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Abstract Aegilops tauschii is the diploid D-genome
progenitor of bread wheat (Triticum aestivum L. em
Thell, 2n = 6x = 42, AABBDD). A genetic linkage map
of the Ae. tauschii genome was constructed, composed
of 546 loci. One hundred and thirty two loci (24%) gave
distorted segregation ratios. Sixty nine probes (13%)
detected multiple copies in the genome. One hundred
and twenty three of the 157 markers shared between the
Ae. tauschii genetic and T. aestivum physical maps were
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colinear. The discrepancy in the order of five markers
on the Ae. tauschii 3DS genetic map versus the T.
aestivum 3D physical map indicated a possible inver-
sion. Further work is needed to verify the discrepancies
in the order of markers on the 4D, 5D and 7D Ae.
tauschii genetic maps versus the physical and genetic
maps of T. aestivum. Using common markers, 164
agronomically important genes were assigned to speci-
fic regions on Ae. tauschii linkage, and T. aestivum
physical, maps. This information may be useful for
map-based cloning and marker-assisted plant breeding.
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Introduction

Aegilops tauschii (Coss.) Schmal. 2n = 2x = 14, DD)
(syn. Ae. squarrosa L.; T. tauschii) is the diploid D-
genome donor of bread wheat (Triticum aestivum L.
em. Thell., 2n = 6x =42, AABBDD) (Kihara 1944;
McFadden and Sears 1946). Kam-Morgan et al. (1989)
proposed that Ae. tauschii is ideal for genetic mapping
because of its diploid inheritance, high level of poly-
morphism among accessions, and almost complete
homology to the D-genome of bread wheat. Gill et al.
(1991) constructed the first genetic linkage map of Ae.
tauschii which consisted of 178 markers. In the present
report, we provide a more extensive genetic linkage
map of Ae. tauschii and compare it to the D-genome
and consensus physical maps of bread wheat (Gill et al.
1993; Hohmann et al. 1994; Delaney et al. 1995a, b;
Mickelson-Young et al. 1995; Gill et al. 1996a, b). The
information on the genetic and physical location of
markers related to agronomically important genes will
be useful for map-based cloning and marker-assisted
plant breeding.



Materials and methods

Plant materials

A population of 56 F, plants derived from an Ae. tauschii var. meyeri
(TA1691) x var. typica (TA1704) cross was used for RFLP analysis
(Gill et al. 1991). In some cases, DNA was isolated from pooled
leaf-tissue samples of at least ten Fj plants representing individual
F, plants. All plant material is maintained by the Wheat Genetics
Resource Center, Kansas State University, Manhattan, Kansas.

Genetic mapping

A list of all markers used for RFLP and AFLP mapping and their
location on the Ae. tauschii, T. aestivum, H. vulgare and T. monococ-
cum maps can be found on the internet at < http://wheat.pw.usda.
gov/ggpages/Ae.tauschii.markers/ >. Mapping was performed with
368 anonymous clones, including 255 wheat clones (64 cDNAs and
191 gDNAs), 85 barley clones (35 cDNAs and 50 gDNAs), and four
miscellaneous clones. Clones representing genes of known function
were pTaadh3’ (alcohol dehydrogenase), cxpl (carboxypeptidase),
dhn2, dhn3, dhnS (dehydrins), gsp (grain softness protein), pTa71
(18S and 26S rRNA), and ten protein clones as previously described
(Gill et al. 1991). The population also segregated for an unnamed leaf
rust resistance gene (Gill et al. 1991).

For the 53 AFLP markers, scored by J.S. Ziegle (Perkin-Elmer,
Applied Biosystems Division), the adapter oligonucleotides for the
EcoRI-ligated ends were:

Primer 1: CTC GTA GAC TGC GTA CC,
Primer 2: AAT TGG TAC GCA GTC.

The adapter oligonucleotides for the Msel ligated ends were:

Primer 1: GAC GAT GAG TCC TGA G,
Primer 2: TAC TCA GGA CTC AT.

The core sequence for the selective primer for the EcoRI side was
GAC TGC GTA CCA ATT C. The selective bases to the 3’ end of
the EcoRI side were CAC for the Xpeal, Xpea3 and Xpea4 class of
markers, and CCA for the Xpea? class of markers. The core sequence
for the selective primer for the Msel side was GAT GAG TCC TGA
GTA A. The selective bases to the 3’ end of the Msel side were CTC
for Xpeal, ATC for Xpea2, ACA for Xpea3, and ACT for Xpea4.

All procedures in this study were previously described in Gill
et al. (1991). All clones were obtained from members of the ITMI
(International Triticeae Mapping Initiative). Lab designators for
these laboratories are listed in McGuire and Qualset (1997) and
Mclntosh et al. (1998).

Autoradiograms for each probe were scored independently by
three individuals. In case of any disagreement in scoring, the
autoradiogram was re-checked and scored by consensus. The link-
age map was generated from F, data of Gill et al. (1991) and
data collected in present study using the Mapmaker 2.0 computer
program (Lander et al. 1987). The markers grouped at a LOD
threshold of 6.0 were used for construction for the basic map
(LOD > 2.0). The positions of the remaining markers on the basic
map were placed using the command “Try”. If more than one
marker was assigned between two markers of the basic map, their
order was determined with the command “Compare”. These
markers are positioned on the map in the most-likely order without
considering the map distances between them. Map distances
between markers were computed using the Kosambi mapping func-
tion (Kosambi 1944). Markers with distorted segregation ratios were
identified using the chi-square test for a fit to 1:2:1, 1:3, or 3:1
ratios.
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The arm orientation and location of the centromeric region were
inferred by comparing the positions of markers shared by the
Ae. tauchii linkage and the T. aestivum physical maps, which were
constructed using deletion lines of wheat (Gill et al. 1993; Hohmann
et al. 1994; Delaney et al. 1995a, b; Mickelson-Young et al. 1995;
Endo and Gill 1996; Gill et al. 1996 a, b).

Results

The linkage map of the seven Ae. tauschii chromosomes
consists of 546 loci and includes 176 loci that constitute
the basic map (LOD > 2.0) (Table 1, Fig. 1 a-g). One
hundred and thirty two markers (24%) gave distorted
segregation ratios (P < 0.05). Sixty nine probes (13%)
detected multiple (2-12) copies in the genome. The
majority of sets of multiple loci (78%) were detected
with genomic DNA probes. The mapping pattern of
these loci did not reveal any ancient pattern of tandem
duplications. Forty one of the 53 AFLP markers were
mapped on all seven chromosomes, and appeared to be
distributed at random. Twelve AFLP markers were
unlinked. The linkage maps of individual chromosomes
are briefly described below.

Chromosome 1D: The map of chromosome 1D
(Fig. 1) consists of 68 loci. Sixteen loci in both arms
showed segregation distortion. A DNA marker for
a grain softness protein (X Gsp) and a gene encoding
gliadin (Gli-DI) are mapped in the short arm. A
glutenin gene (Glu-D1) and an alcohol dehydrogenase
[Xcsd19(Adh)] gene are in the long arm.

There are 17 common markers between the 1D gen-
etic and physical maps. The linear order of markers on
both maps is identical, although the order of markers
between deletion breakpoints on a physical map is not
known. The location of XGsp (GSP detected only
one major band in each parent) on 1D is anomalous
compared to its location in hexaploid wheat. The frag-
ment detected by the GSP probe was physically map-
ped in the telomeric region on group-5 chromosomes of
T. aestivum (Gill et al. 1996 a) and genetically to SDS in
Ae. tauschii (Lagudah et al. 1991 a; Gill et al. 1996 b).
In our study, when the markers were grouped using a

Table 1 Number of loci mapped, number of multilocus markers and
number of markers showing segregation distortion for each of the
seven chromosomes (1D to 7D) of Ae. tauschii

Chromosome Loci on Multilocus Markers with
map markers segregation
distortion
1D 68 17 16
2D 76 22 5
3D 87 21 29
4D 54 15 11
5D 107 28 38
D 83 16 11
7D 72 20 21
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two-point linkage analysis (LOD = 6.0), XGsp went to are located in the interstitial regions of both arms.
the group-1D short-arm markers, and was mapped Leaf esterase (Es-DI) and glutamic oxaloacetic
distal to Xbcdi1434, Gli-D1 and XksuD14. transaminase (Got-D2) loci are located in the cen-

Chromosome 2D: The map (Fig. 1) consists of 76 tromeric region, and a seed esterase locus (Est-D5)
loci. Only five markers showed distorted segregation in a distal region of the long arm. Of 27 common
ratios. Of 20 markers common to the genetic and phys- markers, 22 are colinear between the genetic and phys-
ical maps, 17 are colinear. However, XksuG30 (five ical maps. The order of five short-arm markers on
fragments, only one locus mapped genetically), which  the Ae. tauschii map (XksuF'34, Xksul32-3D.1, Xglk724-
maps on 2DS of Ae. tauschii, is located on the long arm  3D.1, XksuE2, XksuH?7) is reversed on the 3D physical
of the physical map in T. aestivum. map of T. aestivum.

Chromosome 3D: The map contains 87 loci (Fig. 1). Chromosome 4D: The map (Fig. 1) consists of 54
The 29 markers with distorted segregation ratios loci. Eleven loci on both arms showed segregation

1D physical map 1D genetic map Group 1 consensus physical map
Triticum aestivum Aegilops tauschii Triticum aestivum

XksuF43

e Qien SuPm8, QEet.psb-1H,

XksuE15 Yr DXRauETS
" aocndu % B ot
Xpeal-227 + : Xmwg36

Xm9953per-B1

Xcdo1188, Xcdo1173 ij‘;ﬂ%”;
cdo Xbed762
IXcdo658, Xbcd1072 | Xpsr596

Sr14, Sr18, Lr33

0.70 1DS-5
0.66 1DS-4-

0.59 1DS-1.|
0.57 1D8-2

Xgsp /’/ﬂph - D 10’
[1; Xesub14 !
re
=

¥ Gli-D1
ggg} ;gg I~ Xbed1434

Xcdo388-1D.1+ (2L,3L,48,5CL6SL)

|- Xpeatl-146

Xmwg584-10.1 (1L,5L)

I~ Xcdo388-1D.2 +(2L,3L,45, 5CL,65SL
—XksuM148

I~ Xpsr149 , XksuE18

—{[~XksuE19

—Xedo

Xued110(Esi47)

suB7-1D.1(1CL,3L,5L,78)

aoc
Xesub9-1D(2CL)
Xgl7st-1D ({53 Xgkd27-1D(3L)
Wwg789-1D (4L), Xwgd1
\ Do 1072 s
XksuM113
xﬁmﬁﬁz,x bg702 Xcd 6‘%?%1 Xabg460
u abg 0675-10.1 + Xal
Xbg522,Xbg552, Xbq175 Xwg645, Xabg373 Xwsué(Dor2)
Xpead-135 , Xbg958

§kst;584?:10.2 {lSL,SSL,
5 5L.7
”‘)&su&:g )

Glu-D1
XksuG55-1D.1(2L,45)
Xwg222 «

WO;
0.18 1DL-4— Xwg605 205 — XksuG55-1D.2 +(2L,48)
0.23 10L-1 Xbcd366 '

13.1 —

- XksuG2
0.29 1DL-6 | =
A.jﬁg:m‘g XksuB7-1D.3 (18C,3L,5L,75) XGJ'D?, XPp dk

0.33 1DL-8 28.3—
Xabg458-1D (6(8 Xwg605
XksuB7-1D.4 (1SC,3L,5L,7S) 5 Xbcd921, Xpsr544
XksuE8 ’ Xglk558, Xbcd3ge
Xmwg584-1D.2 (15,5L) Xmsud33(Lec)
138 —(| Xemwag733 * - Xpsr601, XksuH14, Xabe386
- Xglk163-1D -;EC 4L)

0.41 1DL-2 —

Xbed738

XPgd2

Xglk136

Xeav1991(BAATR) 107 -
Xwyed98(Adpg2) ss
Xbed921, XksuES
Xcdo572, Xbcd508 Xksul27 »
Xpsr544, Xksul27 —Xwg241

Xbcd265, Xwg241
Xok710, xksuE11 | X2ERS ﬂgﬂ@?@gﬁ] XksuET1

Xabg3s7, xvedsos |[XAGAT,
| Xmwg710, xbcd1562

wglsﬁﬂ

\stu 114-1D(4S)

\Xbcdiﬂa-w o(5L)
Xpsr547 »

0.70 10L-5— cdo572, XksuES, Xbcd310

EXQM 163,Xbed265
bed508, Xbed304, Xesd18(Adh)
XksuGad, Xmwg710, Xbcd1562

Xwg241, XksuE11, Xabg387
| | | Xksu27, Xedo393

Fig. 1 See page 24 for legend



distortion. The order of 17 loci is identical between the
linkage and physical maps with the exception of
Xpsri57, which mapped in the short arm of the genetic
map and in an interstitial region of the long arm in the

physical map.

2D genetic map
Triticum aestivum

2D genetic map
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Chromosome 5D: The map (Fig. 1) contains 106
loci, including loci for dehydrins (XDhn3 and XDhn2)
and a NOR. Chromosome 5D has 39 loci with dis-
torted segregation ratios, the highest number among
all the Ae. tauschii chromosomes. Eight of the 39

Group 2 consensus physical map

Aegilops tauschii

Triticum aestivum

.‘ Xpsr109 Xpsr109 (RbeS)
Xbed265 Xbed348
Xedoss | W2l xpsres6 Ter-B2
XksuM1-2D (4L) Xedo783
xedozes | Kuegl(AGC Xpsr109-2D.1+ (RbeS) (5L)
¢ 4/@/4 Xpsr109-2D.2 (RbcS) (51) gbx3832
|| Xedod05 /T’Q{ Xpea2-66 o
r22 Xglk222-2D (5L) ey
XKSUF19 Xpsria1
Xps XksuF15 Xedogd
r131
Xglk197 ok
Xpsr666 ABhtsgoas G Sieulio
BRI T
Xbcd348 “
XksuG30
Xbed8ss
0.36, 208-3— | Xpead-158 0.36 —
035 2081 [ Xpsr107 XksuH8-20.1(2L, 3L, 7SL) go . || Xpsr107
Xpsr109-2D.3 (RbeS) (5L) 3
—Xcdo64-2D (3L, 4S)
|| Xglk163-2D (1L,4L)
Xqlk732
Xbcd855 ka'??f;”
B ‘gﬁ;‘;’fgﬁg Xzsuﬂs-zo e 21)
|| XksuGs7-2D (5L)  Apead216
i Xb0956, Xbg508
a1 '
SHT12
1-203
= a0, Xpsr] oz(sam)
- Xpsr681 odod88-2D (19,30 48 2CL
Noved 5 xbgdosse 220 ( S.5CL.6SL)
¥ .fk278~2D
el xﬁsurz 50,5, Nglk278:2D (41)
0.10, 2DL-2 Xksu149-2D (4S) 0.10
Xpsrto1 A Xpsri12
Xpea2-157
XksuF2-2D2
Xpsr112 XksuF2-2D.3 Yoot
0.26, 2DL-4— XksuE3 "
: Xabgd64, Xbcd266-20D.2 0.28 Ter-B1
Xpea1-227 cr-
I~ Xmwg546
Xwg184-2D (39) 035
Xbed266-2D, 1
- - Xmwg820
Xpsr3gs
Xksul24-2D.2+ XGer
L i Xer872\ . 4o
0.49, 20L-3 XksuF43 Xksul24-2D.1» Pob) | ——
XksuG30 Voarion
Xpsr388 YksuD3g Xl;y 1922 Sam)
Cm
0.58, 2DL-8— Xpsrioe _bv(mﬁg-zn.zns, 20) (She) s XksuG30
ksuF41 : S804
B xcsoris —Xglk558-2D.1(3L,65,7S) (é)b )
Xolks58-2D.2 (3L.65.75) P,
—XksuD23 0 69
XksuD8 XbecdB28 e — XksuD8
XksuH16 3‘: XksuF'15
0.76, 20L-9 p— [~ Xbg123 - XksuF2
ﬁsug& XksuH8-2D.2 (28, 3L, 7SL) e
SUETE =i
;?‘sugs Xglk301-2D (3L, 5L) 0.85 XksuE16
4 = XksuGS
Xksulzs Xbriy10., XksuH16  Pmda
XksuF41 Q@B@ XksuGS55-2D(1L, 4S) XksuF11
pom soutao timaey [atocy
Xwge45 Xwg645 |XksuH9
XksuH16 Xbed135

Fig. 1 Continued (see page 24 for legend)




20

loci common to the Ae. tauschii genetic map and the
T. aestivum 5D physical map, and 18 of the 47 loci
common to the Ae. tauschii genetic map and the
T. aestivum consensus physical map, are in different

locations.

Chromosome 6D: The map (Fig. 1) contains 83 loci,
including loci for a carboxypeptidase (XCxpl), a low-
molecular-weight gliadin (Gli-D2), a dehydrin (XDhns5),
and a glutamate oxaloacetic transaminase (Got-DI).

3D physical map
Triticum aestivum

| XksuGsa
Xksul19
Xpsri23
XksuG13
Xpsr598
Xpsra10
Xpsra02

XksuH7
XksuE2
Xpsr926
Xpsr689
0.39, 3DS-1—| |— Xglk724
||
0.25, 3DS-27]

XksuF34

Xksul32

0.27,3DL-27] [ XksuG3s
Xpsr156
Xpsr578
Xpsr74
XksuH2
Xpsri70
XksuH15
XksuD19
XksuG62

XksuE14

Xpsrg31

Xglk718

XksuG48

Fig. 1 Continued (see page 24 for legend)
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3D genetic map
Triticum tauschii

The 6D chromosome has 11 loci with distorted segre-
gation ratios. There is no conclusive evidence for re-
arrangements in 6D of Ae. tauschii compared to the T.

aestivum group-6 chromosomes.

Chromosome 7D: The map (Fig. 1) consists of 72
loci, 21 of which showed distorted segregation ratios.
There is no evidence of rearrangements in the genetic
map as compared to the group-7 physical map of T.

aestivum.

Group 3 consensus physical map

Triticum aestivum
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Discussion
Marker order

Of 157 markers, 123 are colinear between the Ae. taus-
chii genetic and T. aestivum physical maps. Several
factors should be considered when evaluating the sig-
nificance of the discrepancies in the colinear order for
the remaining markers.

(1) The LOD score used for mapping of the markers.
(2) The relative order of markers with different loca-
tions. If the anomalous markers are randomly distrib-
uted, the discrepancy may not reflect structural
rearrangements of the chromosome.

(3) Multilocus markers that detect fragments at differ-
ent locations. Probes used in constructing genetic and
physical maps may detect different loci. If the same
fragment(s) was (were) mapped, the discrepancy may
reflect differences between the Ae. tauschii and T.
aestivum chromosomes or differences between the Ae.
tauschii accessions used as parents of the mapping
population.

4D physical map
Triticum aestivum

4D genetic map
Aegilops tauschii

21

The markers responsible for differences between the
Ae. tauschii genetic and the T. aestivum physical maps
in some regions of chromosomes 4, 5, 6 and 7 were
mapped at LOD < 2.0. Additional mapping of markers
in these regions is necessary to provide further evidence
for chromosome rearrangements. Some single-marker
differences (chromosome 2) may occur because differ-
ent fragments of the probe were genetically and phys-
ically mapped.

The order of five markers (XksuF34, eight fragments;
Xksul32, three fragments; Xglk724, three fragments;
XksuE2, nine fragments; and XksuH, six fragments) in
the 3D short arm of the Ae. tauschii map is reversed as
compared to the 3D and group-3 T. aestivum physical
maps. The order of XksuH7 (six fragments), Xpsr903
(five fragments), and XksuA6 (eight fragments) in the Ae.
tauschii map of 3D is also reversed relative to the T.
aestivum 3A and 3B genetic maps (Nelson et al. 1995 a).
Even though none of the probes used to detect these
eight loci had a single-fragment hybridization pattern,
if does not seem possible that different fragments of
each probe were mapped physically and genetically.
We assume that the results indicate a possible inversion

Group 4 consensus physical map
Triticum aestivum
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5D physical map
Triticum aestivum

5D genetic map
Aegffops tauschii
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that distinguishes varieties meyeri and typica (both con-
tain the inversion) from the var. strangulata that is
considered to be the D-genome donor of T. aestivum
(Jaaska 1981; Lagudah et al. 1991 b).
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There is a discrepancy in the order of several markers
on the Ae. tauschii genetic maps of 4D and 5D as
compared to the corresponding genetic and physical

maps of T. aestivum. The markers Xpsri04, Xpsri57
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7D physical map

Triticum
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Fig. 1 Comparison of seven (1D-7D) Ae. tauschii genetic maps with
the D-genome and consensus physical maps of T. aestivum.
The position of the loci in the basic genetic map constructed at
LOD > 2.0 are indicated in bold. The markers mapping at
LOD < 2.0 are placed in the intervening regions and were ordered
using the command “Compare” o indicates a locus with distorted
segregation; thin lines join markers common between the Ae. tauschii
genetic and T. aestivum physical maps; thick lines join markers of the
basic map that are in a different order on the Ae. tauschii genetic and
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and XksuF§8, that map in the short arm of 4D in Ae.
tauschii, map in the long arm in the genetic and phys-
ical map of wheat 4D (Gale et al. 1995; Mickelson-
Young et al. 1995; Nelson et al. 1995b). There are
other markers (XksuD16, XksuD30, XksuG44, Xpsr360,
Xpsr929, Xpsr628, Xcdol049, XksuA3 and Xcdol312)
that also have an anomalous map location (see the 4D
and 5D maps in Fig. 1). Further work is needed to
verify these anomalies.

Segregation distortion

One hundred and thirty two loci (24% of the mapped
loci) showed significant deviation from the expected
segregation ratios. The greatest number of these loci
were in chromosomes 5, 3 and 7 (36%, 34% and 28% of
the loci mapped in each chromosome, respectively),
followed by chromosomes 1, 4, 6 and 2 (23%, 21%,
13% and 7% respectively). Faris et al. (1998) analyzed
this phenomenon using the same population with seg-
regation data for 194 codominant markers, 57 of which
had segregation ratios that deviated significantly from
the expected ratios. It was shown that there are at least
three segregation distortion loci in SDL. Chromosomes
1D, 3D, 4D and 7D each contain at least one locus that
causes deviations from the expected segregation (Faris
et al. 1998).The map of the Ae. tauschii genome which is
presented here has 2.8-times more markers, and 2.3-
times more markers with distorted segregation ratios.
The analysis of these data may reveal additional segre-
gation distortion loci on these chromosomes.

Practical application of the maps

One hundred and sixty four pest-, disease-, and stress-
resistance genes, proteins, and morphological markers
have been assigned to regions of both the Ae. tauschii
linkage map and the T. aestivum physical map using
markers common between these and recently published
maps (Donini et al. 1995; Chen Q et al. 1996; Mohler
and Jahoor, 1996; Ben Amer et al. 1997; Faris et al.
1997; Han et al. 1997; Korzun et al. 1997; William et al.
1997; Hollenhorst and Joppa 1983; Zhang et al.
1998; the references can also be found in McGuire and
Qualset 1997; Mclntosh et al. 1998). Only 58 of these
loci mapped to the D-genome of wheat. Others may be
mapped in the D-genome using the information on
their approximate location in the Ae. tauschii and/or T.
aestivum maps (Fig. 1). There are 148 pest-, disease-,
and stress-resistance genes (40 for the D-genome) that
are assigned to chromosomes of the Triticeae. The
chromosome locations of these genes in the Ae. tauschii
and/or T. aestivum genomes have yet to be determined.
The high-density genetic linkage map of the Ae. tauschii
genome reported here may be used to achieve this goal.
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