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Viewers can recognize the gist of a scene (i.e., its holistic
semantic representation, suchas its category) in less timethan
a single fixation, andbackwardmasking has traditionally been
employedasameanstodeterminethattimecourse.Themasks
used in those paradigms are often characterized by either
specific amplitude spectra only, or amplitude and phase
spectra-defined structural properties. However, it remains
unclearwhether therewould be a differential contribution of
amplitudeonlyoramplitudeþphasedefinedimagestatisticsto
the effective backwardmasking of rapid scene categorization.
The current study addresses this issue. Experiments 1–3
explored amplitude spectra defined contributions to category
maskingandrevealedthattheslopeoftheamplitudespectrum
wasmore important formodulating scene categorymasking
strength than amplitude orientation. Further, themasking
effects followed an ‘‘amplitude spectrum slope similarity
principle’’whereby themore similar the amplitude spectrum
slopeofthemaskwastothetarget’samplitudespectrumslope,
the stronger themasking. Experiment 5 showed that, when
holdingmask amplitude spectrum slope approximately
constant, bothcategorically specific unrecognizableamplitude
only and amplitudeþphase statistical regularities disrupted
rapid scene categorization. Specifically, themasking effects
observed in Experiment 5 followed a target-mask categorical
dissimilarity principlewhereby themore dissimilar themask
category is to the target image category, the stronger the
masking.Overall,theresultssupportthenotionthatamplitude
only or amplitudeþphase-defined image statistics
differentially contribute to the effective backwardmasking of
rapid scene gist recognition.

Visual masking of rapid scene
categorization

The use of visual masking has a long history of
illuminating the mechanisms of early spatial vision

(Carter & Henning, 1971; K. K. De Valois & Switkes,
1983; Henning, Hertz, & Hinton, 1981; Legge & Foley,
1980; Losada & Mullen, 1995; Sekuler, 1965; Solomon,
2000; Stromeyer & Julesz, 1972; Wilson, McFarlane, &
Phillips, 1983), and has recently been argued to also
serve as an effective means to investigate the time
course and spatial mechanisms involved in scene gist
recognition, which has typically been operationalized in
terms of rapid scene categorization (e.g., Bacon-Mace,
Mace, Fabre-Thorpe, & Thorpe, 2005; Fei-Fei, Iyer,
Koch, & Perona, 2007; Guyader, Chauvin, Peyrin,
Hérault, & Marendaz, 2004; Joubert, Rousselet, Fabre-
Thorpe, & Fize, 2009; Kaping, Tzvetanov, & Treue,
2007; Loschky, Hansen, Sethi, & Pydimari, 2010;
Loschky & Larson, 2008; Loschky et al., 2007, see also
Wichmann, Braun, & Gegenfurtner, 2006, for animal
detection). Rapid scene categorization masking para-
digms typically employ backward masking (though
some paradigms involve the direct manipulation of
target scenes and can be construed as rudimentary
forms of simultaneous masking).

Backward masking paradigms often utilize masks
that are characterized by specific second and higher
order statistical regularities of luminance contrast
within different real-world scene categories (i.e.,
regularities that are captured by the Fourier amplitude
spectrum or phase spectrum, respectively). A detailed
account of these relationships is provided in the
Supplementary material. Briefly, the masks typically
consist of spatial contrast characteristics defined only
by amplitude spectral relationships (e.g., phase-scram-
bled scenes with amplitude spectra that vary in the
distribution of contrast across spatial frequency or
orientation, hereafter referred to as amplitude-only
masks), or some combination of both amplitude and
phase spectral relationships (e.g., masks where the
amplitude spectra properties are held constant, but
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with the statistical relationships in the phase spectra
being systematically varied while preserving various
image features, hereafter referred to as amplitude þ
phase masks). Specifically, amplitudeþphase masks are
designed to possess the lines and edges in scenes that
often yield recognizable image structure. Since one
needs some modicum of local contrast to see phase-
defined image features, we refer to such masks as
amplitudeþ phase defined (but note that the critical
manipulations are often focused on manipulations
made to the phase spectra).

Most scene gist studies that employ backward
masking to investigate the spatial or temporal aspects
of gist processing use either amplitude-only masks or
amplitudeþ phase masks. Thus, comparing masking
results from those studies raises questions about
whether markedly different masking functions would
be observed depending on whether amplitude-only
masks or amplitude þ phase masks were used. This
issue is compounded by the fact that few studies have
examined the extent to which specific amplitude-only or
amplitudeþ phase mask spectral characteristics con-
tribute to the resulting masking functions. Thus, there
are several gaps in our knowledge regarding (a)
whether the two types of masks will produce different
masking functions, and if so (b) how the different mask
spectral characteristics (e.g., amplitude-only or ampli-
tudeþ phase-defined) modulate the masking functions.
Thus, the current study addresses these questions
regarding backward masking. We have focused on
backward masking because, in contrast to simultaneous
masking, it ensures that the participants will have direct
access to all target image information (in its original
unmanipulated state) prior to being exposed to a mask.
Additionally, by varying the stimulus onset asynchrony
(SOA), backward masking allows the experimenter to
assess when amplitude or phase information becomes
relevant to the categorization process (but see Van-
Rullen, 2011), though here, we primarily focus on the
spatial aspects of the masking. Below, we provide a
more detailed account of how research on backward
masking has raised these crucial theoretical questions
regarding amplitude-only masks and amplitudeþphase
masks.

Amplitude-only backward masking

Amplitude-only backward masking effects have been
investigated in a pair of studies by Loschky et al. (2007)
and Loschky et al. (2010), which examined masking
effects on rapid scene categorization performance.
Those studies used masks created by phase-randomiz-
ing scenes, thereby leaving only amplitude information
intact, which we therefore refer to as amplitude-only
masks. Those masks were unrecognizable, and thus

devoid of any semantic meaning, which eliminated
masking effects caused by conceptual processes, known
as conceptual masking (e.g., Intraub, 1984; Loftus &
Ginn, 1984; Loftus, Hanna, & Lester, 1988; Michaels &
Turvey, 1979; Potter, 1976). Doing so crucially limited
masking effects to those due to visual mechanisms
responding to image structure defined by amplitude
spectral properties, rather than those attributable to
conceptual masking. Loschky et al. (2007) and Loschky
et al. (2010) specifically examined masking effects
produced by three types of amplitude-only masks:

(a) phase-randomized versions of scenes from different
categories than the target scenes (i.e., the masks had
different amplitude spectral characteristics than the
target scenes),

(b) phase-randomized versions of the target images
themselves (i.e., the masks had identical amplitude
spectral characteristics to the target scenes), or

(c) white noise masks (i.e., masks lacking any global
amplitude- or phase-defined structural characteris-
tics—see Supplementary material for further
detail).

These comparisons produced two critical results: (a)
there were no differences in the masking between
amplitude-only masks derived from the same versus
different scene category than the target, and (b) both
masking conditions based on phase-randomized scene
masks produced significantly stronger effects than the
white noise masking condition. The former result
suggests that amplitude spectral properties produce
little if any category-specific masking effects. On the
other hand, the latter result suggests that general
spatial frequency and orientation differences (relative
to white noise) play a critical role in masking rapid
scene categorization. That is, greater masking was
caused by the phase-randomized amplitude-only masks
that possessed typical amplitude spectrum characteris-
tics of real-world scenes (i.e., contrast fall-off with
increasing spatial frequency, and contrast biases at
different orientations), rather than the white noise
masks, which did not. More specifically, since the
phase-randomized scenes as masks still had intact
amplitude spectra, they possessed amplitude features
common to most natural scenes including (a) the 1/fa

fall off in contrast with increasing spatial frequency
(i.e., the amplitude spectrum slope, a, typically ’ 1.0)
and (b) the vertical/horizontal (i.e., cardinal) orienta-
tion bias found across all scenes (cardinal . oblique)
(see Hansen, Haun, & Essock, 2008, for a review).
Thus, the question is which aspect of the amplitude
spectrum is responsible for such masking? Specifically,
is it (a) the slope, a, of the amplitude spectrum, (b) the
orientation biases, or (c) both, that produced the
strongest masking effects for phase-randomized scene
masks (compared to white noise) in the Loschky et al.
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(2007) and Loschky et al. (2010) studies? Experiments
1–3 aimed at answering this question.

Amplitude þ phase backward masking

The studies by Loschky et al. (2007) found that
actual unaltered scenes used as masks (i.e., a type of
amplitudeþ phase mask) were much more effective at
interfering with rapid scene categorization than phase-
randomized scene masks (i.e., amplitude-only masks).
This finding suggests that amplitude-only masks and
amplitudeþ phase masks produce different masking
functions. However, the amplitude þ phase masks
utilized by Loschky et al. (2007) contained recognizable
scene structure. Thus, an alternative explanation for
such differences in masking effects would be conceptual
masking. Loschky et al. (2010) therefore explored this
conceptual masking account in a follow-up study using
unrecognizable amplitudeþ phase masks. Those masks
were created by feeding real-world scene images to the
Portilla and Simoncelli (2000) texture synthesis algo-
rithm, which produced scene-texture masks containing
unrecognizable conjoint amplitude þ phase-defined
image structures. Loschky et al. (2010) found that such
amplitudeþ phase masks interfered with rapid scene
categorization far more than amplitude-only (phase
randomized) masks, and both masked more than white
noise. Critically, the unrecognizable amplitudeþ phase
masks produced 74% of the difference in masking
found between white noise masks and unaltered scenes
used as masks, namely recognizable amplitudeþ phase
masks. That is, 74% of the observed masking effects
mentioned above that might have been attributed to
conceptual masking could, instead, be explained by
unrecognizable amplitude þ phase-defined scene struc-
ture.

Loschky et al. (2010) showed that amplitudeþ phase
masks, which contained unrecognizable phase-defined
image structure, yielded strong masking effects unex-
plainable by conceptual masking. Nevertheless, we are
still left with the question of how such amplitude þ
phase regularities modulate rapid scene categorization
performance. Given that those masks were derived
from real-world scene images, the unrecognizable
phase-defined image structures in the amplitude þ
phase masks may have regulated scene categorization
in a category-specific manner. If so, to take an example,
would unrecognizable amplitudeþphase masks derived
from beach scenes more strongly mask beach targets
than unrecognizable amplitude þ phase masks derived
from mountain scenes (or vice versa)? Experiments 4–5
aimed at answering this question.

It is important to note that utilizing backward
masking paradigms to study rapid scene categorization
is not without its limitations. One point worth

reiterating here is that masking has a long history in the
study of early visual processes such as the detection and
discrimination of sinusoidal gratings or Gabor pat-
terns. Thus, backward masking effects in rapid scene
categorization must be considered in the terms of early
spatial vision mechanisms assessed by visual masking.
Specifically, one must consider whether a given set of
backward masking effects can be predicted by the
known response characteristics of early visual mecha-
nisms, which could apply equally well to a wide array
of visual tasks including rapid scene categorization. For
example, if a given backward masking effect can be
accounted for by a reduction of the signal-to-noise
ratio in early spatial channels, then the information in
the mask may simply have been more effective at
stopping informative scene information from being
passed along to higher levels where scene categorization
is thought to occur (e.g., the parahippocampal place
area [PPA] or the lateral occipital complex [LOC]). We
therefore apply this approach to interpreting the results
of the current study. In doing so, we attempt to
dissociate those masking effects more likely to be
explained by earlier spatial channel interactions from
those less likely to be so explained.

The current study

To return to the primary goals laid out in our
introductory paragraph, the current study: (a) provides
an affirmative answer to the question of whether
unrecognizable amplitude-only masks versus unrecog-
nizable amplitude þ phase masks produce different
masking functions; and (b) addresses how the spectral
characteristics of amplitude-only masks and amplitude
þ phase masks modulate their respective masking
functions. Experiments 1–3 were concerned with the
effects of the spectral characteristics of amplitude-only
masks. Experiment 1 employed noise masks containing
only amplitude-defined structure (i.e., variable slope, a,
and variable orientation bias magnitudes). Experiment
2 followed up Experiment 1 by extending its crucial
masking conditions into the temporal domain. Exper-
iment 3 controlled for the perceived contrast (rather
than physical contrast) of the noise masks used in
Experiments 1 and 2. Experiments 4–5 were concerned
with the effects of the spectral characteristics of
amplitude-only versus amplitude þ phase masks.
Experiment 4 assessed the recognizability of image
structure in amplitude-only masks versus amplitude þ
phase masks that would be used in Experiment 5. This
was necessary to ensure minimal to no recognizability
in order eliminate conceptual masking effects. Exper-
iment 5 then assessed whether unrecognizable ampli-
tude-only versus amplitudeþ phase masks interfered
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with rapid scene categorization in a category-specific
manner.

General method

Apparatus

For experiments conducted at Kansas State Uni-
versity (Experiments 1, 3, 4, & 5), all stimuli were
presented on 19 in. Samsung SyncMaster 957 MB S
monitors. These were driven by Optiplex 170L Pentium
4 processors (2.8 GHz), which were equipped with 512
RAM and Intel 82865G Graphics Controller Integrat-
ed Chipset graphics cards, which had 8-bit grayscale
resolution. Stimuli were displayed using a linearized
look-up table, generated by calibrating with a Color-
Vision Spyder2 Pro sensor. Maximum luminance
output of the display monitors was 80.6 cd/m2, the
frame rate was set to 85 Hz, and the resolution was set
to 1024 · 768 pixels. Single pixels subtended .03698 of
visual angle (i.e., 2.21 arc min) as viewed from a
distance of 53.3 cm using machined chin rests.

For experiments conducted at Colgate University
(Experiment 2), all stimuli were presented on a 21 in.
Viewsonic (G225fB) monitor. This was driven by a dual
core Intelt Xeont processor (1.60 GHz x2), which was
equipped with 4 GB RAM and a 256 MB PCIe x16
ATI FireGL V7200 dual DVI/VGA graphics card, and
with 8-bit grayscale resolution. Stimuli were displayed
using a linearized look-up table, generated by cali-
brating with a Color-Vision Spyder3 Pro sensor.
Maximum luminance output of the display monitor
was set to yield 80.6 cd/m2, the frame rate was set to 85
Hz, and the resolution was set to 1024 · 768 pixels.
Single pixels subtended 0.03638 of visual angle (i.e.,
2.18 arc min) as viewed from a distance of 58.0 cm
using an Applied Science Laboratories (ASL) chin and
forehead rest.

Scene image database

A total of 600 grayscale scene images (selected from
the Internet and free of any copyright restrictions) were
used in the current study (100 images per scene
category) as either target stimuli or as images used to
construct mask stimuli. There were six basic level
categories: (a) beaches, (b) forests, (c) airports, (d)
streets, (e) home interiors, and (f) store interiors. These
could be further categorized as three conjoint super-
ordinate categories: natural outdoor (beaches and
forests), man-made outdoor (airports and streets), and
man-made indoor (home and store interiors). Each
image category set was assembled by cropping a 512 ·

512 pixel region from a random location within the
larger image.

Each image, I(x, y), was normalized to possess a
fixed root-mean square (rms) contrast (as defined in
Pavel, Sperling, Riedl, & Vanderbeek, 1987) and mean
luminance in the spatial (i.e., image) domain using the
sequence of functions that can be found in Hansen and
Hess (2007). Here, rms was set to 0.126, with the mean
grayscale value of all images fixed at 127. The
particular choice of rms allowed for a suprathreshold
contrast that did not result in pixel grayscale values
outside the 0–255 range.

Experiment 1

The current experiment was designed to determine
which aspect of the amplitude spectrum (slope or
orientation) in amplitude-only masks is responsible for
masking rapid scene categorization performance: (a)
the slope of the amplitude spectrum, (b) the orientation
biases, or (c) both?

Method

Participants

Forty-seven Kansas State University students (34
female), all naı̈ve to the purpose of the study,
participated for course credit after giving their Insti-
tutional Review Board-approved informed written
consent (with written parental consent also given for
those under the age of 18). All observers had normal
(or corrected to normal) vision and their ages ranged
from 16 to 30 years (M ¼ 19.33, SD ¼ 2.93).

Noise mask creation

All noise masks were constructed in the Fourier
domain using MATLAB (version R2008a) including
Image Processing (version 6.1) and Signal Processing
(version 6.9) toolboxes. Mask construction involved
creating a base amplitude spectrum, BASEAMP(f, h),
weighted by an orientation filter. The orientation filter
used here consisted of an orientation biased amplitude
spectrum, ORNTAMP( f, h), constructed by averaging
the amplitude spectra from all images described in the
General method section. The base and orientation
biased spectra were created in polar coordinates, thus f
and h represent the spatial frequency and orientation
dimensions, respectively. The orientation filter first
involved constructing an amplitude spectrum from the
average of the entire set of scene category images (n¼
600 total images), shifted into polar coordinates, with
the DC (i.e., zero frequency) component assigned a
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zero. The averaged amplitude spectrum, denoted as
ORNTAMP( f, h), possessed the typical orientation bias
observed in natural scenes, namely more contrast along
the cardinal axes, vertical and horizontal, than the
obliques (e.g., Coppola, Purves, McCoy, & Purves,
1998; Hansen & Essock, 2004; Keil & Cristobal, 2000;
Switkes, Mayer, & Sloan, 1978; Torralba & Oliva,
2003; van der Schaaf & van Hateren, 1996). However, it
also contained the typical spatial frequency contrast
bias in (i.e., much more contrast at lower than higher
spatial frequencies). Since we needed ORNTAMP( f, h)
to only serve as an orientation filter, we next removed
the spatial frequency contrast bias by the following
operations. First, we created an orientation averaged
vector, OA( fu) by averaging the amplitude coefficients
across all orientations for each spatial frequency in
ORNTAMP( f, h), stated formally as:

OAð fuÞ ¼
1

vn

Xu¼1...un

v¼1...vn

ORNTAMPð fu; hvÞ; ð1Þ

where the subscripts u and v represent spatial frequency
and orientation coordinates, respectively, with un being
the total number of spatial frequencies (in cycles per
picture, cpp), and vn being the total number of
orientations. Importantly, due to the nature of the
discrete Fourier transform (DFT) (e.g., Hansen &
Essock, 2004), the total number of orientations, vn, at a
given spatial frequency varies monotonically with
increasing spatial frequency. Next, to remove the spatial
frequency bias from ORNTAMP( f, h), each orientation
vector in ORNTAMP( f, h) was divided by OA( fu). This
produced a flat amplitude spectrum (i.e., a ¼ 0.0), but
with the orientation bias preserved, which served as the
orientation filter used to weight the amplitude spectra of
the noise masks in the current experiment. This is
formally stated as:

Ofiltð f; hÞ ¼
ORNTAMPð f; hv¼1...vnÞ

OAð fuÞ
: ð2Þ

Here, f in the numerator is without a subscript as the
division is applied to all spatial frequencies along each
orientation vector within ORNTAMP( f, h). Finally,
Ofilt( f, h) represents the orientation filter itself.

Next, the base amplitude spectrum, BASEAMP( f, h),
was constructed in a single 512 · 512 polar matrix,
with all coordinates assigned the same arbitrary
amplitude coefficient (except the location of the DC
component, which was assigned a zero). The result is a
flat isotropic broadband spectrum (i.e., possessing
equal contrast across all spatial frequencies and
orientations). Then, the base spectrum exponent could
be adjusted by multiplying each spatial frequency’s
amplitude coefficient by f �a, with a representing the
amplitude spectrum exponent. For the current exper-

iment, a was set to either 0.0, 0.5, 1.0, or 1.5 to capture
the typical range of as observed in scene imagery (e.g.,
0.5 to 1.5), and a white noise condition (i.e., a ¼ 0.0).

Then, an orientation bias was applied to a base
spectrum having one of the four different a values by
weighting it with Ofilt(f, h) according to the following
operation:

MASKo ¼ ðBASEAMP f; h½ �· 1�Omag

� �
Þ

�

þðOfilt f; h½ �· Omag

� �
Þg: ð3Þ

Here, Omag was a scalar value controlling the
orientation bias magnitude, which took on one of five
values from zero to one (in steps of 0.25), with zero
producing an isotropic amplitude spectrum and one
producing a mask amplitude spectrum having the full
bias in ORNTAMP( f, h). Thus, subscript ao represents
mask amplitude spectra possessing one of the four
amplitude spectrum slopes (a) and one of the five
orientation bias magnitudes (o).

Finally, we used a unique phase spectrum for each
mask by assigning random values from�p to p to the
coordinates of a 512 · 512 polar matrix, URAND( f, h),
such that the phase spectra were odd-symmetric—i.e.,
for h angles in the [p, 2p] half of polar space, URAND( f, h)
¼ -URAND( f, h). The noise patterns were rendered in the
spatial domain by taking the inverse Fourier transform
of MASKo( f, h) and a given URAND( f, h), with both
shifted to Cartesian coordinates prior to the inverse
DFT. The rms contrast of all noise masks was fixed at
0.126 in the spatial domain by scaling the power
spectrum in the Fourier domain. A total of 100 unique
masks was generated for each of the four a and five
orientation bias magnitude conditions. Examples of the
20 mask types are shown in Figure 1A.

Design and procedure

Experiment 1 used a six alternative forced choice
(AFC) scene categorization backward masking para-
digm. The experiment had a 4 (Mask a)· 5 (Orientation
Bias Magnitude) mixed design, with mask a a between-
subjects variable, and orientation bias magnitude a
within-subjects variable. In each mask a condition, each
participant saw 60 different target category stimuli
(described in the General method section) for each level
of mask orientation bias magnitude (10 stimuli ran-
domly selected without replacement from each scene
category), for 300 total trials. The order of target
category and mask orientation bias magnitude was
randomized. Participants were randomly assigned to
between-subjects conditions.

A given trial sequence consisted of a 500 ms fixation
point (0.38 black circle) at the screen center (with the
screen set to mean luminance), followed by a target
scene presented for 23.56 ms, followed by a 11.76 ms
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Figure 1. (A) Example noise masks used in Experiment 1. The examples are arranged in rows for amplitude spectrum slope (i.e., a), and

columns for orientation magnitude. Specifically, amplitude spectrum slope increases from the top row (a¼ 0.0) to the bottom row (a

¼ 1.5) in steps of 0.5. The far left column is Omag ¼ 0.0 (i.e., no orientation bias) to the far right column, Omag ¼ 1.0 (maximum

orientation bias), in steps of 0.25. (B) Shows orientation averaged amplitude spectra for the four different noise mask slopes. (C)

Shows a 2-D contour plot of Ofilt(f, h) plotted in polar coordinates. Note the distinct horizontal and vertical orientation bias.
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interstimulus interval (ISI) (a mean luminance blank
screen, stimulus onset asynchrony [SOA] ¼ 35.32 ms),
then a noise mask for 70.67 ms (i.e., 3:1 mask:target
duration ratio), followed by a mean luminance screen
for 750 ms, and then the response screen containing a 2
· 3 grid of the six basic level scene category labels, until
the observer responded by a mouse click on the
category label matching the target stimulus. The
positions of the category labels were randomized on
each trial to avoid category location response bias.
That is, by randomizing the locations of response
choices on every trial, any location-based response bias
(e.g., top left response cell) would be randomly
distributed across all categories, rather than only a
single category. Note however, that this requires
participants to first search for the correct answer on
each trial, adding to their reaction time, making this
method better suited to analyzing accuracy than
reaction times. Before the experiment began, partici-
pants were given practice trials using target stimuli
from categories not used in the experiment, but with
noise masks from the assigned a condition and variable
mask orientation bias magnitude.

Results and discussion

Random assignment of participants to the between-
subjects variable, mask amplitude spectrum slope a,
resulted in 12 in the a¼ 0.0 condition, 11 in the a¼ 0.5
condition, 11 in the a¼ 1.0 condition, and 13 in the a¼
1.5 condition. Figure 2a shows mean scene categoriza-
tion accuracy for each amplitude spectrum slope, a,
mask condition as a function of mask orientation bias

magnitude. Figure 2b shows the same data plotted for
each level of mask orientation bias as a function of mask
amplitude spectrum a, which we tested with a 4 (Mask a)
· 5 (Orientation Bias Magnitude) mixed repeated
measures analysis of variance (ANOVA). The data in
Figure 2 show a strong masking effect for amplitude
spectrum a, which was confirmed by a significant
between-subjects effect of mask amplitude spectrum a,
F(3, 43)¼ 24.09, p , 0.001, Cohen’s f 2¼ 0.271.1 On the
other hand, Figure 2 shows little to no effect of mask
orientation bias magnitude, which is also confirmed by a
nonsignificant within-subjects effect of mask orientation
bias magnitude, F(4, 172)¼ 0.40, p¼ 0.81. Likewise, as
suggested by Figure 2, there was no significant
interaction between mask a and mask orientation bias
magnitude, F(12, 172)¼ 0.735, p¼ 0.72.

We carried out post-hoc comparisons of each
amplitude slope condition against the others using a
Bonferonni adjusted family-wise a level of 0.0083 for the
six unique comparisons among the four conditions. To
carry out the independent groups two-tailed t tests, we
first created equal sized groups by randomly selecting
one subject to omit from the a ¼ 0 condition and two
subjects to omit from the a¼ 1.5 condition (though the
statistical test results were the same whether the subjects
were omitted or not). As suggested by examination of
Figure 2a, all three comparisons with the a ¼ 1.0
condition were significant (ts � 3.11, ps � 0.006,
Cohen’s ds � 0.56), as was the comparison of the a¼ 0.5
and 0.0 (white noise) conditions, t(20)¼ 5.51, p , 0.001,
Cohen’s d¼ 1.91. Conversely, the comparison of the a¼
1.5 and 0.0 conditions was not significant, t(20)¼ 1.63, p
¼ 0.118, nor was the comparison of the a¼ 1.5 and 0.5
conditions, t(20)¼ 2.42, p¼ 0.025 (based on the family-
wise adjusted alpha level).

Figure 2. Averaged data for Experiment 1. For both plots, the ordinate shows averaged percent correct (note that the scale begins at

40% to increase visibility). (A) Shows amplitude spectrum slope masking functions for the different mask orientation bias magnitudes

(OM). (B) Shows mask orientation bias magnitude (OM) masking functions for the four different mask amplitude spectrum slopes.

Error bars are 61 SEM.
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Lastly, while unlikely (see Introduction and
Loschky et al., 2007), we examined whether categori-
zation performance for any given scene category was
masked more or less compared to the others as a
function of mask orientation bias magnitude. There
were no significant differences for any of the six scene
categories as a function of mask orientation bias
magnitude for any of the mask amplitude spectrum
slopes, ps . 0.05 (results not shown). Thus, in terms of
which amplitude-only spectral characteristics most
strongly mask rapid scene categorization, the current
results show that the distribution of contrast across
spatial frequency (i.e., amplitude spectrum slope a) is
much stronger than the distribution of contrast across
orientation.

Finally, the masking functions shown in Figure 2b
show an interesting trend that seems related to the
typical amplitude spectrum slope found in natural
scenes (i.e., a ’ 1.0). Specifically, it is tempting to
conclude that the more similar the mask slopes were
to the typical slope observed in natural scenes, the
stronger the masking effect. However, since the entire
target image set had a mean slope of 1.12 (SD ¼
0.12), and because there were no category-specific
masking effects (across orientation magnitude or
slope), Occam’s razor suggests the simpler (thus
better) description is that the observed masking
effects follow an amplitude slope similarity principle.
Specifically, the more similar the mask amplitude
slope was to the target image slope, the stronger the
masking effect. We will return to this notion in
Experiments 4 and 5, as well as in the General
discussion.

Experiment 2

Given the amplitude spectrum slope was the driving
force in the rapid scene categorization masking effects
in Experiment 1 for a fixed target/mask SOA,
Experiment 2 further explored the crucial conditions
from Experiment 1 within the temporal processing
domain. Specifically, we investigated whether the
amplitude spectrum slope a was more or less of a factor
at varying processing times. Thus, we replicated
Experiment 1 for masks set to either a¼ 0.0 or 1.0, with
each possessing either a strong or no orientation bias
(Omag ¼ 1.0 vs. 0.0), across five different target/mask
SOAs. We note, along with VanRullen (2011), that the
relationship between masking SOA and processing time
is not as simple as suggested by many studies using
backward masking to study the time course of
perception. Specifically, neurophysiological studies that
have investigated the link between masking SOA and
the time course of target-related brain activity have

shown that while SOA and processing time are not
identical, they are related (e.g., Rieger, Braun, Bulthoff,
& Gegenfurtner, 2005).

Method

Participants

Fifty-three Colgate University students (34 female),
all naı̈ve to the purpose of the study, participated for
course credit after giving their Institutional Review
Board-approved informed written consent. All ob-
servers had normal (or corrected to normal) vision,
and their ages ranged from 18 to 21 years (M ¼ 18.8,
SD ¼ 0.79).

Design and procedure

The mask stimuli were identical to those used in
Experiment 1, with the following exceptions. Only two
mask amplitude spectrum a values (a¼ 0.0 and a¼ 1.0)
and two mask orientation bias magnitudes (Omag¼ 0.0
and Omag ¼ 1.0) were employed in the current
experiment. Target stimuli were drawn from the set
used in Experiment 1, as described in the General
method section.

The current experiment employed the same para-
digm as Experiment 1, except that the current
experiment utilized five different SOAs and a no-mask
condition. The experiment used a 2 (Mask a) · 2
(Orientation Bias Magnitude) · 6 (SOA & No-Mask)
mixed design, with mask a and orientation bias
magnitude being between-subjects variables, and SOA
being a within-subjects variable. Within a given mask a
and orientation bias magnitude condition, each par-
ticipant saw 60 different target stimuli (described in the
General method section) for each SOA (with 10 stimuli
randomly selected without replacement from each of
six scene categories). For the no-mask condition, an
additional 60 images were randomly sampled (10 per
scene category), for a total of 360 trials. Order of target
category and SOA (including no mask) was random-
ized for each trial. Participants were randomly assigned
to the between-subjects conditions.

The trial sequence was identical to that of Exper-
iment 1 except that the target/mask ISI was set to yield
five different SOAs (¼ target durationþ ISI): 23.56 ms
(i.e., 0 ms ISI), 35.29 ms, 47.05 ms, 70.57 ms, and
117.64 ms. For no-mask trials, the target image was
simply followed by the same mean luminance screen
for 750 ms as in the masking conditions (as in
Experiment 1). Participants’ task was the same as
Experiment 1, and they were given practice trials using
target stimuli from categories not used in the
experiment.
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Results and discussion

Random assignment of participants to the between-
subjects variable, mask amplitude spectrum slope aþ
orientation bias magnitude, resulted in 12 in the a¼0.0þ
orientation bias¼ 0.0 condition, 14 in the a¼ 0.0þ
orientation bias¼ 1.0 condition, 13 in the a¼ 0.0þ
orientation bias¼ 0.0 condition, and 14 in the a¼ 1.0þ
orientation bias¼ 1.0 condition. Figure 3 shows mean
scene categorization accuracy for each amplitude spec-
trum slope, a, and orientation bias mask condition as a
function of SOA (and no mask), and we conducted a 2
(Mask a) · 2 (Mask Orientation Bias Magnitude) · 5
(SOA) mixed repeated measures ANOVA to test the
effects of these factors. As expected, Figure 3 shows a
reduction ofmasking strengthwith increasing SOA for all
between-subjects masking conditions, which was con-
firmed by a significant main effect of SOA, F(4, 196)¼
135.64, p, 0.001, partial g2¼0.74.Also, as inExperiment
1, noise masks with amplitude spectrum a¼1.0 produced
stronger effects than that of a¼0.0 for the shorter SOAs,
as shown by a significant main effect of mask a, F(1, 49)¼
15.71, p, 0.001, Cohen’s f 2¼0.26, anda significantmask
a·SOAinteraction,F(4, 196)¼36.45,p, 0.001,Cohen’s
f 2¼1.01. Interestingly, the effect ofmask orientation bias
magnitudewas absent in both a¼1.0 conditions, but there
was an apparent effect of orientationmagnitude in the a¼
0.0 conditions. However, this was not supported by the
ANOVA, which found neither a significant main effect of
orientation magnitude nor any significant interactions
involving it (ps� 0.212). Thus,we explored the significant
Mask a · SOA interaction to identify the SOAs yielding
significant differences between the twomask a conditions.
We collapsed across orientation magnitude within each
level of mask a, and ran independent t tests (Bonferonni
adjusted family-wise a level¼ 0.0083) between the two a
groups at each SOA (and the no-mask condition). This
showed significantdifferences for the three shortest SOAs,
24 ms: t(50)¼ 7.89, p , 0.001, Cohen’s d¼ 2.27, 36 ms,
t(50)¼3.64, p¼0.001,Cohen’s d¼1.06, and 48ms, t(50)¼
3.1, p¼0.003, Cohen’s d¼ 0.9; no SOAs . 48 ms
(including the no-mask condition) showed significant
differences between the two mask a groups (ps � 0.164).
Thus, the effect of noisemask a (i.e., strongermasking for
amplitude spectra a¼ 1.0) was only found within the
critically important first ; 50 ms of scene gist processing
time (Loschky et al., 2007; Loschky et al., 2010), which
followed the target-mask amplitude slope similarity
principle observed in Experiment 1.

Experiment 3

So far, we have found that amplitude-only slope a¼
1.0 masks produce the strongest backward masking of

rapid scene categorization (when compared to a¼ 0
[white noise], 0.5, and 1.5), specifically very early in
scene category processing (i.e., the first ; 50 ms of
processing time). One simple explanation for the
stronger masking produced by a ¼ 1.0 masks is that
they have higher perceived contrast than smaller or
larger a values and higher perceived contrast produces
stronger masking. Specifically, previous studies (e.g.,
Cass, Alais, Spehar, & Bex, 2009; Field & Brady, 1997;
Tolhurst & Tadmor, 2000) have noted a difference in
subjective contrast between rms contrast balanced
images with varying a. More specifically, Hansen and
Hess (2012; figure 4a) found that a¼ 1.0 noise patterns
were perceived to have 83% more rms contrast than a¼
0.0 noise and ; 50% more rms contrast than a ¼ 1.5
noise patterns. This trend mirrors the results of
Experiment 1, in which the largest advantage for a¼1.0
noise masks was in comparison to a¼ 0.0 noise masks,
and the next largest advantage was in comparison to a
¼ 1.5 noise masks.

Thus, Experiment 3 sought to equate the perceived
contrast of the a ¼ 0.0 and a ¼ 1.0 noise masks. The
contrast matching data reported by Hansen and Hess
(2012) found a ; 83% difference in perceived contrast
between a¼ 0.0 and a¼ 1.0 noise. Thus, in Experiment
3, we set the a ¼ 0.0 [white] noise masks to an rms
contrast twice the rms contrast of the a¼ 1.0 masks.

Method

Participants

Thirty-two Kansas State University students (16
female), all naı̈ve to the purpose of the study,
participated for course credit after giving their Insti-
tutional Review Board-approved informed written

Figure 3. Averaged data from Experiment 2. On the ordinate is

averaged percent correct (note that the scale begins at 40%),

and on the abscissa is SOA. Error bars are 61 SEM.

Journal of Vision (2013) 13(13):21, 1–21 Hansen & Loschky 9



consent (with written parental consent also given for
the subject under the age of 18). All observers had
normal (or corrected to normal) vision and their ages
ranged from 17 to 23 years (M ¼ 19.1, SD¼ 1.42).

Design and procedure

The mask stimuli were identical to those used in
Experiment 2, but with the following exceptions. There
were only two mask amplitude spectrum a values (a¼
0.0, rms ¼ 0.252, and a¼ 1.0, rms ¼ 0.126) and one
mask orientation bias magnitude (0.0, no orientation
bias). Target stimuli were drawn from the set described
in the General method section.

The current experiment employed the same paradigm
as Experiment 2. The experiment used a 2 (Mask a) · 5
(Target/Mask SOA) mixed design, with mask a being the
between-subjects variable and SOA being the within-
subjects variable. Within a given mask a and orientation
bias magnitude condition, each participant saw 60
different target category stimuli for each SOA (10 stimuli
randomly selected without replacement from each scene
category). For the no-mask condition, an additional 60
images were randomly sampled (10 per scene category),
for a total of 360 trials. Order of target category and SOA
(including no mask) was randomized for each trial.
Participants were randomly assigned to the between-
subjects condition. The trial sequencewas identical to that
reported in Experiment 2 (including practice trials).

Results and discussion

Random assignment of participants to the between-
subjects variable, mask amplitude spectrum slope a,

resulted in 13 in the a¼0.0 condition and 19 in the a¼1.0
condition. Figure 4 shows mean scene categorization
accuracy for each amplitude spectrum slope, a, condition
as a function of target/mask SOA (and no mask), and we
conducted a 2 (Mask a) · 5 (Target/Mask SOA) mixed
repeated measures ANOVA to test the effects of these
factors. As can be seen in Figure 4, there was a large
difference between the two mask a conditions, which was
confirmed a significant between-subjects main effect of
maska,F(1, 30)¼14.47,p, 0.001,Cohen’s f 2¼0.21.This
is despite the fact that the a¼0.0masks possessed twice as
much physical contrast as the a¼ 1.0 masks and were
approximately equivalent in perceived contrast.

We next carried out post-hoc independent t tests
between the two mask a groups at each SOA. For the
five comparisons, the Bonferonni adjusted family-wise a
level was set to 0.01. In order to carry out the
independent groups two-tailed t tests, we first created
equal sized groups by randomly selecting six subjects to
omit from the a¼ 1 condition (though the statistical test
results were the same whether the subjects were omitted
or not). As shown in Figure 4, the comparisons with
SOAs of 50 ms or less were statistically significant (ts �
3.95, ps � 0.001, Cohen’s ds � 0.83), but not from 70 ms
SOA onward, SOA¼70 ms: t(24)¼2.21, p¼0.037; SOA
¼ 117 ms: t(24)¼2.15, p¼0.042; no mask: t(24)¼ 0.77, p
¼ 0.450 (based on the family-wise adjusted a level).

Thus, Experiment 3 showed that the difference in
masking between the a¼ 1.0 and 0.0 conditions in
Experiments 1 and 2 could not be eliminated by simply
matching theperceivedcontrast of themasks (bydoubling
the physical contrast of the a¼0.0 masks). Even more
strikingly, as shown in Figure 4, the a¼ 0.0 masking
function with rms contrast¼ 0.252 did not significantly
differ from that in Experiment 2with rms contrast¼0.126
(p . 0.05). Again, masking was greatest for target/mask
SOAs of roughly 50 ms or less as in Experiment 2, and
continued to follow the target-mask amplitude slope
similarity principle observed in Experiment 1.

Experiment 4

Experiments 1–3 established that amplitude-only
mask slope a was the crucial determining factor
modulating masking of rapid scene categorization.
Interestingly, that modulation followed a target-mask
amplitude slope similarity principle in which the more
similar the mask image slope was to the target image
slope, the stronger the masking. Here, we set the stage
to examine whether and how unrecognizable amplitude
þ phase-defined mask structure masks rapid scene
categorization differently from amplitude-only defined
structure. Specifically, does it modulate masking effects
in a category-specific manner? The current experiment

Figure 4. Averaged data from Experiment 3. On the ordinate is

averaged percent correct (note that the scale begins at 40%),

and on the abscissa is SOA. The gray trace plots data from the

noise mask a ¼ 0.0 and Omag ¼ 0.0 from Experiment 2 (rms ¼
0.126). Error bars are 61 SEM.
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provided key information about the nature of the
masks used in Experiment 5 to answer this question.

Given these aims, it is important to hold the
amplitude-defined mask structure approximately con-
stant while varying amplitudeþ phase defined structure
(mainly phase-defined structure, i.e., present vs. absent).
Experiments 1–3 all showed amplitude spectrum slope
producing very strong masking modulation (ranging
from ; 55% accuracy to ; 85% accuracy), so we chose
to test for category-specific masking effects with a slope
’ 1.0 (typical of natural scenes). Thus, all masks were
created to fall within a 0.12 standard deviation around a
1.12 slope, namely equal to the mean and standard
deviation of slope a of our target image set.

Since we were interested in assessing the role of
unrecognizable amplitude þ phase-defined structure in
masking rapid scene categorization, we carried out the
current experiment to determine the recognizability of
the images that we planned to use as masks in
Experiment 5 (to select masks with the lowest
recognizability). This was the same rationale used by
Loschky et al. (2007) and Loschky et al. (2010) for
measuring the recognizability of mask images. Specif-
ically, if one type of masking image is more recogniz-
able than another, and that mask type is also shown to
cause greater masking, then the difference in masking
could be attributed to conceptual masking (Intraub,
1984; Loftus & Ginn, 1984; Loftus, Hanna, & Lester,
1988; Potter, 1976), rather than the masks’ image
statistical properties. Thus, by choosing masks with low
recognition probability, we can strongly minimize any
influence of conceptual masking.

Method

Participants

Fifty-six Kansas State University students (27
female), all naı̈ve to the purpose of the study,
participated for course credit after giving their Insti-
tutional Review Board-approved informed written
consent. All observers had normal (or corrected to
normal) vision and their ages ranged from 18 to 30
years (M ¼ 19.60, SD ¼ 2.19).

Mask construction

Each of the six image category sets consisted of 100
images. Of those, 24 images were randomly selected to
be used as target images (i.e., for use in Experiment 5),
and the remaining 76 images within each set were used
to generate the masking stimuli for that basic level
category (i.e., for use in Experiment 4 and in
Experiment 5). Experiment 4 tested the recognizability
of two types of visual mask stimuli, called AMP masks
(i.e., amplitude-only masks) and AMP þ PHASE

masks, to be used in Experiment 5. Both mask types
were created to possess identical amplitude spectral
relationships, but differ in the AMP þ PHASE masks
possessing scene image features largely defined by the
phase spectrum (e.g., scene-specific edges and lines).
Below we describe how each mask type was con-
structed, based on methodology modified from Hansen
and Hess (2007), as illustrated in Figures 5–7.

The AMPþ PHASE masks were created on a
category-by-category basis, so that, for example, the
airport category masks only included phase informa-
tion from airport images (specifically, from the 76
images not selected as target stimuli). AMPþ PHASE
masks were created by selectively sampling defined
portions of the amplitude and phase spectra of 12
randomly selected seed images from the remaining 76
images within the given category set. Thus each mask
was derived from 12 different seed images within a
category set. Once a given mask was generated, its
corresponding seed images were returned to the image
pool for the given category set, and thus any image
could be resampled to create another mask stimulus.
Thus, the seed images were never repeated within a
given mask stimulus, but could be randomly resampled
for a different mask stimulus from the same category
set.

Each AMP þ PHASE mask was constructed by
starting with two empty composite spectra (i.e., both
filled with zeros) in the Fourier domain, consisting of
two 512 · 512 matrices. Each matrix was referenced in
polar coordinates, and split into sector segments,
illustrated in Figure 5. Specifically, each sector was
defined by a 458 band of orientations, h, centered on

Figure 5. Illustration of sectors and sector segment divisions in

Fourier space (referenced in polar coordinates). The dashed gray

arrow shows the spatial frequency, f, dimension, and the solid

black arrow shows the orientation, h, dimension. Color

represents a full sector ‘‘bow tie’’ for each orientation, with

color saturation representing spatial frequency segments. Note

that spatial frequency segments are scaled for ease of visibility

and do not represent actual defined spatial frequency area in

Fourier space.
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four primary orientations, namely vertical (08), 458
oblique, horizontal (908), and 1358 oblique. The sectors
were mirrored to the polar opposite side of the Fourier
domain to form a ‘‘bow tie’’ reference system for each
primary orientation (as illustrated with the color bow
ties in Figures 5 and 6). Sector segments were defined as
three 2-octave bands of spatial frequencies, f, within
each sector (and mirrored to the polar opposite side of
the Fourier domain). Sector segments were defined
according to f and extended from 0.25–1 c/8, 1–4 c/8,
and 4–16 c/8. This reference system yields 12 mirrored
sector segments, one for each of the four orientation
bands and each of the three spatial frequency bands.

To construct an AMPþ PHASE mask, we filled its
empty composite spectrum. First, we randomly selected
one of the 12 seed images in a scene category and ran a
DFT of it, which yielded its amplitude spectrum, A( fi,
hj), and phase spectrum, U( fi, hj). Then, we randomly
selected a mirrored sector segment from A( fi, hj) and
U( fi, hj), with the mirrored sector segments taken from
A( fi, hj) and U( fi, hj) being identical in terms of
location. The amplitude coefficients and phase angles
within the selected mirrored segment of A( fi, hj) and
U( fi, hj) were copied into their corresponding mirrored
sector segments of the composite amplitude and phase

spectrum, as illustrated in Figure 6. For example, in
Figure 6, the top-left corner represents the mirrored
sector segment containing spatial frequencies between
0.25–1 c/8 centered on vertical. To get this information,
we randomly selected a seed image, and assigned its
corresponding amplitude coefficients from A( fi, hj) and

Figure 6. Illustration of creating a given composite spectrum using scenes from the airport category in Experiments 4 and 5. The blue

bow tie in Fourier space represents vertical image structure in image space. Three separate airport scene images (shown in the far left

of the blue box) are used to construct that bow tie. To the right of those images (middle column) are the corresponding amplitude

spectra and to the right of those, the corresponding phase spectra. The lower spatial frequencies (0.25–1.0 c/8) are taken from the top

image, the intermediate frequencies (1.0–4.0 c/8) from the middle image, and the high frequencies from the bottom image. The

process is repeated for the three remaining bow ties, but with different images for each bow tie. In total, 12 randomly selected

airport images would be used to create a composite AMPþ PHASE airport image.

Figure 7. Illustration showing the contribution of the different

composite spectra for an ampþ phase mask (left) and an amp

mask (right) in Experiments 4 and 5. Thus, an ampþphase mask

is made up of composite amplitude and phase spectra sampled

from 12 different images (see Figure 6), while the correspond-

ing amp mask uses only the composite amplitude spectrum

combined with a randomized phase spectrum. Thus, the two

masks shown above only differ with respect to their phase

spectra (i.e., their amplitude spectra are identical).
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phase angles from U( fi, hj) to that location in the
composite phase and amplitude spectrum. We repeated
this process until all of the 12 mirrored sector segments
of the composite phase and amplitude spectrum were
filled. We then squared the composite amplitude
spectrum (to get the power), and normalized it to the
average power spectrum of the entire normalized scene
category images. We assigned the DC (i.e., the zero
frequency component) of the same averaged power
spectrum to the squared composite amplitude spec-
trum. These last two steps ensured that each AMP þ
PHASE mask had the identical mean luminance and
rms contrast of the target images. Finally, we rendered
the AMPþ PHASE masks in the spatial domain by
taking the discrete inverse fast Fourier transform of
composite amplitude and phase spectra, with a
resulting AMPþPHASE image shown in Figure 7 (left
half). Refer to Figures 6 and 7 for further details.

Figure 7 (right half) shows how we generated the
AMP masks during the process of creating the AMPþ
PHASE masks. Specifically, for any given AMP mask,
instead of taking the DFT of the composite amplitude
and phase spectra, we replaced the composite phase
spectrum with a randomized phase spectrum. Further-
more, we used the same randomized phase spectrum for
each mask stimulus across all scene image categories.
We constructed a given random phase spectrum by
assigning random values from –p to p to the
coordinates of a 512 · 512 polar matrix, URAND( f, h),
such that the phase spectra were odd-symmetric—i.e.,
for h angles in the [p, 2p] half of polar space,
URAND( f, h) ¼�URAND( f, h). Refer to Figure 7 for
further details. Figure 8 shows example masks from
each basic level scene category.

As described above and illustrated in Figures 6 and
7, the AMPþ PHASE masks differed across categories
by both amplitude and phase, whereas the AMP masks
differed only with respect to amplitude. We also note
that the technique we described above for creating both
mask types essentially constitutes a rudimentary
wavelet methodology. Specifically, as in typical wavelet
methods, composite spectra were constructed from
relatively narrow bands of spatial frequency and
orientation. However, unlike typical wavelet methods,
these composite global spectra were built up from local
portions of different images’ Fourier spectra. This
wavelet-like approach differs from the standard ap-
proach to building amplitude-only masks or amplitude
þ phase masks, which has typically relied on applying
global manipulations to either the amplitude spectrum
(as done in Experiment 1), or systematically random-
izing the phase spectrum (e.g., Loschky et al., 2007;
Wichmann et al., 2006). The wavelet-like approach we
used to create our AMPþ PHASE masks means that
they contained scene-specific features, such as lines and
edges. However, the fact that we constructed the masks

from randomly mixed sectors of amplitude and phase
spectra from different scenes means that the masks are
likely unrecognizable (see Hansen & Hess, 2007, for
further detail).

Scene categorization task

The design of the current experiment consisted of a
single-interval six-alternative forced-choice paradigm
with two within-subject factors: 2 (Amplitude vs.
Amplitude þ Phase Masks) · 6 (Scene Categories of
Masks). There were 28 mask images per cell, and
each image was presented once, for a total of 336
trials (randomly ordered). On each trial, participants
saw a briefly flashed mask stimulus and indicated
which of the six basic level scene categories they
believed it belonged to. Each trial began with a
fixation point (subtending 0.318 of visual angle) until
the participant pressed a mouse button to initiate the
trial. This was followed by a variable duration (300–
900 ms) blank screen (neutral gray: luminance ¼
mean of the entire target and mask image set), then a
briefly flashed stimulus (either AMP þ PHASE or
AMP mask) for 24 ms (two refresh cycles at 85 Hz),
then a blank screen (same neutral gray) for 750 ms
duration, then a response screen containing a 2 · 3
grid of the six basic level scene category labels, until
the participant responded by a mouse click. As in
Experiments 1–3, the position of each of the category
labels in the response label grid was randomized on
every trial.

Results and discussion

One participant’s data was removed from the
analyses for only responding ‘‘Forest’’ on every trial
(except one, in which they correctly responded
‘‘Street’’).

Results for mean accuracy by image type and basic
level category are shown in Figure 9a. As shown,
accuracy for four of the six categories was at or slightly
below chance (16.67%). However, two of the categories,
beach and forest, were more accurately identified than
the others. This was verified by a 2 (Mask Type: AMP
vs. AMP þ PHASE) · 6 (Scene Category) factorial
repeated measures ANOVA on accuracy, which
showed a main effect of category, F(5, 265)¼ 21.812, p
, 0.001, Cohen’s f 2¼ 0.401. Follow-up Bonferroni-
corrected t tests (adjusted alpha¼ 0.0083) showed that
beach, t(54)¼ 5.029, p , 0.001, Cohen’s d¼ 0.684, and
forest, t(54)¼ 6.182, p , 0.001, Cohen’s d¼ 0.841, were
significantly above chance, and that store, t(54) ¼
�5.843, p , 0.001, Cohen’s d¼ 0.795, was significantly
below chance. The other categories did not reach
significance.
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Overall, these results can largely be explained in

terms of a response bias to more frequently select

natural categories (a natural bias) (Joubert et al., 2009;

Loschky & Larson, 2008). To correct for this response

bias, we calculated the percentage of correct category

responses out of each category’s response rate (Figure

9b). Stated more formally, we calculated p(correct

responsejresponse¼Xcat)/p(response¼Xcat), where Xcat

¼ one of the six categories. Bonferroni-corrected t tests

(adjusted alpha ¼ 0.0083) showed only three instances

Figure 8. Example target and mask stimuli used in Experiment 4 (mask images only) and Experiment 5 (target and masks). The top

three text rows show the categorization hierarchy, with the top two text rows showing the superordinate category structure and the

bottom text row showing the basic-level category structure. The three rows of images show example targets and masks (AMP þ
PHASE and AMP) from each of the basic-level categories.

Figure 9. (A) Averaged data from Experiment 4 showing recognition accuracy (ordinate) for amplitude and phase masks as a function

of scene category (abscissa). (B) Data from Experiment 4 showing percentage of correct category responses out of total category

response rate. The black line marks chance performance in both panels, and all error bars are 61 SEM.
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of above-chance correct category response percentages:
AMP masks beach, t(53)¼ 3.51, p , 0.001, Cohen’s d¼
0.474, and AMPþPHASE masks beach, t(53)¼ 4.69, p
, 0.001, Cohen’s d¼0.633, and forest, t(53)¼3.70, p ,

0.001, Cohen’s d¼ 0.499. We will return to this result in
Experiment 5.

Experiment 5

Experiments 1–3 showed that amplitude-only
masks produced performance largely dependent on
the amplitude slope, following a target-mask ampli-
tude spectrum slope similarity principle. In Experi-
ment 5, we investigated whether amplitude þ phase
masks would yield masking effects that differed from
amplitude-only masks, and if so, how? The results of
Experiment 1 (and Loschky et al., 2007) suggested
that amplitude-only masks do not yield category-
specific masking effects. Here, we hypothesized that if
category-specific features are used to process scenes to
categorization, then target-mask categorical similarity
should affect scene gist masking—namely, whether the
target and mask categories are the same or different at
the superordinate level, or at the basic level, should
affect the degree masking of rapid scene categoriza-
tion. Furthermore, since the masks generated in
Experiment 4 possessed amplitude slopes, a, that all
fell within 0.12 standard deviation of 1.12 (i.e.,
essentially a¼ 1), if amplitude þ phase masks did not
mask differently than observed in Experiments 1–3,
than we would not expect to observe any category-
specific masking effects.

Method

Participants

Thirty Kansas State University students (14 female),
all naı̈ve to the purpose of the study, participated for
course credit after giving their Institutional Review
Board-approved informed written consent (with writ-
ten parental consent also given for those under the age
of 18). All observers had normal (or corrected to
normal) vision and their ages ranged from 17 to 45
years (M ¼ 20.5, SD¼ 4.83).

Stimuli

The stimuli were those used in Experiment 4. There
were 144 target images (24 Images · 6 Scene
Categories). There were also 144 mask images, 72 of
each type (AMP and AMPþPHASE masks), and 12 in
each of six scene categories.

Design and procedure

Experiment 5 involved four factors: 2 (AMP vs.
AMPþ PHASE masks) · 6 (Scene Categories of
Targets) · 6 (Scene Categories of Masks) · 2 (Valid/
Invalid Category Labels)¼ 144 cells in the design.
There were two trials per cell, for a total of 288 trials
(randomly ordered). There were 24 images per scene or
mask category, for a total of 144 target images and 144
mask images. Each target was used twice in the
experiment, once validly labeled, and once invalidly
(falsely) labeled. Each mask was presented twice. Each
image was also masked once with an AMP mask and
once with an AMP þ PHASE mask.

The general procedure was identical to that in
Experiments 1–3, with the following exceptions. First,
the current experiment used only a single masking SOA
(36 ms) based on a target duration of 24 ms, and an ISI
of 12 ms. The mask was 72 ms duration, for a 3:1
mask:target duration ratio. Second, the response
options at the end of a trial differed. Following the
presentation of the target, mask, and blank screen, a
single category label was presented until the participant
made either a ‘‘Yes’’ or ‘‘No’’ response. The category
labels were valid (matched the presented image) 50% of
the time and invalid 50% of the time. There were 288
trials, with each of the six category labels presented
equally often.

Results and discussion

Nine trials across 30 subjects were found to have
longer target, ISI, or mask durations than intended,
and were removed from the analyses, leaving a total of
8,631 trials.

We first analyzed our data in cases in which the
target and mask came from different categories. Of
particular interest was whether the AMP versus AMPþ
PHASE masks caused differential rapid scene catego-
rization masking, since these masking conditions
differed in terms of having phase-defined image
features, with AMP masks possessing no phase-defined
structure (compare the bottom two rows of Figure 8).
To answer this question, our first analysis was a 2
(Mask Type: AMP vs. AMPþPHASE) · 6 (Category)
repeated-measures ANOVA on rapid scene categori-
zation accuracy to determine any general differences in
masking strength. The results are shown in Figure 10a.

As shown in Figure 10a, the AMPþ PHASE masks
interfered more with rapid scene categorization accu-
racy than the AMP masks, F(1, 29)¼ 15.062, p¼ 0.001,
Cohen’s f 2 ¼ 0.122. This suggests that unrecognizable
amplitudeþphase-defined image characteristics disrupt
rapid scene categorization more than amplitude-de-
fined characteristics alone. As also shown in Figure
10a, there was a main effect of mask category, F(5, 145)
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¼ 4.818, p , 0.001, Cohen’s f 2¼ 0.193, with some mask
categories, such as beach and forest masks, causing less
masking than others, such as street masks. Note that
this runs exactly opposite to the conceptual masking
hypothesis, since the most recognizable mask catego-
ries, beach and forest (as shown in Experiment 4),
caused among the least disruption of rapid scene
categorization when used as masks. In addition, mask
type did not significantly interact with mask category,
F(5, 145) , 1, p ¼ 0.456. The above results therefore
support the notion that category-specific phase-defined
mask structure produces differential scene gist masking
(here, in the form of masking strength) than amplitude-
only defined mask structure. However, the question still
remains as to whether such signals operated in a
category-specific manner. Thus, the other aim of the
Experiment 5 was to determine whether target-mask
category similarity would affect rapid scene categori-
zation—namely, do amplitude þ phase-defined catego-
ry-specific features selectively mask rapid scene
categorization?

To address the above question, we analyzed our data
in terms of both the superordinate and basic level
categorical similarity of the target and mask images,
using the following similarity scale: natural/man-made
different (e.g., beach target & street mask) , natural/
man-made same, basic different (e.g., beach target &
forest mask) , basic level same (e.g., beach target &
beach mask). We carried out a 2 (Mask Type: AMP vs.
AMPþ PHASE) · 3 (Categorical Similarity: Natural/
Man-Made Different vs. Natural/Man-Made Same,

Basic Different vs. Basic Level Same) repeated mea-
sures ANOVA on scene categorization accuracy.

As shown in Figure 10b, the more categorical
dissimilarity between target and mask images the
greater the interference with rapid scene categorization
accuracy, F(2, 58)¼ 27.36, p , 0.001, Cohen’s f 2 ¼
0.541. Specifically, Figure 10b shows that the least
categorically similar target-mask pairings (nat-man
different) showed the strongest masking (lowest accu-
racy). Planned comparisons showed that whether target
and mask were the same or different at the superordi-
nate level (nat-man different vs. nat-man same, basic
different) significantly affected categorization accuracy,
F(1, 29)¼ 5.367, p¼ 0.028, Cohen’s f 2¼ 0.270, but that
the biggest difference in masking strength was due to
whether target and mask were the same or different at
the basic level (nat-man same, basic different vs. basic
same), F(1, 29)¼ 22.422, p , 0.001, Cohen’s f 2¼ 0.598.
As before, AMP þ PHASE masks caused significantly
greater masking than AMP masks, F(1, 29) 4.377, p¼
0.045, Cohen’s f 2 ¼ 0.137. Interestingly, it appears in
Figure 10b that categorical dissimilarity between target
and mask images mattered more for the AMP þ
PHASE masks, and less so for the AMP masks;
however this crossover interaction just failed to reach
significance when correcting for non-homogeneity of
variance, F(1.664, 48.252 [Huynh-Feldt]) ¼ 3.356, p¼
0.052, Cohen’s f 2¼ 0.162. Because this was so close to
being significant, we carried out two one-way ANOVAs
for categorical similarity, for AMPþ PHASE masks
and for AMP masks. In fact, as shown in Figure 10b,

Figure 10. (A) Averaged data from Experiment 5 showing rapid scene categorization accuracy (ordinate) as a function of mask type

(amplitude vs. phase masks) and mask category (abscissa) (note that the ordinate scale begins at 50% [ ¼ chance] to increase

visibility). (B) Averaged data from Experiment 5 data replotted to show rapid scene categorization accuracy (ordinate) as a function of

mask type (amp only vs. ampþ phase masks) and target-mask categorical similarity (abscissa) (note that the ordinate scale begins at

50% [¼ chance] to increase visibility). Error bars are 61 SEM. ‘‘Nat-man different’’¼ target and mask are different in terms of the

natural/man-made distinction; ‘‘nat-man same’’¼ target and mask are the same in terms of the natural/man-made distinction, but

different at the basic level; ‘‘basic same’’ ¼ target and mask are the same in terms of the basic level. Error bars are 61 SEM.
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there was a significant main effect for categorical
dissimilarity for both types of masks; however, the
effect size was approximately twice as large for the
AMPþ PHASE masks, F(2, 58) ¼ 19.404, p , 0.001,
Cohen’s f 2 ¼ 0.640, as for the AMP masks, F(2, 58)¼
5.84, p¼ 0.005, Cohen’s f 2¼ 0.328. It therefore appears
that both types of mask follow a target-mask categor-
ical dissimilarity principle (i.e., the more dissimilar the
target-mask pairs were in terms of category, the
stronger the masking), with AMP þ PHASE masks
yielding the strongest effects.

Importantly, if the effects shown in Figure 10b were
due to the small level of mask recognizability (Exper-
iment 4), they are very inconsistent with the predictions
of conceptual masking. Specifically, the conceptual
masking hypothesis predicts greater masking by more
recognizable mask categories (Intraub, 1984; Loftus &
Ginn, 1984; Loftus, Hanna, & Lester, 1988; Michaels &
Turvey, 1979; Potter, 1976), whereas we found that the
more recognizable categories caused less masking.
Thus, the categorical dissimilarity effect observed here
cannot be accounted for by conceptual masking.
Curiously, the AMP masks here in Experiment 5
produced a modest categorical dissimilarity effect,
while the amplitude-only masks in Experiments 1–3
yielded no category-specific effects. One possible
explanation may have to do with the methodology
employed to construct the different types of amplitude-
only masks (i.e., one consisting of global transforma-
tions, while the other resulted from rudimentary
wavelet techniques). We will return to this issue in the
General discussion.

General discussion

This study investigated the ability of amplitude-only-
defined and amplitudeþ phase-defined unrecognizable
image structure to mask rapid scene categorization
performance, in particular (a) whether the two types of
masks would yield different masking functions, and if
so (b) how the different mask spectral characteristics
would modulate the masking functions. Experiments 1–
3 showed a greater impact on scene categorization of
amplitude spectrum slope, a, than orientation at
processing times ,50 ms, which followed a target-mask
amplitude slope similarity principle (i.e., stronger
masking when target and mask amplitude spectrum
slopes were more similar). Experiment 5 then showed a
greater impact on scene categorization of unrecogniz-
able amplitude þ phase-defined image structure than
amplitude-only-defined structure. Further, both types
of masking effects in Experiment 5 followed a target-
mask categorical dissimilarity principle (i.e., stronger
masking effects when target and mask scene categories

differed more), but with amplitude þ phase masks
showing effect sizes that were almost twice those of the
amplitude-only masks. Interestingly, the amplitude-
only masks in Experiments 1–3 produced no category-
specific masking effects, whereas Experiment 5’s
amplitude-only masks produced modest category-spe-
cific masking effects. One possible reason for this
difference may have been the differences in mask
construction between Experiments 1–3 versus 4–5.
Below, we discuss the results of Experiments 1–3 and
Experiments 4–5 in greater detail, in an effort to
provide a qualitative account of the possible underlying
mechanisms regulating both types of masking effects.

The results from Experiments 1–3 showed that the
amplitude slope is the dominant factor in producing
masking effects by phase-randomized scenes (with a ¼
1.0 producing the largest masking effect). Further, the
interference caused by a¼ 1.0 masks relative to a¼ 0.0
masks (regardless of orientation bias) occurs within the
first 50 ms of processing (and cannot be explained by
differences in perceived contrast). Such an early
modulation suggests that the relevant interactions took
place very early in the cortical processing stream,
possibly within striate cortex (i.e., V1). Given the
possibility of an early neural substrate for the effects
observed in Experiments 1–3, and the large differences
in contrast at different spatial frequencies as a was
varied, it would be tempting to explain the masking
effects by differences in spatial frequency-specific
contrast differences (i.e., a simple spatial channel
account). Specifically, while the noise masks and scene
target images were equated for rms contrast, masks
with a , 1 or a . 1 would have spatial frequency-
specific contrast differences from the target image set
(having averaged a ¼ 1.12, SD ¼ 0.12). Thus, noise
masks with a¼ 0.0 contained more luminance contrast
at higher spatial frequencies than the target image set,
while noise masks with a ¼ 1.5 had more luminance
contrast at lower spatial frequencies (see Figure 1b).
However, neither a ¼ 0.0 or 1.5 produced the largest
masking effects, so the effects reported in Experiment 1
cannot be explained by contrast differences at either the
lowest or highest spatial frequencies. Further, the a ¼
0.0 noise masks in Experiment 3 had an rms contrast
twice that of the a ¼ 1.0 noise masks, yet the masking
strength advantage for the a ¼ 1.0 noise masks within
the first 50 ms persisted.

Since the masking differences in Experiments 1–3
imply an early neural substrate for those effects, yet
cannot be explained by contrast biases at the lowest or
highest spatial frequencies, the question as to why a¼
1.0 noise masks produce the largest masking effects
(i.e., the target-mask slope similarity effect) remains.
Interestingly, the modulation of masking strength by
mask a in the current study is virtually identical to the
simultaneous masking effects observed by Hansen and
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Hess (2012) in which participants had to identify the
orientation of Gabor patches or identify letters. There,
a¼ 1.0 noise masks were found to produce stronger
masking than a ¼ 0.0 or 1.5 noise masks. Hansen and
Hess (2012) argued that the different a masking
strengths could be explained by modeled cortical
interactions employing contrast gain control processes
(e.g., Carandini & Heeger, 1994; Heeger, 1992a, 1992b;
Wilson & Humanski, 1993), which take place exclu-
sively within V1. Their contrast gain control account
built on the work of David Field and Nuala Brady
(Brady & Field, 1995; Field, 1987; Field & Brady, 1997)
who proposed a modified multichannel model of V1.
That model predicts overall larger spatial frequency
channel responses for a ¼ 1.0 stimuli (compared to
stimuli with smaller or larger as). In their model, the
spatial frequency bandwidth of different early visual
channels is held constant in octaves on a log axis, with
the peak sensitivity of each filter channel also held
constant, based on the results of a large sample of
striate neurons (R. L. De Valois, Albrecht, & Thorell,
1982). With such a configuration, any image possessing
an amplitude spectrum slope a ’ 1.0 will produce
equivalently large contrast energy responses across all
channels in an inhibitory contrast gain pool, regardless
of the peak spatial frequency to which each filter is
tuned (see Brady & Field, 1995, for further detail).
Thus, if a¼ 1.0 noise largely and equally drives all
spatial channels, a tuned gain pool for a ¼ 1.0 noise
should be much more active than with smaller or larger
as, thus producing the greatest inhibitory effect on the
output signal to perceptual decision processes. Fur-
thermore, contrast gain control processes were shown
to strongly operate during the first 50 ms of processing
time in a backward masking paradigm (Essock, Haun,
& Kim, 2009). Thus, the masking effects produced by
the amplitude masks in Experiments 1–3 may simply
reflect a variant of a contrast gain control modulated
signal-to-noise ratio in early visual processes that
depends much more on the distribution of contrast
across spatial frequency than across orientation.
Therefore, the target-mask slope similarity effect
observed in Experiments 1–3 may result from a
modified contrast gain control process implemented
entirely in V1. The implication here is that the majority
of amplitude-only masking effects may have more to do
with specific early visual mechanisms than later scene
categorization processes (e.g., in the PPA, the LOC,
etc., Walther, Caddigan, Fei-Fei, & Beck, 2009). If so,
such interactions would apply equally well to a wide
array of visual tasks (e.g., Gabor orientation discrim-
ination or letter recognition), rather than being limited
only to rapid scene categorization. Additionally, the
lack of any category-specific effects in Experiments 1–3
further supports the idea that those masking effects
resulted from general neural operators, at least for

amplitude-only-defined content derived from global
spectral manipulations.

Regarding the masking effects produced by unrec-
ognizable amplitudeþ phase-defined image structure in
Experiment 5, we observed that unrecognizable ampli-
tude þ phase masks interfered with rapid scene
categorization in a manner much more specific to
target-mask category pairs (i.e., Figure 10b), specifi-
cally following a target-mask categorical dissimilarity
principle. In contrast to the account given for the
mechanisms involved in the masking effects observed in
Experiments 1–3, one cannot explain the target-mask
categorical dissimilarity effect by a modified contrast
gain control process. That is, because all masks in
Experiments 4 and 5 were designed to contain
approximately equivalent global contrast distributions
across spatial frequency, the spatial channels involved
in processing the masks would yield very similar output
regardless of mask category. We verified this by passing
all Experiment 5 masks through the bank of filters
reported in Hansen and Hess (2012), and found that the
greatest between-category difference for either mask
type (AMP masks or AMP þ PHASE masks) never
exceeded a quarter of a log unit (across spatial
frequency or orientation). Thus, if gain control
modulated filter outputs did drive the masking effects
reported in Figure 10b, the trend would be flat
regardless of target-mask category pairing. Thus,
neither spatial frequency- nor orientation-specific
contrast change across the masks can account for the
effects observed in Experiment 5. It is quite plausible
that the greater accuracy when target and mask are
from the same basic level category is due to integration
of local category-specific image features from target
and mask, which would be less disruptive (i.e., produce
greater accuracy) when those features are more similar.
Further research is needed to provide a definitive
account.

Interestingly, Experiment 5 also yielded a modest
target-mask dissimilarity effect when AMP masks were
employed. This runs counter to the results of Exper-
iments 1–3 (and Loschky et al., 2007, experiment 3).
However, as noted in Experiment 4, the amplitude-only
masks in Experiments 4 and 5 were constructed very
differently from simple phase randomization. Specifi-
cally, they were constructed from rudimentary wavelet-
like image sampling techniques (i.e., AMP masks were
created by sampling different sector segments from a
number of different image spectra) that may have
resulted in spurious amplitude-only structure that
signaled category-specific information. Further re-
search is needed in order to address exactly how such
an approach can lead to category specific masking.
Nevertheless, such a difference in masking trends due
to mask construction (global transformations vs.
wavelet composition) therefore serves as a cautionary
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note for future studies that seek to further examine the
role of amplitude-only-defined structure in the masking
of rapid scene categorization.

In sum, the current study’s results strongly support
the notion that rapid scene categorization masking
effects differ depending on the masks’ Fourier spectral
properties. Further research is needed in order to
determine if the slope similarity principle is tied directly
to the slope of the target scene (here, our targets had an
average slope of 1.12) or to the typical slope observed
with natural scenes (i.e., a ’ 1.0). Interestingly, Fourier
amplitude spectrum slope produced the largest perfor-
mance modulation with respect to categorization
accuracy (ranging between ; 55% [a¼ 0.0] to ; 85% [a
¼ 1.0] accuracy), and therefore may serve as the largest
source of variability across masking studies using any
type of mask with small a values compared to studies
using masks with larger a values (at least for SOAs ,
50 ms). Therefore, such modulations of masking by the
amplitude spectral slope could easily cloud any
masking studies exploring scene gist masking caused by
phase spectrum manipulations if the amplitude spec-
trum slopes vary extensively. Conversely, if amplitude
spectrum slope is held approximately constant (as in
Experiment 5 here), then it is possible to explore such
phase spectrum effects. In doing so, we observed a
target-mask category dissimilarity effect. One possible
implication of such an effect might be that masks
derived from wavelet techniques contain local image
structure that can differentially mask the local features
in target scenes in a target-mask category-dependent
manner. Such feature masking may result in such
masks interfering with mechanisms more directly linked
to categorical processing.

It is worth noting that while we refer to two different
masking effects in this study (i.e., the target-mask
amplitude slope similarity principle for Experiments 1–
3 and the target-mask categorical dissimilarity principle
for Experiment 5), we do not mean to imply that they
are independent from one another, or operate in any
sort of hierarchical manner. Rather, we are simply
emphasizing that specific Fourier characteristics can
produce different masking effects. Specifically, the
amplitude spectrum slope of a given mask plays a
dominant role in the ability of that mask to disrupt
rapid scene categorization, but it does so in a manner
that is not contingent on the target-mask category
relationship. Conversely, masks derived from wavelet
techniques (used in Experiment 5) mask rapid scene
categorization in a manner contingent on the target-
mask category relationship. Thus, much caution must
be taken when comparing masking functions across
studies that employ masks with unrecognizable ampli-
tude-only defined content versus unrecognizable con-
joint amplitude þ phase-defined image structures.
Similarly, care must be taken in comparing masking

functions produced in studies employing masks derived
from wavelet techniques versus those that do not. As
the current study demonstrates, such important differ-
ences can lead to differential masking effects in rapid
scene categorization tasks. The question of whether the
two masking effects are independent of one another (or
operate in some hierarchical manner) should be
addressed in future studies in which, for example, the
amplitude spectra slopes of wavelet-derived masks are
systematically varied.

Keywords: real-world scenes, scene gist, rapid scene
categorization, image statistics, amplitude spectrum
slope, orientation bias, phase spectrum, visual backward
masking, processing time, perceptual time course
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