
Abstract Aegilops speltoides Tausch (2n = 2x = 14, SS)
is considered as the closest living relative of the B and G
genomes of polyploid wheats. A complete set of Triti-
cum aestivum L. cv Chinese Spring-Ae. speltoides whole
chromosomes and seven telosomic addition lines was es-
tablished. A low pairing accession was selected for the
isolation of the chromosome addition lines. Except for
chromosomes 3S and 6S, which are presently only avail-
able as monosomic additions, all other lines were recov-
ered as disomic or ditelosomic additions. The individual
Ae. speltoides chromosomes isolated in the wheat back-
ground were assayed for their genetic effects on plant
phenotype and cytologically characterized in terms of
chromosome length, arm ratio, distribution of marker 
C-bands, and FISH sites using a Ae. speltoides-specific
repetitive element, Gc1R-1, as a probe. The homoeology
of the added Ae. speltoides chromosomes was estab-
lished by using a standard set of RFLP probes. No chro-
mosomal rearrangements relative to wheat were detect-
ed.
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Introduction

Aegilops speltoides Tausch (2n = 2x = 14, SS) has the
highest genetic affinity to the B and G genomes of poly-
ploid wheats (for a review see Friebe and Gill 1996;
Tsunewaki 1996; Dvorak 1998). Ae. speltoides is the on-
ly outbreeding S-genome species belonging to the sec-
tion Sitopsis, which also includes the diploid species
Aegilops sharonensis Eig (2n = 2x = 14, SshSsh),
Aegilops longissima Schweinf. & Muschl. (2n = 2x = 14,
SlSl), Aegilops searsii Feldman & Kislev ex Hammer
(2n=2x=14, SsSs), and Aegilops bicornis (Forssk.) Jaub.
& Spach (2n = 2x = 14, SbSb). Ae. speltoides is native to
the eastern Mediterranean and Middle East region and
exists as two varieties, speltoides (awnless lemma ex-
cept for apical spikelet) and ligustica (awned lemma) 
(Kimber and Feldman 1987; van Slageren 1994). Ae.
speltoides is a valuable reservoir for agronomically use-
ful genes and is the source for the resistance genes Lr28,
Sr32, Lr35/Sr39, Lr36, Pm12, and Gb5, which have been
transferred to common wheat, Triticum aestivum L. (2n =
6x = 42, AABBDD) (Riley et al. 1968; Dvorak 1977;
Dvorak and Knott 1980; McIntosh et al. 1982; Wells 
et al. 1982; Tyler et al. 1987; Dvorak and Knott 1990;
Kerber and Dyck, 1990; McIntosh, 1991; Jia et al. 1996;
for a review see Friebe et al. 1996).

The establishment of wheat-alien chromosome addi-
tion lines allows the study of the genetic effects of indi-
vidual alien chromosomes in the background of hexa-
ploid wheat. For the S-genome species, complete sets of
wheat-alien chromosome additions were developed for
Ae. longissima (Feldman 1975; Friebe et al. 1993), and
Ae. searsii (Friebe et al. 1995), while a partial set was
developed for Ae. bicornis (Shepherd and Islam 1988).
So far, all accessions of Ae. sharonensis analyzed had a
strong gametocidal gene located on chromosome 4Ssh

that resulted in the preferential transmission of chromo-
some 4Ssh and prevented the development of a complete
set of additions (Maan 1975; Miller et al. 1982; Miller
1983; our own unpublished results). Similar attempts to
produce a complete set of chromosome addition lines
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from Ae. speltoides failed because of extensive chromo-
somal rearrangements caused by chromosome 6S (Kota
and Dvorak 1988). Recently, Lapochkina et al. (1998) at-
tempted to produce a set of T. aestivum-Ae. speltoides
chromosome addition lines; however, C-banding analy-
sis revealed that only a few of the Ae. speltoides chromo-
somes were added to wheat. Here we report on the de-
velopment, identification, and characterization of a com-
plete set of T. aestivum-Ae. speltoides chromosome addi-
tion lines.

Materials and methods

Plant material

T. aestivum cv ‘Chinese Spring’ (CS) was crossed with the Ae.
speltoides accessions #308 (9211, Nir Ezion, Israel), #322 (9213,
Nir Ezion, Israel), #818 (9214, Technion, Israel), #829 (9212,
Technion, Israel), and #2073 (9210, Kefar Yehoshua, Israel),
which were provided by the Institute of Cereal Crops Improve-
ment, Lieberman Germplasm Bank, Tel-Aviv University, Israel.
Abbreviations: DA: disomic chromosome addition; MA: mono-
somic chromosome addition; DtA: ditelosomic addition; DS: dis-
omic chromosome substitution; dDtS: double ditelosomic substi-
tution; T: translocation; i: isochromosome.

Cytogenetic analysis

Chromosomal constitutions of the F1 plants and backcross proge-
nies were determined in root-tip meristems and their meiotic meta-
phase-I pairing behavior was analyzed in pollen mother cells
(PMCs). The C-banding protocol and chromosome identification
was after Gill et al. (1991). Microphotographs were taken with a
Zeiss photomicroscope III using Kodak Imagelink HQ microfilm
1461.

Clone Gc1R-1 was used for fluorescence in situ hybridization
(FISH) analysis. Probe Gc1R-1 is a 258-bp long, Ae. speltoides-
specific repetitive element that was cloned from the wheat-Ae.
speltoides translocation line T2B-2S and hybridizes to telomeric

and subtelomeric regions of most Ae. speltoides chromosome arms
(Nasuda 1999). Clone Gc1R-1 has 98% sequence homology to the
5’-end of the S-genome specific element pAesKB52 isolated by
Anamthawat-Jónsson and Heslop-Harrison (1993). FISH was ac-
cording to the protocol of Kynast et al. (2000). Clone Gc1R-1 was
directly labeled with fluorescein-11-dUTP by nick-translation. Hy-
bridization and detection conditions were as reported by Kynast 
et al. (1999). Chromosomes were counterstained with propidium
iodide and signals visualized using a Zeiss Axioplan microscope
equipped for phase contrast, and epifluorescence. Images were
captured with a SPOT CCD camera using the appropriate SPOT
2.1 software (Diagnostic Instruments, Inc., Sterling Heights,
Michigan, USA) and processed with Photoshop 4.0 software
(Adobe Systems Inc., San Jose, California, USA). Images were
printed on a Kodak ds 8650 PS Color Printer.

Restriction fragment length polymorphism (RFLP) analysis

Twenty two DNA probes were used, including BCD (barley
cDNA) and CDO (oat cDNA) clones obtained from Dr. M. E.
Sorrells, Ithaca, N.Y., USA, and PSR (wheat cDNA or genomic
DNA) clones provided by Dr. M. D. Gale, Norwich, UK (Table 1).
Genomic DNA of the addition-line plants was digested with four
different restriction enzymes (EcoRI, EcoRV, HindIII, and DraI)
using the genomic DNAs of Ae. speltoides #829, CS, and the
amphiploid CS-Ae.speltoides #829 as controls. DNA hybridization
was as previously described by Qi et al. (1997).

Results

Development of chromosome addition lines

The F1 plants involving CS and the Ae. speltoides acces-
sions #308, #322, and #818 were of the high-pairing
type, with 1–5 ring, and several rod bivalents per PMC.
F1 plants involving the accessions #829 and #2073 were
low-pairing types usually with 1–3 rod bivalents per
PMC (Fig. 1). The average chiasma frequency per PMC
in the F1 involving accession #829 was 2.2 (Table 2).
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Table 1 Molecular probes
mapped on the T. aestivum cv
CS-Ae.speltoides #829 addition
and ditelosomic addition lines.
*no polymorphism detected by
these markers

Constitution Mapped probes/enzyme fragment Constitution Mapped probes/enzyme fragment

DA1S BCD1434–1S/HindIII DA5 S PSR945–5S/HindIII
PSR596–1S/EcoRV* PSR628–5S/DraI*
PSR544–1L/EcoRV PSR360–5L/EcoRI
BCD386–1L/EcoRV* PSR580–5L/EcoRV

DtA1SS BCD1434–1S/HindIII T5SS·? PSR945–5S/HindIII
DA2S BCD433–2S/DraI DtA5SL PSR360–5L/EcoRI

PSR388–2L/DraI PSR580–5L/EcoRV
DtA2SS BCD433–2S/DraI MA6 S PSR627–6S/DraI

PSR113–6S/HindIII*
CDO497–6L/HindIII

DtA2SL PSR388–2L/DraI DA7 S CDO595–7S/EcoRV
PSR129–7L/DraI
PSR311–7L/EcoRI

MA3S PSR909–3S/HindIII DtA7SS CDO595–7S/EcoRV
PSR926–3S/DraI
PSR931–3L/HindIII

DA4S PSR144–4S/HindIII DtA7SL PSR129–7L/DraI
PSR163–4L/HindIII PSR311–7L/EcoRI
PSR920–4L/DraI

DtA4SL PSR163–4L/HindIII
PSR920–4L/DraI



Most of the tetrads had micronuclei and about 10% resti-
tution dyads were observed (Table 2). All F1 plants in-
volving the accession #2073 and about half of the F1s in-
volving the accession #829 had 2n = 29 chromosomes,
indicating the presence of a B chromosome. No seed was
set when 29-chromosome F1 plants involving the acces-
sions #829 and #2073 were pollinated with CS. Howev-
er, 28-chromosome F1 plants involving #829 produced
an average of 10–15 seeds per head when pollinated with
CS. Two types of seeds were obtained: small seeds with
chromosome numbers in the upper 30s and 40s, and
large seeds with chromosome numbers between 53 and
57. BC1 plants with 2n = 57 chromosomes were selfed.

Six of the BC1 plants had 2n = 49 chromosomes. Two of
the BC1 plants were dwarfs and died as seedlings. The
other four plants were healthy and produced numer-
ous tillers. All plants exhibited a low level of homoeo-
logous pairing with occasional trivalent and quadrivalent
formation at meiotic metaphase-I. These plants were
backcrossed as females with CS and produced about
50% seed set. BC2 plants with 2n = 43 (21’’ + 1’), 
44 (21’’ + 2’), and 45 (21’’ + 3’) chromosomes were pol-
linated again with CS. BC3 plants with 43 chromosomes
were selfed and disomic chromosome-addition plants
were identified in the BC3F2.

C-banding and FISH patterns of Ae. speltoides 
chromosomes

All seven chromosome pairs of the Ae. speltoides acces-
sion #829 are identifiable by their diagnostic C-banding
patterns (Figs. 2 and 3). The C-banding patterns of the
Ae. speltoides chromosomes present in the amphiploid T.
aestivum cv CS-Ae. speltoides accession #829 and in the
derived chromosome and telosome addition lines are
similar to those of the Ae. speltoides accession #829
(Figs. 2 and 3).

FISH analysis with the Ae. speltoides repetitive clone
Gc1R-1 revealed mainly telomeric and subtelomeric hy-
bridization sites on all seven chromosome pairs of the
Ae. speltoides accession #829. The clone Gc1R-1 did not
detect hybridization sites on any of the A-, B-, or D-ge-
nome chromosomes of wheat and, thus, allowed the de-
tection of Ae. speltoides chromatin in a wheat back-
ground. The Gc1R-1 FISH patterns of the Ae. speltoides
chromosomes were determined in the set of addition
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Fig. 1 Meiotic metaphase I pairing of the F1 hybrid T. aestivum cv
CS-Ae. speltoides accession #829 with one rod bivalent and 26
univalents

Table 2 Meiotic metaphase I pairing in PMCs of the F1 hybrid T.
aestivum cv CS-Ae. speltoides #829

No. of PMCs Univalents Bivalents Trivalents

Rods Rings

14 28
15 26 1

8 26 1
12 24 2

3 24 1 1
3 23 1 1

10 22 3
11 22 2 1

3 21 2 1
1 20 3 1
3 18 5

83 24.3 1.5 0.3 0.07

Retrads with micronuclei 217
Tetrads without micronuclei 9
Restitution dyads 25

Fig. 2 C-banding pattern of the amphiploid T. aestivum cv CS-Ae.
speltoides accession #829



lines and is shown in Fig. 4. Chromosome measurement
data are summarized in Table 3 and a generalized idio-
gram of the Ae. speltoides chromosomes showing the po-
sition of C-bands in relation to Gc1R-1 FISH-sites is
given in Fig. 5. 

Identification of Ae. speltoides chromosome 
and telosome addition lines

C-banding analysis was used to identify a complete set of
Ae. speltoides chromosome addition lines. Except for
chromosomes 3S and 6S, which are presently only avail-
able in the form of monosomic addition lines, all the other
Ae. speltoides chromosomes were recovered as disomic
additions. Chromosome 6S spontaneously substituted for
wheat chromosome 6A in a DS6S(6A) substitution line.
Seven ditelosomic Ae. speltoides addition lines were iden-
tified including DtA1SS, DtA2SS, DtA2SL, DtA4SL,
DtA5SL, DtA7SS and DtA7SL (Fig. 3). Furthermore, five
whole-arm translocations (T2SS·7SS, T4SL·5SL, T5SS·?,
T6BS·5SS and T6BS·7SL), four isochromosomes (i3SS,
i4SL, i5SS and i5SL), and one terminal wheat-Ae. 
speltoides translocation (T5BS·5BL-5SL) were identified 
(Fig. 6). The C-banding patterns of all wheat chromo-
somes present in the set of chromosome, and telosome,
addition lines is identical to those of the wheat parent
cultivar CS.

Homoeology of the added Ae. speltoides chromosomes
and telosomes

RFLP analysis confirmed the homoeology of the added
Ae. speltoides chromosomes and telosomes present in the
addition lines DA1S, DtA1SS, DA2S, DtA2SS, DtA2SL,
MA3S, DA4S, DtA4SL, DA5S, DtA5SL, MA6S, DA7S,
DtA7SS, and DtA7SL, and in the translocation lines
T4SL·5SL, and T5SS·? (Table 1, Fig. 7).

Spike morphologies of the CS-Ae. speltoides
addition lines

The overall spike morphologies of the T. aestivum
cv CS-Ae. speltoides whole-chromosome and telosome
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Fig. 3 C-banding patterns of the Ae. speltoides chromosomes
present in accession #829 (left) and in the derived T. aestivum cv
CS-Ae. speltoides accession #829 addition lines (right)

Table 3 Chromosome lengths (S = short arm, L = long arm) and
standard deviations given in µm, arm ratios (L/S), and relative
lengths (S+L) given in percent of chromosome-3B lengths, 10.7 ±
1.1 µm, used as a standard (measurement data were based on ten
chromosomes of each Ae. speltoides chromosome present in the
amphiploid T. aestivum-Ae. speltoides accession #829)

Chromo- S L S+L L/S % 3B
some length

1S 4.7 ± 0.3 4.1 ± 0.4 8.8 ± 0.5 0.9 0.82
2S 3.7 ± 0.2 4.5 ± 0.3 8.2 ± 0.4 1.2 0.77
3S 3.7 ± 0.3 5.0 ± 0.4 8.7 ± 0.6 1.4 0.81
4S 3.3 ± 0.3 4.0 ± 0.3 7.3 ± 0.5 1.2 0.68
5S 3.2 ± 0.2 5.5 ± 0.4 8.7 ± 0.5 1.7 0.81
6S 3.9 ± 0.4 3.4 ± 0.2 7.3 ± 0.5 0.9 0.68
7S 4.8 ± 0.3 4.8 ± 0.4 9.6 ± 0.6 1.0 0.90

Fig. 4 Gc1R-1 FISH pattern of the Ae. speltoides accession #829
chromosomes present in the set of addition lines

Fig. 5 Generalized idiogram of the Ae. speltoides accession #829
chromosomes present in the set of addition lines showing posi-
tions of C-bands and Gc1R-1 FISH sites (asterisks). Chromosome
length data are given in micrometers
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addition lines (Fig. 8) are similar to those of the CS-Ae.
longissima and CS-Ae. searsii addition lines reported
earlier (Friebe et al. 1993, 1995). Thus:

Spikes of DA1S and DtA1SS are similar in appear-
ance to those of CS.

Spikes of DA2S are awned and have tenacious glu-
mes. Spikes of DtA2SS have tenacious glumes and those
of DtA2SL are awned.

Spikes of MA3S have a brittle rachis that tends to
break at the base.

Spikes of DA4S are more lax at the base than those of
CS and the upper spikelets tend to be sterile. Spikes of
DtA4SL resemble those of CS.

Spikes of DA5S and DtA5SL are lax at the base and
more compact at the top.

Spikes of MA6S and DS6S(6A) are smaller and more
lax as compared to CS.

Spikes of DA7S and DtA7SL are more lax than those
of CS, whereas those of DtA7SS are similar in appear-
ance to those of CS. Seedlings of DA7S and DtA7SS
have red coleoptiles.

Discussion

Several wild wheats including species belonging to the
section Sitopsis have been considered as putative donor
species for the G/B genomes of polyploid wheats 
(Kimber 1981). Of all the Sitopsis species the S genome
of Ae. speltoides is the most closely related to the G- and
B-genomes of T. timopheevii (Zhuk.) Zhuk., T. turgidum
L., and T. aestivum. Close evolutionary relationship be-
tween the S and G/B genomes is indicated by similarities
in repeated nucleotide sequences (Dvorak and Zhang
1990) and by similarities in C-banding and in situ hy-
bridization patterns (Jiang and Gill 1994a, b; Badaeva 
et al. 1990, 1996a, b; Friebe and Gill 1996). RFLP anal-
ysis further identified Ae. speltoides as the plasmon do-
nor of T. timopheevii, T. turgidum, and T. aestivum
(Tsunewaki and Ogihara 1983; Ogihara and Tsunewaki
1988; Tsunewaki et al. 1990).

The C-banding pattern of the Ae. speltoides chromo-
somes present in the accession #829 is similar to those
reported earlier for other accessions (Friebe and Gill
1996). However, in that study, chromosome identifica-
tion was based only on similarities in morphologies and
C-banding patterns with those of other S-genome species
belonging to the section Sitopsis, which led to the miss-
identification of chromosomes 2S and 3S. This also was
indicated in a recent study by Maestra and Naranjo
(1998) who used ph1b- and ph2b-induced meiotic meta-

Fig. 6 Translocations and iso-
chromosomes identified by 
C-banding; from left to right:
T2SS·7SS, i3SS, i4SL,
T4SL·5SL, T5BS·5BL-5SL,
i5SS, i5SL,T5SS·?, T6BS·5SS,
and T6BS·7SL

Fig. 7 Hybridization of homeologous group-1L probe PSR544 to
EcoRV-digested genomic DNA of T. aestivum cv CS (lane 1), Ae.
speltoides accession #829 (lane 2), the amphiploid T. aestivum cv
CS-Ae. speltoides accession #829 (lane 3), and derived chromo-
some, telosome, and translocation lines (lanes 4 to 22). Polymor-
phic bands are present in lanes 2, 3 and 17 (DA1S)

Fig. 8 Spike morphologies of T. aestivum cv CS-Ae. speltoides
chromosome and telosome addition lines. Left to right: upper row
Ae. speltoides, CS-Ae. speltoides amphiploid, CS, DA1S, DA2S,
MA3S, DA4S, DA5S, DS6S(6A), DA7S; lower row DtA1SS,
DtA2SS, DtA2SL, DtA4SL, DtA5SL, DtA7SS, DtA7SL



phase-I pairing of wheat and Ae. speltoides chromo-
somes for determining their homoeologous relationships.
The dissection of the S genome of Ae. speltoides in the
form of chromosome and telosome addition lines al-
lowed the unequivocal identification of the homoeolog-
ous relationships of all Ae. speltoides chromosomes.

The homoeologous relationships of Ae. speltoides
chromosomes were also established by meiotic meta-
phase-I pairing analysis (Maestro and Naranjo 1998).
The 14 S-genome chromosome arms showed normal
metaphase-I pairing with their homoeologous wheat
chromosome arms, indicating that the Ae. speltoides ac-
cession analyzed in this study did not have a transloca-
tion difference relative to CS wheat. Similarly, in the
present study, RFLP analysis failed to detect chromo-
somal rearrangements relative to wheat. Maestro and 
Naranjo (1998) observed preferential pairing between
the A-D and B-S genome chromosomes, supporting the
close evolutionary relationship between the B- and S-
genome chromosomes. Similarly, induced homoeologous
metaphase-I pairing did not detect chromosomal rear-
rangements between the Ssh-genome chromosomes of
Ae. sharonensis and those of wheat (Maestro and 
Naranjo 1997). Ae. longissima is the only S-genome spe-
cies that differs from all other Sitopsis species by the
presence of a species-specific translocation involving
chromosome arms 4SlL and 7SlL (Hart and Tuleen 1983;
Friebe et al. 1993; Naranjo 1995).

Meiotic metaphase-I pairing and RFLP analysis iden-
tified the presence of a cyclic translocation involving
chromosomes 4A, 5A, and 7B in T. turgidum L. and T.
aestivum (Naranjo et al. 1987, 1988a, b; Liu et al. 1992).
King et al. (1994) suggested that the 4/5 translocation is
ancient and predates the polyploidization of wheat. How-
ever, no 4/5 translocation is present in the B and D geno-
mes of common wheat (Mickelson-Young et al. 1995).
The group-5 long-arm probe PSR580 used in the present
study maps distal to the breakpoint and, if present, al-
lows the detection of the 4/5 translocation. However, this
probe mapped on the long arm of chromosome 5S indi-
cating absence of the 4/5 translocation in the accession
used in the production of the addition lines. 

Although a low level of homoeologous metaphase-I
pairing was observed in the original T. aestivum-Ae.
speltoides hybrid, no rearrangements detectable by 
C-banding were observed in the wheat chromosome
complement of the addition lines, with the exception of
one T5BS·5BL-5SL recombinant.

The overall arm ratios and sizes of Ae. speltoides
chromosomes are similar to those reported for other 
S-genome species (Friebe et al. 1993, 1995; Badaeva 
et al. 1996a; Friebe and Gill 1996). However, in the
present study an arm ratio of 0.9 was calculated for
chromosome 1S, compared to 1.6, 1.7, and 1.7 estimat-
ed for chromosomes 1Ss, 1Sl, and 1B of T. aestivum
(Gill et al. 1991), respectively. We presently do not
know whether this discrepancy is caused by a measure-
ment error or reflects an intrachromosomal rearrange-
ment present in 1S.

Clone Gc1R-1 exclusively hybridized to telomeric
and subtelomeric regions of all Ae. speltoides chromo-
somes, but neither to the closely related B-genome nor to
the A- and D-genome chromosomes of wheat. Clone
Gc1R-1 has 98% sequence homology to the S-genome-
specific clone pAesKB52 isolated by Anamthawat-
Jónsson and Heslop-Harrison (1993). FISH using 
pAesKB52 as a probe revealed hybridization sites on the
S-, Ssh-, and Sl-genome chromosomes of Ae. speltoides,
Ae. sharonensis, and Ae. longissima, respectively. The
presence of clone pAesKB52 in the S genome of Ae.
speltoides and the absence of the related clone Gc1R-1
in the B genome of wheat suggest that Ae. speltoides is
not the direct B-genome progenitor. The close evolution-
ary relationship between the S and B genomes has so far
prevented the cytological detection of Ae. speltoides
chromatin in a wheat background using genomic in situ
hybridization analysis. Although Gc1R-1 only tags the
ends of S-genome chromosomes, it will be very useful
for identifying and monitoring Ae. speltoides introgress-
ions into wheat.

It is interesting to note that all 29-chromosome F1
plants derived from the accessions # 829 and #2073, al-
though both were of low pairing type, did not set seeds.
Similarly, our attempts to transfer a supernumerary B
chromosome from a different Ae. speltoides accession
(#7717, provided by Dr. S. Ohta, Department of Bio-
science, Fukui Prefectural University, Japan) were ham-
pered because of extremely low seed set even after the
second backcross with CS wheat. We do not know
whether this effect is caused by the presence of the B
chromosome or by genetic imbalance of the two parental
genomes.

Interestingly, the 28-chromosome (ABDS) F1 plants
produced a number of large seeds when backcrossed
with CS. Plants derived from these large seeds had
chromosome numbers between 53 and 57 and were
shown by C-banding to be amphiploids (AABBDDSS)
(Fig. 2). Similarly, Chen and Dvorak (1984) reported
that a low-pairing genotype of Ae. speltoides produced
unreduced gametes leading to 48- and 49-chromosome
BC1 plants. For determining the mechanism involved in
this chro-mosome-doubling, the F1 plants were crossed
as females with a double-ditelosomic substitution line
dDtS 7Sl S 7SlL (7D). Two types of seeds again were
set on these plants. All plants derived from the small
seeds had two telosomes indicating that the male parent
had contributed a sperm nucleus to the zygote, whereas
all plants derived from the large seeds were lacking the
telosomes. In addition, several heads of the F1 plants
were bagged without pollination. No seeds were set on
these heads, indicating that pollination is necessary 
for seed set. The exact mechanism involved in this
chromosome-doubling is unknown. It is tempting to
speculate that a similar chromosome-doubling mecha-
nism may have acted in the ancient A/S-hybrid plants,
which gave rise to the establishment of the tetraploid
AABB and AAGG wheats T. turgidum and T. tim-
opheevii.
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