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Abstract 

We develop and explore an effect size parameter based on a maximal contrast in observable 

outcomes that can be used to assess the degree of separation among two or more treatments 

modeled as the marginals of a multivariate normal distribution obtained from experiments 

replicated in blocks. Our effect size has observable consequences that can help experimenters 

calibrate its magnitude. Simulations indicate that since confidence intervals for our effect size 

can be quite wide, containing both small and large values when there are only a few blocks, a 

common occurrence, researchers should more often than is current practice, reserve judgment 

rather than conclude either that some new treatments are in a practical sense significantly better 

than existing ones or not significantly different in settings such as bioequivalence studies. We 

believe that such caution may be an appropriate response to the growing concern about 

experimental results which cannot be verified by replication.  

 

1. Introduction 

An effect size is a location-scale invariant index which can be used to quantify the separation among 

distributions of responses to treatments.  The following example illustrates the application and utility of 

the new effect size developed here for correlated data. 

Example 1.1. [2] reported on a study to find out if three protocols (methods) for measuring resting 

metabolic rate (rmr) in adult males were essentially equivalent. All three methods were used on each of a 

sample of n = 9 subjects in a randomized block design.  A profile plot of protocol rmr’s across subjects, 

presented in Figure 1.1, indicates relatively large differences among subjects and small differences among 

the protocols. Testing for equal protocol means results in p-values of 0.795 and 0.898 for the standard F-

test and Hotelling’s 2T . The authors concluded that their analysis implied that the protocols could be 
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used interchangeably. However, the 0.95 two sided confidence interval for our effect                                                                   

size, described below, includes values that allow the possibility of systematic differences among the 

protocols. This added information that, although protocol means are close on the rmr scale and not 

statistically significantly different, some differences among the protocols could be of clinical significance.    

 

Figure 1.1 Profiles of RMR Responses Across Subjects 

 

 

 

 

 

 

 

Effect sizes for k treatments based on correlated data have largely been limited to paired comparison 

designs, k = 2, implemented by applying one sample methods to the differences between responses. [7] 

and [1] proposed and studied effect size statistics for a broad class of designs, including those with k   2 

repeated measurements.  Their effect sizes are ratios of aggregated sums of squares obtained from 

univariate ANOVA’s. Although intuitively appealing as proportions of explained variance observed in a 

particular experiment, these ad hoc statistics applied to correlated data do not appear to correspond to 

intrinsic properties of the treatments, such as meaningful parameters, and provide no basis for estimating 

their values under repeated runs of the experiment. Specifically, even if the restrictive Huyn-Feldt 

conditions on covariances, given in [4], were to hold, inference for these effect sizes would be difficult to 
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carry out and interpret. Here, we extend the effect size, denoted MAX ,  developed by [6] based on a 

maximal contrast in observable outcomes from independent random samples to k   2 multivariate 

normal responses in designs carried out as independently replicated blocks. In the context of the 

correlated responses in model (1.1), we show that MAX  has observable consequences that can help 

distinguish between statistical and practical significance, an important issue since there are almost always 

some treatment effects. Unlike the independent random samples setting of [6] where only approximate 

inference is possible, exact inference for MAX here can be obtained from confidence intervals and tests 

for the non-centrality parameter of a one sample Hotelling’s 2T  statistic.  Our simulations indicate that 

since confidence intervals for MAX can be quite wide, containing both small and large values when there 

are only a few blocks, researchers should, more often than is current practice, reserve judgment rather 

than conclude either that some new treatments are in a practical sense significantly better than existing 

ones or not significantly different in settings such as bioequivalence studies. We believe that such caution 

may be an appropriate response to the growing concern about experimental results which cannot be 

verified by replication, as described in the journal Nature’s archive ‘Challenges in Irreproducible 

Research.’ At the end of Section 3 we indicate how our global, non-directional effect size MAX can be 

adapted to settings where a targeted, directional inference is of interest, as is the case in non-inferiority 

trials. We do not require the common assumptions of equal treatment variances or special covariance 

structures. Our approach can be applied to the following data structure. 

2. Data Structure 

Let { ; 1,2,..., }i i nY  be iid (independent, identically distributed) copies of an N x 1 multivariate 

normally distributed vector Y ,which represent the responses to the same experiment independently 

carried out in n replicates, called blocks.  Assume the mixed model  

                                     { , 1,2,..., }i i i ig i n    Y WΓ Zu 1 ν                                                         (2.1) 
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where W  and Z  are known matrices of constants, Γ  is an unknown vector of regression 

parameters,{ }iu are vectors of random effects, { }ig  are iid block effects and { }iν , { }ig  and { }iu  are 

independent, normally distributed  mean zero vectors. Suppose that it desired to estimate an effect size for 

k- treatments whose vector of mean responses is the k -dimensional vector of linear combinations given 

by μ  = ( )E HY = HWΓ  , where H  is an k x N matrix of constants of rank k < n and H1  = 1  , i.e. row 

sums are 1 and. Note that μ is estimable and letting X HY , 

                                                         i i ig  X μ 1 ε  , i = 1,2,…,n,                                                    (2.2) 

                                                               ~ 2MVN( , )g   μ Σ 11 Σ  

are independent vectors of k correlated measurements recorded on each block with error terms 

{ ( ) ~ MVN( , )}i i i  ε H Zu ν 0 Σ . Then,  # X 1 2{ ( , ,...., )i i i ikX X X X , 1,2,..., }i n  represents the 

data available to estimate the desired effect size. This framework encompasses single effects, main effects 

and interactions in such useful designs as randomized block, repeated measures and split plot designs 

which are completely replicated in randomly selected blocks. For the special case of a   randomized 

complete block design,  2 2( )g Σ J D σ  , where kxkJ  = (1), 1  is a k   k vector of  ones and 2( )D σ  is 

a diagonal matrix with diagonal entries 2 2 2 2
1 2( , ,..., )k  σ  so that covariance ( , )ij imX X  = 2

g  for 

m j  and 2 2
g j   for .m j   

Our effect size, denoted by MAX , which depends on both the vector of means and the matrix of 

covariances in (2.2) for treatment combinations  such as main effects that are obtained by averaging over 

other sources of variation in the particular experiment at hand, as is illustrated in the split plot example 

given below, is hence experiment specific and not an intrinsic property of the treatment distributions 

which might be investigated in different settings. This fact raises questions about the utility of effect sizes 

estimated from a meta analysis conducted across possibly very different experiments and environments.  



6 
 

Split Plot Designs in Field Trials: Suppose an experiment is conducted to compare crop yields that would 

be obtained by using a fixed levels of factor A and b fixed levels of factor B . Farms 

{ , 1,2,..., }iG i n are selected at random and act as blocks. Independently, each farm is divided into a 

whole plots and each of these is further divided into b subplots. Independently within each farm, at 

random, one level of factor A is applied to each whole plot and each level of factor B to the subplots. 

Letting ijky  denote the response in farm (block) i, level j of factor A and level k of factor B, the standard 

model for this setup is given by: 

                                  ( ) ( )( )ijk i j j i k jk k ijy g              ,                                            (2.3)                  

where the block effects { ; 1,2,..., }ig i n  are iid 2(0, )gN  , the whole plot error terms ( ){ }i j  are iid 

2(0, )N   and the split plot errors ( ){ }k ij  are iid  2(0, )N   . All three random vectors are taken to be 

jointly independent.  Further, take the fixed effects to sum to zero: j  = k  = ( )ij
j
  =    

( )ij
i
  = 0. Note that ( ) ( )ijk j k jkE y        jk  . See Example 3.3 for an illustration of 

this model given by [11]. Effect sizes for A, B and the interaction between A and B interaction may be 

obtained from (2.3) as follows: 

A Effect:   Set ijx  = 
1

/
b

ijk
k

y b

  = ( ) ( )j i j i ijg       �  = ( )i i j i ijg       . 

B Effect:   Set ikx  = 
1

/
a

ijk
j

y a

 = ( ) ( )k i i k ig      � �  = k i ikg     . 

A x B Effect:  The standard null hypothesis of testing for an A × B interaction is that all a × b {( ) }jk  

parameters are zero.  However, setting ˆ( )ijk ijkx   = ijk i k ij iy y y y      , 1 1,j a    

1 1,k b    1 i n  , the linearly independent residuals constructed from subtracting estimates of A 
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and B main effects from the observations in each cell in each block, although possible,  would result in an 

effect size that assesses the extent to which the distributions of  these (a-1)(b-1) observations differ, 

something difficult to interpret and of doubtful practical utility.  Instead, we suggest basing interaction 

effect size on the usually interesting differences among the levels of A across the levels of B and 

conversely, as follows.    

(I) Compare lA  to mA at kB , k = 1,2,…,b, 1   l < m    a, 

                  Set  ilmkx  = ilk imky y  . 

(ii) Compare lB  to mB at jA , j = 1,2,…,a, 1 l < m   b, 

                  Set  ijlmx  = ilk imky y  . 

 

3. Effect Size MAX  

Without loss of generality, assume that the greater the magnitude of a response, the more favorable the 

outcome. For the model in (2.2), for any k x 1 contrast vector of constants 1 2( , ,..., )Kl l l l , 

0,il  l 1  we define a location-scale invariant contrast superiority ordering by the event { l X > 0 } 

and set 

( ) l  ( 0)P  l X  = ( ( ) 0)P b   l μ 1 ε  

            = ( / )  l μ l Σl ( / ),  l μ l Σ l  

where denotes the distribution function of a standard normal. Following [6], we define a global, non-

directional effect size MAX for this problem by 

sup{ ( ); }ALL
MAX  l l L  = sup{ { ( ),1 ( )}; }ALLMax   l l l L  

                                                            = 1 .5([( ) ( )] )     μ 1 Σ μ 1                                                  (3.1) 

        ( )   
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                                                            = ( )MAXc l  

        [ ( )]c    Σ μ 1 , 

where, { }ALL L l  denotes the collection of all nonzero K-dimensional contrast vectors of constants, 1  

denotes a vector of ones, 1 1/      1 Σ μ 1 Σ 1 , 

           
2 1( ) ( )      μ 1 Σ μ 1                                                               (3.2)  

and c is an arbitrary, non-zero constant.  A proof of (3.1) is given in the appendix. Note that MAX = 

( ).  Inference for MAX  is based on 2n  being the non-centrality parameter of Hotelling’s 2T when 

used to test 0 1 2: kH         , 1 2( , ,..., ) .k   μ   The following properties hold:  (i) as should 

be the case,   , and hence MAX , does not  depend on the variance component due to blocks, which 

plays no role in calibrating differences among the treatment/conditions; (ii) MAX  is a monotone 

increasing function of the power function of Hotelling’s 2T one sample test; (iii) if Σ  = 2 I , MAX is a 

monotone function of 2( ) ( ) /   μ 1 μ 1  , a commonly used effect size for a  paired comparison 

design (RCBD with k = 2); (iv) MAX = 0.5, its minimum value, only if all the response means are equal, 

but MAX = 0.5 does not imply that the response distributions are identical; (v) MAX is invariant with 

respect to location-scale changes in X ; (vi) for k = 2, MAX is a two sided Mann-Whitney ordering, 

Max{ 1 2( )P X X , 1 2( )P X X } = ])1'1(/|[| 21    . See Chapter 5 of [3] for a discussion of 

effect size for comparing k = 2 distributions based on this ordering. Although, as with all effect sizes, 

calibration as to what is big and what is small are subjective judgments, the magnitude of  MAX  has 

observable consequences that can aid researchers in making meaningful interpretations of its values, as 

follows.  
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A contrast in means, l μ , or outcomes, l X , makes a comparison between two combinations of 

treatments/conditions, those with positive coefficients vs. those with negative coefficients. Unlike MAX , 

neither of these types of comparisons is scale invariant, a particularly important issue in our setting where 

treatments/conditions may differ in spread as well as location. First, in comparing treatments, a small 

value of MAX indicates that in many independent applications to blocks, no combination of 

treatments/conditions would frequently be observed to be better than any other combination, pointing 

towards what in the context of comparing drugs is called bioequivqlence, even though un-standardized 

differences among some of the means may be large. On the other hand, a large value of MAX indicates 

that some specific treatment/condition combinations that look good in one application to a block would 

actually be good across many repeated applications. Since MAX  depends on covariances as well as 

means, in complex designs such as (2.1) its value for a treatment whose levels have means μ  = ( )E HY = 

( )E X  = HWΓ potentially depends on all sources on variation within a block and is hence, as noted 

above, experiment specific. Simply put, MAX  calibrates the likelihood of separation orderings between 

groups of treatments that would actually be observed upon many independent replications of a particular 

experiment. If for example, a field trial is conducted under artificially homogeneous conditions, a 

treatment which appears to have a large effect in the laboratory could have small effect in real world 

settings. Finally, MAX is a statement about the ordering of the distributions and, being scale free, contains 

no information as to how far apart the means are in a particular unit of measurement. However, in 

situations where interest lies in the separation among the means in an intrinsically meaningful unit of 

measurement recorded under conditions where the distributions have an approximately equal standard 

deviation whose magnitude is close to what it would be in practice, MAX  could be used to augment a 

traditional analysis based on inference for means. See the examples below. 
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4. Inference for MAX  

For a user input proportion 0 [.5,1) , we first propose, when appropriate, testing two sets of hypotheses 

using the data { ; 1,2,..., }i i i n X x , 

    0 0: MAXH        vs.     1 0: MAXH     ,                                                           (4.1) 

    0 0: MAXH        vs      1 0: MAXH     .                                                           (4.2) 

Rejection of 0H  could be used to support bioequivalence in (4.2) and the statement that there is, a 

difference among the treatments in (4.1) that is of practical importance.  For 0  = 0.5, 0H  in (4.1) is the 

traditional null hypothesis of equal means.  A decision to reject this null hypothesis is often, mistakenly in 

our view, taken as support of the conclusion that there are practically significant and not just statistically 

significant differences among the treatments. As shown below, confidence intervals for MAX  can be 

constructed by inverting these tests.   

Let  1 2( , , ..., )kX X X X denote the vector of sample means, 
1

( ) ( ) / ( 1)
n

i i
i

n


   S X X X X the 

sample covariance matrix, n > k , and for any 1 x kk   matrix of constants C  whose rows are linearly 

independent vectors of contrasts .  Then, from (2.2) we have that 

        
2 1( ) ( )T n   CX CSC CX ~ 2

2
1, 1,k n n

T
 

 ,                                          (4.3)                                          

where 2
, ,rT    denotes an r-variate non-central Hotelling’s 2T  with   degrees of freedom and non-

centrality parameter   . The fact that 2T is invariant with respect to the choice of C  and has non-

centrality parameter  = 2n  follows from an identity given in [10].  Since 

2( 1) / (( 1)( 1))F n k T n k      ~ 21, 1,k n k n
F

  
 , an F-distribution with k-1 and n-k+1 degrees of 
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freedom and non-centrality parameter 2n , inference for 2n , and hence MAX , can easily be carried out 

using widely available  software. Recall that for fixed numerator and denominator degrees of freedom, F-

distributions are stochastically ordered in their non-centrality parameters. Hence, having observed 

2 2
obsT t  and setting obsf  = 2( 1) / (( 1)( 1))obsn k t n k    ,  exact size   , unbiased tests for (4.1) and 

(4.2) are given respectively by rejection regions 2
01 , 1, 1,obs k n k n

f F
    

  and 2
0, 1, 1,obs k n k n

f F
   

 , where 

1 2, , ,F    denotes the  quantile of a F-distribution with degrees of freedom 1 2,   and non-centrality 

parameter  .  Let ' 'l  denote the lower alternative in (4.2) and ' 'u  denote the upper alternative in (4.1). 

Rejecting the null hypothesis in (4.1) if the 0( )p value  u  ( )obsP V f   leads to an exact size   

test, where 2
01, 1,

~
k n k n

V F
  

. Similarly, an exact size   test for (4.2) can be carried out by rejecting the 

null hypothesis if 0( )p value  l  ( )obsP V f  . The power functions at *   for (4.1) and (4.2) 

are given respectively by 2
01 , 1, 1,

( *) ( )
k n k n

P V F
 

 
   

 u  and 2
0, 1, 1,

( *) ( )
k n k n

P V F
 

 
  

 l , where 

*1, 1,
~

k n k n
V F

  
 , *  1 2( ( *)) . Inverting these tests, a two sided, 1   confidence interval for 

MAX is given by  

2 2/2, 1, 1, 1 /2, 1, 1,
{ ( ); }MAX obsk n k n k n k n

F f F
   

 
      

    ,                           (4.4)  

which is easily constructed via a grid search or by using a bisection algorithm. One sided confidences can 

be constructed similarly. Specifically, (4.4) consists of those values of 0 for which neither (4.1) or (4.2) 

is rejected using the data at hand at type 1 error rate / 2  .  If  (0.50)p value u  > / 2 , set the lower 

endpoint of the interval at MAX  = 0.50. If in addition (0.50)p value u  > 1- / 2 , the data do not 

restrict the parameter space and we then set (4.4) equal to the parameter space, [.50, 1.0) 

The global, non-directional effect size MAX = { ( ); }ALLMax l l L can be modified to accommodate 

targeted comparisons based on contrasts spanned by a pre-selected family of linearly independent contrast 
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vectors L  = { ; 1,2,..., ; 1}j j m m k  l ALL L by taking the rows of the matrix C  in (4.3) to be the 

vectors { ; 1,2,..., }j j m l  and setting  ( ( ))MAX SP L = { ( ); ( )}Max SP l l L , where ( )SP L  denotes the 

space spanned by { ; 1,2,..., }j j m l . Of greater practical interest in cases like this, would probably be 

( )MAX L = { ( ); , 1,2,..., }jMax j m  l l L  If, for example, the main interest of a study lies in m specific 

pairwise comparisons, each of the vectors in L  would have two nonzero entries, one is 1 and the other is 

negative 1 (-1).  Further, if the goal were to compare k-1 treatments to control and ( )MAX L = .51, it would 

be difficult to argue that in a practical sense any of the treatments differed from the control even though 

the distributions of all k treatments were not identical. Note that this formulation allows for one sided 

stochastic orderings used in non-inferiority trials, since both l   and l  need not be in L . Approximate 

inference for ( )MAX L  may be based on combinations of individual p-values, as follows.  Let 

( ) /obst n l l x lSl  and p-value( l ) = ( ( ))obsP V t l  , where 1 2
01, ( ( ))

~
n n

V t
 

 and ,vt   denotes a non-

central t-distribution with   degrees of freedom and non-centrality parameter   . We have that  that p-

value( l )  p-value( MAXl )= p value u . Let ( ){ ; 1,2,..., }jp value j m   denote the ordered p-values 

from testing each of the contrasts in L , all using either the hypotheses in (4.1) or (4.2). [9]  provides 

ways of combining these correlated p-values to arrive at a composite test that has overall type 1 error rates 

approximately bounded above by a desired  . For example, such a test could be given by ‘ reject 0H  if 

*( ( )) ;  for any }j jm p value j  l l L  ‘. Further study of these tests is needed.  

 
5. Examples 

We present three examples where confidence intervals for the effect size MAX modify the conclusions 

that would be reached just based on statistical significance. 
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Example 1.1 (continued) The 0.95 two sided confidence interval for the protocol main effect MAX , 

[.500, .750], includes  a very wide range of values that  indicates the large uncertainty in the information 

that these data  contain about practical differences among  protocols.  As noted in the introduction, this 

confidence interval does not rule out the possibility, at the high end, of systematic differences among the 

protocols. Specifically, although protocol means are close on the rmr scale and not statistically 

significantly different, some specific combination of protocols might result in responses systematically 

different from others as much as three quarters of the time they were used.    

Example 5.1.  [8] measured the thicknesses of cork borings on each of n = 28 trees in the k = 4 four 

directions of the compass. We treat these trees as having resulted from a random sample taken from some 

population of interest Although side-by side boxplots of the data presented in Figure 5.1 exhibit 

considerable overlap of the responses in the four directions, the p-values reported by the standard F-test, 

which assume equal direction variances, and Hotelling’s 2T  for equal direction means are respectively 

0.0039 and 0.0021. The 0.95 two sided confidence interval for MAX obtained by using (4.4) is (0.62, 

0.89), a wide range of values that like the interval in Example 1.1 fails to strongly support either 

concluding that there is a  large or small separation among the distributions. Specifically, the null 

hypothesis in (4.1) would only be rejected for 0 0.62   and the null hypothesis in (4.2) only rejected for 

0 0.89  , both at   = 0.025, where both values of MAX   are closer to indicating statistical 

significance rather than practical significance. Again, the large width of this confidence interval for MAX  

is a cautionary warning against interpreting the small p-values obtained from testing for equal means as 

evidence of practical significance among the direction distributions.   

Example 5.2.  [11] describes an agricultural experiment carried out as a split plot design as given in (2.2), 

where the  whole plot treatments are specific varieties,  1 2 3v , v  and v ,  and the  split plot treatments are 

four specific levels of applied nitrogen, 0 1 2 3, , ,n n n n , independently replicated in n = 6 blocks, assumed 
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Figure 5.1 Boxplots of Thickness 

 

 

 

 

 

 

here to be a random sample of all such blocks. Side by side boxplots of the responses across blocks to 

amounts of nitrogen and the varieties are presented in Figure 5.2 and Figure 5.3. The p-values for 

standard tests of no variety, no nitrogen and no nitrogen x variety interaction effects are, respectively, 

0.2724, < 0.001 and 0.9322.  A .95 confidence interval for MAX for varieties is given by [.50, .88), a wide 

range which is consistent at the low end with the considerable overlap seen in the boxes in Figure 5.3 and 

the lack of statistical significance for the test of no variety effect.  Most important, the wide range of this  

 

Figure 5.2 Boxplot of Yields by Nitrogen Levels 
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Figure 5.3 Boxplot of Yields by Varieties 

 

 

 

 

 

 

interval indicates that this experiment tells us very little about the importance of the impact, which could 

be large or small, of variety on yield in this particular setting. On the other hand, the very narrow .95 

confidence interval for MAX  for the nitrogen main effect has the form (c, 1.0), where due to the limits in 

the accuracy of our algorithm for obtaining cumulative probabilities of the non-central  F- distribution, we 

only know that c > 0.99998. Thus, in addition to the evidence provided by the very small p-value and 

distinct separation among the boxplots in Figure 5.2, the very large lower endpoint of the confidence 

interval for MAX provides evidence that some combinations of nitrogen levels are very reliably better 

than others.  To investigate the interaction between nitrogen and variety,  the  0.95 confidence intervals 

for the interaction MAX obtained from pairwise comparisons of the differences between nitrogen levels 

across the varieties are: [0.50, 0.70] for 0 1  n vs n ; [0.50, 0.80] for 0 2  n vs n ;  [0.50, 0.86] for 0 3  n vs n ; 

[0.50, 0.85] for 1 2  n vs n ; [0.50, 0.83] for 1 3  n vs n  and [0.50, 0.85] for 2 3  n vs n . Except for a somewhat 

smaller range of values in comparing 0 1  n vs n , the wide range of these intervals indicate that these data 

have little to say about the lack of uniformity among pairwise differences in nitrogen levels across 

varieties.  Similarly, investigating the interaction among varieties across levels of nitrogen, we find that 

the 0.95 confidence intervals for MAX  are: [0.50,1) for  1v  vs 2v   and [0.50, 0.94]  for both 1 3v  vs v  and 



16 
 

2 3v  vs v , all containing small and large values. In sum,  this effect based interaction analysis is unable to 

rule out the possibilities that interactions between varieties and nitrogen could be of little or great 

practical importance, a potentially  useful augmentation  to a traditional analysis which would simply 

report that there is insufficient evidence to support concluding that there is a variety by  nitrogen 

interaction, p = 0.9322.   

6. Simulation 

For a fixed number of blocks n and number of treatments k, without loss of generality, we set g  = 1 and 

independently generated { }i   from a uniform distribution on the interval (.2,1) and, independent of 

these, generated independent means { }i  from a uniform distribution on (0,1). The lower bound of .2 was 

used to avoid very large 2  values which would have required computing cumulative F-distribution 

probabilities for arguments so big that numerical algorithms become unstable. This random choice, a 

process we carried out 100 times, of parameter settings covered a wide range of cases, including heavy 

doses of homoscedasticity. We took k = 2, 3 and 5 and for each k took n = k + 1, k+ 6, k+11, k+21, k + 31 

and k + 41. For each of these settings we independently generated 10000 data sets. Since power functions 

and coverage rates of confidence intervals are exact and given by easily computed explicit formulas, we 

only briefly summarize some of our representative findings on mean widths of two sided 0.95 confidence 

intervals for MAX .  From Figure 6.1, consisting of side by side box plots of simulated relative mean 

interval widths = mean width/ MAX ,denoted RMW ,  for different numbers of blocks n with k = 5, we see 

that mean relative widths are large for small n and decrease steadily as n increases.  

Specifically, the median of the mean relative widths decreases by about 25% from the smallest sample 

size to the largest. The pattern and values are very similar for k = 2 and 3. Aggregated over n, median 

'RMW s are about 0 .40 for all values of k, as can be seen in the side by side box plots in Figure 6.2.  
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TheFigure 6.1 Boxplots: Mean Relative Width, k = 5 

 

 

 

 

 

 

Figure 6.2 Boxplots: Mean Relative Width, k = 2,3,5 

 

 

 

 

 

 

plot in Figure 6.3 for k = 3 illustrates that RMW is quite stable over values of the standard deviation ratio 

RSIG  = max{ }/ min{ }i i   for all n .   The representative plot for k = 2 in Figure 6.4 of mean width vs 

MAX  is approximately quadratic except for very small n, with a maximum approximately at 0.75, the 

center of the possible values of MAX  . An empirically determined least squares surface fitted to simulated 

mean widths, denoted MW , results in the surface 

2ˆ .64 .00584* .01129* 2.95* 2.07*MAX MAXMW n k        , 2 .88R   . All of the sources of 
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variation are statistically significant and their signs and magnitudes are consistent with the discussion 

above. In particular, using this surface, everything else held fixed, we estimate that increasing sample size 

by ten corresponds to a decrease in mean width of about 0.06, that mean width is about 0.03 greater when 

k = 5  than when k = 2 and the quadratic relation evident in the plot is supported by the negative 

coefficient of 2
MAX .  

Figure 6.3 Plot of RMW vs RSIG, k = 3 

 

 

 

 

 

 

 

Figure 6.4 Plot of MW vs MAX , k = 2 
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7. Conclusion 

The effect size MAX , developed here in the context of correlated responses recorded on a block, is a 

parameter that can aid in distinguishing between practical and statistical significance. As noted above, 

although, like all effect sizes, the values of MAX  that determine practical significance are subjective, 

MAX  can be calibrated in terms of observable consequences and  not just as a function of means and 

covariances, parameters which are never observed. Since inference for MAX requires estimating the 

covariance matrix of the responses, the number of blocks, n, must be greater than the number of levels of 

the treatment, k. It is not surprising that confidence intervals for MAX are relatively wide when n –k is 

small, a fact researchers should consider when designing their experiments. [5] argues that the failure of 

many published statistically significant results to be practically significant is due to the small effect size 

of the treatments. We hope that the inference presented here will help researchers better appreciate the 

often large uncertainty in their estimates of effects and show caution in announcing practical significance.   

 

Appendix 

Let C  =  { }c  be the class of all nonzero, k - dimensional, column vectors of constants and note that 

all L C . 

Lemma 1:  For a fixed vector x  and positive definite matrix B,  

Max{ /  c xx c c Βc ; c C } = 1x x  #( , , )Q c x B , 

where ( , , )Q c x B  = /  c xx c c Βc and # 1c B x . 

Proof:  See (1f.1.1) on page 60 of Rao (1973). 

Lemma 2:  Proof of (3.1) 
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From Lemma 1, for any positive definite matrix Σ , since ( ) � is non-decreasing, 

setting # 1( ) All
w

  c Σ μ 1 L and 1 1/    1 Σ μ 1 Σ 1 , we have that 

MAX  { ( ); }allSup  l l L  

 });,,({ allQSup LlΣμl   

 });,,({ allQSup LlΣ1μl    

 });,,({ CcΣ1μc  QSup  

 )()( 1 1μΣ 1μ   -'  

 ),(,( Σ1)μc#  Q  

 });,,({ allQSup LlΣ1μl    

= .MAX  
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