology to rice chromo-
some 2, whereas the remaining 160 (42%) corresponded
to regions on the other 11 rice chromosomes. The per-
centage of the wheat ESTs mapping on the other rice
chromosomes ranged from 1.3% on chromosome 11 to
8.3% on chromosome 3. With a mean of 6.5, the number
of rice chromosomes represented in each wheat bin
ranged from 1 (in the long-arm bin 0.36-0.40) to 11
(in the long-arm bin 0.80-1.00) (Figure 6). Within each
wheat bin, rice chromosomes other than chromosome
2 were identified by ESTs ranging from 1 to 6 with an
average of 2.7. However, chromosome-specific rice contigs
corresponding to each wheat bin were discontinuous as
homologs were not present for all BACs/PACs present in
rice contigs.

To examine differences among wheat bins for rice
homology, the number of ESTs per consensus region
(Figure 6, blue bar chart) was compared with that of
ESTs showing homology to rice sequence (Figure 6, red
bar chart). The width of the blue bar chart was drawn
to scale on the basis of the location of 225 ESTs that
were present on the consensus physical map. The width

of the red bar chart was drawn to scale using 385 ESTs
that identified rice homologs. Significant differences
were observed among the wheat bins for their homology
to rice. For example, wheat regions 0.29-0.36 and 0.55—
0.68 on the long arm and 0.76-0.79 on the short arm
showed the highest levels of homology with the rice
chromosomes (Figure 6). On the other hand, the long-
arm regions 0.36-0.40 and 0.68-0.74 and short-arm re-
gion 0.79-Sat possessed the least homology. Wheat ESTs
mapping on all homoeologs identified rice homologs
more frequently than others did. Of the 262 ESTs pres-
ent on the consensus map, 143 (54%) detected rice
homologs compared to 39% for the remaining ESTs.

Rice BAC/PAC contigs corresponding to each of the
group 6 bins were used for intrabin ordering of ESTs
(Table 1). The order of the 385 wheat ESTs present in
the 16 bins of the consensus map was revealed using
rice sequences. Of these, 219 were homologous to rice
chromosome 2, 32 to chromosome 3, 17 to chromosome
1, and the remaining were homologous to other rice
chromosomes.

DISCUSSION

Major cereal crops including wheat (7. aestivum L.),
maize (Zea mays L.), barley (Hordeum vulgare L.), and
rice (O. sativa L..) belong to the grass family Poaceae.
Comparisons of genetic maps and DNA sequences have
suggested that these grass genomes originated from a
common ancestor 50-60 million years ago (BENNETZEN
and FrReeLING 1993; KELLOGG 1998) and have similar
gene composition and colinearity (AHN and TANKSLEY
1993; AnN et al. 1993). The number of functional genes
in these crop plants is not known. The number of genes
in rice estimated from genome sequence analysis ranges
from 32,000 to 50,000 (GoFF et al. 2002). In hexaploid
wheat, the gene number estimates range from 75,000
to 150,000, or ~~10,000-20,000 gene loci per homoeolo-
gous group (SipHU and GiLL 2004). Here we report
physical mapping of >2000 loci (10-20% of the total)
for wheat homoeologous group 6. We also show the
general distribution of genes on the chromosomes.

Deletion mapping revealed significant differences
among group 6 homoeologs for the number of loci.
The comparison between the expected and observed
numbers of loci indicated that the number of loci is not
always proportional of the size of the chromosome arm.
Maximum number was observed for the 6B and mini-
mum for 6D. This difference may partly be due to the
variable sizes of the homoeologs, which are predicted
to be 863, 673, and 667 Mb for 6B, 6D, and 6A, respec-
tively (B. S. GILL et al. 1991). Another factor explaining
this difference may be the number of duplicated loci
that may differ among homoeologs.

Dramatic differences were observed for the number
of loci per bin. These differences were more pronounced
on the consensus physical map mainly because there
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Physical Mapping of Wheat Group 6 ESTs
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FIGURE 6.—Comparative analysis of wheat group 6 ESTs
with rice BAC/PAC sequences. The wheat consensus chromo-
some 6 is shown with deletion breakpoints and FL values on
the left. Each deletion bin is color coded according to the
rice chromosome with matching ESTs mapped to that bin.
Each bin is spanned by red and blue bar charts on the right
of the chromosome. The bar charts are drawn to scale using
actual number of ESTs. The width of the red bar chart shows
the number of wheat ESTs with homology to the rice chromo-
somes and the blue bar chart shows the number of ESTs on
the consensus wheat group 6 map.

were three times more breakpoints resulting in a finer
resolution. The estimated bin size on the individual
deletion maps ranged from ~3 (the bin distal to dele-
tion 6DS-6) to 299 Mb (C-6BS-5) with a mean of 88 Mb
(Figure 1). On the other hand, consensus-map bin size
ranged from 3 (for short-arm bin 0.99-1.00) to 119 Mb
(for short-arm bin 0.0-0.35) with a mean of 43 Mb
(Figure 5). More than a 30-fold difference was observed
for gene density among bins on the consensus map
compared to a 14-fold difference in size among individ-
ual bins. This comparison suggests that the difference
in gene density may be even greater if additional
breakpoints were available (GILL et al. 1996b; ERAYMAN
et al. 2004). The limitations of the consensus map con-
struction are pointed out by the fact that ~15% of the
ESTs had discrepant locations among the homoeologs.
Although order and colinearity are conserved among
the three genomes for most of the genes, significant
differences may be present due to differential amplifi-
cation of the three genomes, chromosomal rearrange-
ments, and gene copy number.

Using only one restriction enzyme, ~30% of the ESTs
detected loci on all three chromosomes, 22% detected
loci on two, and the remaining ESTs detected loci only
on one of the three homoeologs. This large number of
ESTs mapping to only one of the chromosomes can be
attributed to the use of only one restriction enzyme.
By using two restriction enzymes for a similar physical
mapping experiment, ~81% (61/75) wheat group 1
gene markers detected loci on all three homoeologs,
12% (9/75) detected loci on two, and only 7% (5/75)
detected loci on one of the three genomes (SANDHU et
al. 2001). In the present study, ~45% (2305/5154) of
the fragments detected by group 6-specific ESTs were
monomorphic and that may be resolved with the use
of additional restriction enzymes.

The extent and distribution of EST duplication on
group 6 chromosomes was similar to that reported for
the wheat genome as a whole (Qr et al. 2004). About 21%
of the wheat sequences have paralogous loci (AKHUNOV
et al. 2003a). In this study, 32% (287) of the ESTs de-
tected paralogous loci on other chromosomes ranging
from 13% for group 4 to 20% for groups 2 and 7. About
4% of the ESTs detected paralogous loci on group 6,
of which one-half were on the same chromosome. In
barley, 20-30% of probes detected duplicated loci
(GRANER et al. 1991; KLEINHOFS et al. 1993). Some of
the other similar estimates obtained from the genetic
linkage analysis were 28% of the cDNA clones and 34%
of the Pstl genomic clones in 1. monococcum L. (DuBcov-
SKY el al. 1996), and 31% in Aegilops tauschii Coss. (K. S.
GiLL et al. 1991). These duplicated loci could have re-
sulted from interchromosomal exchanges, intergeno-
mic invasions, and dispersion of specific DNA elements
during genome evolution through polyploidization
(WeNDEL 2000; AKHUNOV et al. 2003a).

Several wheatrice comparisons have been made and
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slightly different results were observed, depending on
methods and criteria. Genetic linkage-map comparisons
between wheat and rice identified syntenic chromo-
somes between the two genomes (AHN et al. 1993; Kur-
ATA et al. 1994; DEvoS et al. 1995; SHERMAN et al. 1995;
VAN DEYNZE et al. 1995; SAGHAI-MAROOF el al. 1996;
DEevos and GALE 1997). Depending upon stringency,
sequence comparisons between wheat and rice showed
that 50-98% of the rice genes are similar to those of
wheat. For example, GO¥r el al. (2002) reported ~98%
protein sequence homology among rice, maize, wheat,
and barley. On the other hand, 65% of wheat ESTs
identified rice homologs at E < 107" (SORRELLS el al.
2003). Similar comparisons in the present study at a
slightly higher stringency showed that only ~43% of
group 6 ESTs have rice homologs. Even at a liberal cut-
off value (E < 107"), only 67% (593/882) of the ESTs
detected rice homologs. Therefore, we conclude that at
least 33% of the wheat ESTs do not have rice homologs.

Previous studies using RFLP markers (GALE and DEvos
1998) and wheat ESTs (SORRELLS et al. 2003) have re-
ported that wheat homoeologous group 6 chromosomes
illustrate substantial homology to rice with the best con-
servation of gene order and content with rice chromo-
some 2 (SORRELLS et al. 2003). In the present study,
however, of the 43% group 6 ESTs that identified rice
homologs, only 58% were on rice chromosome 2. The
remaining were present as small blocks on the other
rice chromosomes.

Individual bin comparisons with rice sequences
showed that, in addition to chromosome 2, other rice
chromosome segments were present in all the bins as
1-10 blocks of varying sizes. Each rice chromosomal
block was identified by 1-6 wheat ESTs, suggesting that
these blocks are not paralogous loci but are true homo-
logs of wheat group 6 scattered on other rice chromo-
somes (Figure 6). Since most of the rice chromosomal
blocks homologous to wheat group 6 bins have been
identified, it should be possible to use the rice sequence
information efficiently and accurately for wheat geno-
mics. Furthermore, rice BAC/PAC contigs can be used
to order wheat ESTs within bins. In this study, we re-
solved the order of 385 wheat ESTs within 16 bins (Table
1). However, the accuracy of this order needs to be
determined.
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manuscript. This is a contribution of the Agriculture Research Center,
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