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People can recognize the meaning or gist of a scene from a single glance, and a few recent studies have
begun to examine the sorts of information that contribute to scene gist recognition. The authors of the
present study used visual masking coupled with image manipulations (randomizing phase while main-
taining the Fourier amplitude spectrum; random image structure evolution [RISE]; J. Sadr & P. Sinha,
2004) to explore whether and when unlocalized Fourier amplitude information contributes to gist
perception. In 4 experiments, the authors found that differences between scene categories in the Fourier
amplitude spectrum are insufficient for gist recognition or gist masking. Whereas the global 1/f spatial
frequency amplitude spectra of scenes plays a role in gist masking, local phase information is necessary
for gist recognition and for the strongest gist masking. Moreover, the ability to recognize the gist of a
target image was influenced by mask recognizability, suggesting that conceptual masking occurs even at
the earliest stages of scene processing.
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Recognizing the Gist of a Scene

Within a single glance, people can recognize the meaning or
“gist” of a scene (Biederman, Rabinowitz, Glass, & Stacy, 1974;
Potter, 1976; Rousselet, Joubert, & Fabre-Thorpe, 2005). The term
gist is not always clearly defined (though see Oliva, 2005) but is
most frequently operationalized as the scene’s basic level category,
for example, “beach” or “street” (Tversky & Hemenway, 1983),
and we follow that convention here. Gist information appears to
guide viewers’ inspection of the scene (Loftus & Mackworth,
1978; Oliva, Torralba, Castelhano, & Henderson, 2003), may aid

object recognition in the scene (Boyce & Pollatsek, 1992; Daven-
port & Potter, 2004; De Graef, De Troy, & D’Ydewalle, 1992;
Hollingworth & Henderson, 1998; Palmer, 1975), and affects later
memory of the scene (Brewer & Treyens, 1981; Pezdek, Whet-
stone, Reynolds, Askari, & Dougherty, 1989). Given the speed of
gist perception, the information underlying gist recognition may be
based on holistic, low-level scene properties (Oliva & Torralba,
2001; Renninger & Malik, 2004; Vailaya, Jain, & Zhang, 1998),
rather than based on detecting or recognizing individual objects
(cf. Davenport & Potter, 2004).

If low-level scene information underlies gist recognition, what
types of information are used? A recent provocative proposal is
that viewers recognize gist on the basis of the unlocalized Fourier
amplitude spectrum information in scenes, which consists of the
spatial frequencies in the image, from low-frequency blobs to
high-frequency details, at or near the cardinal orientations—
horizontal, vertical, and oblique (Gorkani & Picard, 1994; Guy-
ader, Chauvin, Peyrin, Hérault, & Marendaz, 2004; Oliva, Tor-
ralba, Guerin-Dugue, & Herault, 1999). For example, most beach
scenes have a horizon, conveyed by low-frequency horizontal
information, while most city scenes do not, but instead have tall
buildings, conveyed by more vertical information across a wider
range of spatial frequencies. Importantly, although the Fourier
amplitude spectrum can tell us that a beach scene is dominated by
low spatial frequency horizontal information, it cannot tell us
where in the image that information is located (the middle vs. the
top right corner, etc.), which is encoded in the Fourier phase
spectrum. Thus, if unlocalized amplitude spectrum information is
sufficient to recognize gist, then scene layout information
(Sanocki, 2003) is not necessary—a counterintuitive and important
claim to test. Recent computational modeling studies have sup-
ported this claim (Gorkani & Picard, 1994; Oliva & Torralba,
2001; Oliva et al., 1999). For example, Oliva and Torralba (2001)
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compared the scene categorization performance of two versions of
their spatial envelope model, one in which there was coarse spatial
localization (the windowed discrete spectral template [WDST])
and one in which there was none (the discrete spectral template
[DST]). They found that

on average among natural and urban landscapes, 92% of the scenes
were accurately classified with the WDST [using coarsely localized
information] and 86% when using the DST [i.e., unlocalized infor-
mation]. These results highlight the important role played by the
unlocalized spectral components (DST) for representing the spatial
envelope properties. The addition of spatial layout information clearly
increases performance, but most of this performance level may be
attributable to the global distribution of the relevant spectral features.
(Oliva & Torralba, 2001, pp. 166–167)

Furthermore, a more recent study by Guyader et al. (2004),
entitled “Image Phase or Amplitude? Rapid Scene Categorization
Is an Amplitude-Based Process,” has extended this argument from
the domain of computational modeling to that of human gist
perception. That study found that the unlocalized amplitude infor-
mation contained in phase-randomized scenes provided equivalent
scene gist priming to that of normal scene images.

An opposing view argues for the importance of localized infor-
mation, as evidenced by the response properties of cells in the
visual cortex. These respond best not only to specific spatial
frequencies, at specific orientations, but also to particular loca-
tions, and may thus be characterized to a first approximation by
wavelets (Field, 1994, 1999; Simoncelli & Olshausen, 2001;
Thomson & Foster, 1997). In support of this theory, well-known
demonstrations have shown that phase information seems more
important than amplitude information for recognizing objects (Op-
penheim & Lim, 1981; Piotrowski & Campbell, 1982), and recent
carefully controlled studies have shown that phase-randomized
objects with normal amplitude spectra are unrecognizable (Sadr &
Sinha, 2004; Wichmann, Braun, & Gegenfurtner, 2006). Never-
theless, scenes can be recognized without recognizing their con-
stituent objects (Schyns & Oliva, 1993). Thus, an important ques-
tion is whether, unlike object recognition, scene gist recognition is
possible without configural information, strictly on the basis of
unlocalized amplitude spectrum information, or whether phase
information is necessary for scene gist recognition as well.

If unlocalized amplitude information is useful for recognizing
scene gist, we would like to know when in scene processing it is
used. Thus far, only a few facts about the time course of informa-
tion use in scene gist recognition are known. Near-perfect scene
gist recognition is possible with masked image presentations as
short as 100 ms (Biederman et al., 1974; Potter, 1976), and scenes
can be categorized significantly above chance with only 20-ms
masked durations (Bacon-Mace, Mace, Fabre-Thorpe, & Thorpe,
2005; Loschky & Simons, 2004). Low spatial frequency informa-
tion and color seem to dominate early stages of scene gist acqui-
sition (Loschky & Simons, 2004; Oliva & Schyns, 2000; Schyns &
Oliva, 1993), with higher spatial frequency information becoming
increasingly important with durations of 50 ms or longer. Given
the simplicity of unlocalized amplitude information, one hypoth-
esis is that if it is useful at all, it should be primarily at very early
processing stages, for example, at masked durations at or below 50
ms.

Using Visual Masking to Study Scene Gist Recognition

Assessing the time course of scene gist recognition generally
involves backward masking the scene with another stimulus. With-
out a mask, sensory persistence cancels out any effects of varying
stimulus duration on the information extracted from a stimulus
(Loftus & Mclean, 1999; Sperling, 1963). Conversely, by varying
the timing of a target and its mask, one can investigate the
microgenesis of perception (Breitmeyer & Ogmen, 2006). Mask-
ing can also be used to understand the information contributing to
a visual task (Delord, 1998). In tasks requiring perception of
orientation or spatial frequency content, masking is most efficient
when the target and mask are most similar on those dimensions
(Carter & Henning, 1971; De Valois & Switkes, 1983; Henning,
Hertz, & Hinton, 1981; Legge & Foley, 1980; Losada & Mullen,
1995; Sekuler, 1965; Solomon, 2000; Stromeyer & Julesz, 1972;
Wilson, McFarlane, & Phillips, 1983). In a task for which low
spatial frequency information is important, a low-frequency mask
is more effective than a high-frequency mask, and vice versa for a
task in which high-frequency information is important (Delord,
1998). For scene gist, we would therefore predict that the infor-
mation most useful for recognizing gist is also most efficient at
masking gist. Thus, by systematically varying both the spatial
characteristics of the mask relative to the target and the timing of
the mask onset relative to the target, it should be possible to
determine what information contributes to scene gist recognition
and when it contributes.

The Nature of the Mask and Scene Gist Recognition

For most real world scenes, the average Fourier amplitude of
spatial frequencies drops off approximately as the reciprocal of
spatial frequency, 1/f�, with � often equal to 1 (Field, 1987; see
also Figure 7). In contrast, white noise masks have a flat spatial
frequency amplitude distribution, which differs from that of real
world scenes. Different types of noise masks (e.g., white noise, 1/f
noise) vary in their masking effectiveness depending on the target.
For example, Losada and Mullen (1995) found that for Gabor
targets, masking by 1/f noise was equal for all spatial frequencies,
whereas masking by white noise was less effective than 1/f noise
at low frequencies and more effective than 1/f noise at higher
frequencies. If natural scenes carry important information for
recognizing gist in the low spatial frequency range (Schyns &
Oliva, 1993), then 1/f noise masks should be more efficient than
white noise masks at disrupting scene gist. Consistent with this
idea, natural scenes are masked more effectively by low-frequency
than high-frequency white noise (Harvey, Roberts, & Gervais,
1983), and conversely, natural scenes are particularly effective at
masking low spatial frequency information (Chandler & Hemami,
2003). To our knowledge, however, no studies have directly con-
trasted the efficiency of 1/f noise versus white noise in masking
scene gist.

In addition to the spatial similarity of the target and mask, the
conceptual identifiability of the mask also contributes to masking.
This has been shown for immediate recognition of letters
(Michaels & Turvey, 1979) and faces (Bachmann, Luiga, & Poder,
2005) and for delayed recognition memory for scenes (Intraub,
1984; Loftus & Ginn, 1984; Loftus, Hanna, & Lester, 1988; Potter,
1976). Such conceptual masking is assumed to operate at a higher
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cognitive level than spatial masking and to critically involve
switching attention from the target to the mask (Bachmann et al.,
2005; Intraub, 1984; Loftus & Ginn, 1984; Loftus et al., 1988;
Michaels & Turvey, 1979; Potter, 1976). In the case of scene
recognition memory, evidence for a distinct conceptual masking
process comes from the finding that recognizable scenes used as
masks interrupt memory consolidation more effectively than
“noise” masks composed of random configurations of color and
form (Intraub, 1984; Loftus & Ginn, 1984; Loftus et al., 1988;
Potter, 1976). Also, conceptual masking does not occur until the
target scene has been processed long enough to identify it (Loftus
& Ginn, 1984); recognizable scenes used as masks and noise
masks were equally effective with a 50-ms stimulus-onset asyn-
chrony (SOA), but recognizable scene masks were more effective
with a 350-ms SOA.

Unanswered Questions About Masking Scene Gist
Recognition

Despite increasing interest in scene perception research, many
different types of scene masks are commonly used, with little
justification for the particular mask used and almost no evidence
for the relative efficiency of one type of mask over another. The
dearth of comparative studies of scene masking is remarkable
given the usefulness of masking as a tool for understanding the
information underlying scene gist perception and its time course of
use (though see Bacon-Mace et al., 2005; Rieger, Braun, Bulthoff,
& Gegenfurtner, 2005). In fact, as noted above, by varying the
spatial and temporal parameters of the mask vis-à-vis the target,
we should be able to infer the information used to perceive scene
gist and its time course of use. As part of this enterprise, we can
address whether noise masking, structural masking, and concep-
tual masking are distinct masking mechanisms or whether they
rely on similar processes.

Consider the evidence for conceptual masking. To demonstrate
that conceptual masking results from higher level semantic pro-
cessing, a study must first demonstrate that the greater masking by
meaningful masks (the conceptual masking effect) is not simply
due to greater amplitude similarity between targets and masks
when using other scenes as masks. However, to date, such studies
have either insufficiently controlled for amplitude spectrum dif-
ferences between the meaningful and meaningless masks or have
produced inconclusive results. Several early studies (Loftus &
Ginn, 1984; Loftus, Hanna, & Lester, 1988; Potter, 1976) used
noise masks bearing little amplitude similarity to the meaningful
masks. Another study (Intraub, 1984, Experiment 3 [Nonsense
Condition]) carefully equated meaningful and meaningless masks
in terms of their shapes but likely had important differences in
terms of their amplitude spectra. A more recent study (Bachmann
et al., 2005) used noise masks matched to meaningful (face) masks
in terms of their spatial frequencies but did not match their orien-
tations. Finally, one study (Intraub, 1984, Experiment 3 [Inverted
Condition]) compared upright versus inverted scene masks, thus
equating amplitude spectra while varying recognizability. How-
ever, unlike the above-mentioned studies, this one did not produce
a significant conceptual masking effect, perhaps because the in-
verted masks were somewhat recognizable. Thus, to more power-
fully test the conceptual masking hypothesis in the domain of
scene gist recognition, one needs a study that varies the recogniz-

ability of masks while controlling for both their spatial frequencies
and orientations, given that both are hypothesized to contribute to
gist recognition and to spatial masking.

The Current Study

The primary goal of this study was to understand the nature of
the information used for scene gist recognition, and in particular to
determine whether unlocalized amplitude information is useful for
that purpose. The approach we employed uses sophisticated image
processing algorithms to randomize localization of amplitude in-
formation in scenes while maintaining other low-level image char-
acteristics, and it compares viewers’ ability to recognize the gist of
such images relative to normal scenes. Then, the same manipulated
images are used as visual masks for briefly flashed normal scenes
and are compared with normal scenes and white noise as masks,
for determination of both the information used to recognize gist
and its time course. An important point of this integrative approach
to visual masking is that it takes into account both its spatial and
temporal dimensions, thus laying the foundation for a more prin-
cipled and systematic use of masking in scene perception research.

To preview the results, in Experiment 1 we tested whether
amplitude spectrum information is sufficient for scene gist recog-
nition or whether phase spectrum information is necessary, and the
experiment showed that gist information is increasingly impaired
with increased phase randomization, suggesting that amplitude
information is insufficient. The remaining three experiments but-
tressed this conclusion using our masking methodology while also
providing strong evidence for both conceptual and spatial masking
of gist. Experiment 2 showed that gist masking varies with the
degree of mask phase randomization. Experiment 3 replicated this
effect while also showing that masks having 1/f amplitude spectra
are more effective at masking scene gist than noise masks having
flat amplitude spectra but that unlocalized amplitude spectrum
differences across scene categories make no difference in gist
masking. Experiment 4 showed that the apparent conceptual mask-
ing effect for scene gist occurs even at the earliest stages of target
processing.

Experiment 1

In this experiment we explored whether the unlocalized ampli-
tude spectrum and mean luminance information of a scene are
useful for gist recognition. To the extent that unlocalized ampli-
tude spectrum information contributes to gist recognition, viewers
should be able to recognize scene gist well above chance even
when the phase of an image is completely randomized, as long as
it retains its amplitude spectrum. Conversely, if phase information
is necessary to recognize scene gist, as it is for object recognition
(Oppenheim & Lim, 1981; Piotrowski & Campbell, 1982; Sadr &
Sinha, 2004; Tadmor & Tolhurst, 1993; Wichmann et al., 2006),
then gist recognition for completely phase-randomized scenes
should be at chance levels. Thus, in this experiment we systemat-
ically manipulated the extent of phase randomization and display
duration to examine the contribution of unlocalized amplitude
information in recognizing the gist of unmasked scenes. Little
effect of duration was expected because the images were un-
masked.
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In addition, this experiment served two further functions within
the series of experiments reported in this study. First, the results of
the experiment could validate the later experiments’ use of mask-
ing to measure the utility of unlocalized amplitude information for
scene gist recognition. To the extent that the direct method used in
the current experiment and the masking methods in later experi-
ments produced consistent results, it would validate the masking
methods. Second, this experiment constituted the first step in a
rigorous test of the conceptual masking hypothesis. By measuring
scene gist recognizability as a function of phase randomization
level, later experiments could then determine the effects of mask
recognizability on masking when amplitude spectrum information
is held constant.

Method

Participants. Ninety-six Kansas State University undergradu-
ate students (60 female, 36 male; mean age � 19.5 years, range �
18–44) participated for course credit. All had normal or corrected
near vision of at least 20/30 based on a Sloan near acuity letter
chart.

Materials. Three hundred gray scale photographs (1024 �
674) from the Corel Image Database and other sources were drawn
from 10 scene categories—5 natural (beach, desert, forest, moun-
tain, and river) and 5 man-made (farm, home interior, market,
pool, and street)—with 30 images in each category. Images were
displayed on a 17” Gateway EV910 monitor (85-Hz refresh rate),
and viewing distance was fixed to 53.3 cm using a chin rest. Each
image subtended a visual angle of 34.39° � 27.11°. Participants
responded using a keyboard and wore headphones to reduce en-
vironmental noise.

Images were modified by parametrically varying their degree of
phase randomization while maintaining their spatial frequency
amplitude spectra and mean luminance, similar to the random
image structure evolution (RISE) algorithm (Sadr & Sinha, 2001,
2004; see also Wichmann et al., 2006, for a similar approach). This
process maintains the energy distribution at each spatial frequency
while changing the localization of information within the image
(for details, see Appendix A and Sadr & Sinha, 2004). Figure 1
illustrates the images produced by complete phase randomization
for scenes from three categories and their accompanying spatial
frequency amplitude spectra based on a Fast Fourier Transforma-
tion. The figure shows that important spatial frequency, orienta-
tion, and luminance information, which can be used to discrimi-
nate between the three images, is maintained in the fully
randomized phase versions. Figure 2 shows the degrees of phase
randomization used in the experiments. These levels were chosen
on the basis of pilot testing to span a wide range of scene identi-
fiability.

Design and procedure. Phase randomization level (RAND)
was a between-subjects factor, with random assignment of levels
to participants. Each participant viewed all 300 images with one of
the six levels of phase randomization (0, 0.1, 0.25, 0.4, 0.6, and
1.0, where 0 is a normal image and 1.0 is a fully phase-randomized
image). Each participant viewed 60 images (6 from each of the 10
scene categories) at each of five different display durations (12, 24,
59, 106, and 200 ms). The durations were chosen to span a wide
range, including durations near 10, 50, 100, and 200 ms (though all
durations were multiples of an 85-Hz refresh cycle).

Figure 3 (left panel) depicts the sequence of events in an
experimental trial. On each trial of the experiment, participants
looked at a fixation cross that prompted them to push a key to
display the scene image. The image was followed by a 750-ms
blank interval and then by a post-cue scene category label. Partic-
ipants pressed yes if the target image matched the post-cue or no
if it did not. Each of the 10 cue categories was used equally often,
for both valid and invalid trials, and each of the scene categories
was cued validly and invalidly equally often. Participants were
encouraged to respond with their first impression, whether they
were sure or not, and to respond as quickly and accurately as
possible. Before beginning the experiment, participants completed
a category-learning task with 90 images (9 from each scene cate-
gory) so that they could get acquainted with the scene category
labels. They then completed 32 scene gist recognition practice
trials, so that they could become familiar with the experimental
task. None of the scenes used in the category learning task or
practice trials were used for the experimental trials. Images in the
practice trials were in the same phase randomization condition as
the actual experiment for that participant. Trials were self-paced,
and participants were allowed to take breaks at any time, with the
300 trials generally taking 15 min to finish.

Results

As can be seen in Figure 4, with complete phase randomization,
viewers were unable to get any useful information about the scene
gist using only the amplitude spectrum information and mean
luminance of images. Phase randomization had a robust, mono-
tonic effect on scene gist recognition, F(5, 90) � 481.16, p � .001,
with nearly perfect accuracy (.95) for unaltered images (0 phase
randomization) and chance performance (.50) with a phase ran-
domization factor of 0.6 or greater.

The influence of stimulus duration on scene gist recognition was
more complex (see Figure 4). An overall effect of duration (Pillai’s
Trace � 0.455), F(4, 87) � 18.18, p � .001, was qualified by an
interaction with the level of phase randomization (Pillai’s Trace �
0.67), F(20, 360) � 3.62, p � .001. Duration had a small but
significant effect with no phase randomization—(RAND) � 0:
Pillai’s Trace � 0.652, F(4, 12) � 5.64, p � .009—increasing
mean accuracy from .92 to .97, but had essentially no effect with
greater than 50% phase randomization—RAND � 0.6: Pillai’s
Trace � 0.089, F(4, 12) � 0.291, p � .878; RAND � 1.0: Pillai’s
Trace � 0.293, F(4, 12) � 1.24, p � .345—with accuracy ranging
from .50 to .53. The relatively weak effect of stimulus duration
when scenes were normal was due to a ceiling effect and was as
expected given that there was no mask. Without a mask, viewers
can rely on sensory persistence to process the target after stimulus
offset (Breitmeyer & Ogmen, 2006; Loftus & Mclean, 1999;
Sperling, 1963). The null effect of duration with high levels of
randomization reflects the fact that viewers could get no useful
information for gist from such images, regardless of their duration.
Thus, duration primarily affected recognition with intermediate
levels of phase randomization: levels of 0.1–0.4, all Fs(4, 12) �
12, all ps � .001.

Discussion

Experiment 1 established the relationship between level of
phase randomization and scene recognizability for unmasked im-
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ages of varying durations. Consistent with evidence for the effects
of phase randomization on the appearance of scenes and objects
(Oppenheim & Lim, 1981; Piotrowski & Campbell, 1982; Sadr &
Sinha, 2004; Tadmor & Tolhurst, 1993; Wichmann et al., 2006),
viewers obtained no useful gist information from scenes’ randomly
localized amplitude spectra and mean luminance alone; this
strongly suggests that the unlocalized amplitude spectrum of a
scene is not sufficient to identify its basic level category. This
finding appears to contradict evidence that unlocalized amplitude
information can contribute to scene gist recognition (Guyader et
al., 2004; Oliva & Torralba, 2001; Oliva et al., 1999). However,
the current experiment could provide useful information only

regarding the spatial dimension of scene gist recognition. By using
masking, we can also measure the time course of the use of
amplitude information in scene gist recognition.

The current results also provide a tool for exploring the infor-
mation underlying masking effects when scenes are used as masks.
First, we can determine the extent to which phase randomization
produces similar effects on both scene gist recognition, in the
current experiment, and scene gist masking, in later experiments.
In the event that the effects are similar, this serves to validate the
use of masking to explore the information underlying scene gist
recognition. Second, we can determine whether scene recogniz-
ability, amplitude spectra, or both determine masking effective-

Figure 1. Top row: Example images in the normal condition (randomization level [RAND] � 0). The images
differ in terms of their dominant spatial frequencies, orientations, and mean luminance levels. Middle row: Fully
randomized phase versions (RAND � 1.0) of the example images. Note that the images have maintained their
differences in terms of spatial frequencies, orientations, and mean luminance levels. For example, Beach 15 is
dominated by low frequencies at an oblique orientation, Street 4 has more high frequencies with a dominant
vertical orientation, and Mountain 18 has low to medium spatial frequencies at all orientations. Bottom row: Fast
Fourier Transform (FFT) spatial frequency amplitude images for each of the scenes. (The FFT spatial frequency
amplitude images for the original [top row] and fully randomized [middle row] versions of each scene are
identical, thus only one is shown for each.) FFT spatial frequency amplitude images represent energy (contrast)
by brightness, spatial frequency by distance from the center of the graph, and orientation by radial orientation
on the unit circle, with a 0 at the 12:00 position (i.e., scene-based orientation coordinates are shifted 90°
clockwise). Energy has been multiplied by 20 to enhance visibility of higher frequencies. The above-noted
differences between the three scenes in frequencies and orientations are evident.
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ness. Specifically, we can rigorously test the conceptual masking
hypothesis by using masks that have equal amplitude spectra but
that vary in recognizability by varying their level of phase ran-
domization.

Experiment 2

In Experiment 2 we investigated whether a conceptual masking
effect occurs for scene gist recognition or if masking of scene gist
recognition by recognizable scene image masks can be explained
simply in terms of the spatial frequency amplitude spectra of the
masks. Viewers tried to identify briefly presented target scene

images that were followed immediately by scene image masks.
Individual mask images were yoked across conditions varying in
phase randomization (and, hence, degree of recognizability), but
across these conditions, the masks had identical spatial frequency
amplitude spectra and mean luminance. Together with the results
of Experiment 1, the current experiment tested a novel prediction
based on the conceptual masking hypothesis, namely that masking
will vary monotonically with the degree of mask recognizability.
The alternative hypothesis is that amplitude spectrum similarity
between target and mask determines masking. This predicts no
difference in masking between normal and phase-randomized

Figure 2. Example image with the six levels of phase randomization (RAND; ranging from 0 to 1.0) used in
the study. RAND � 0 represents a phase randomization factor of 0 (a normal image); RAND � 1.0 represents
a phase randomization factor of 1.0 (completely randomized).

Figure 3. Schematics of the events in a trial in Experiments 1 (left), 2 (middle), and 3 (right). Note that in
Experiments 2 and 3, the mask type varied in terms of level of phase randomization, and in Experiment 3 it
included white noise. ISI � interstimulus interval; SOA � stimulus onset asynchrony.
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scene masks sharing identical amplitude information. In sum, if
increasing mask recognizability increases scene gist masking, it
would be consistent with the conceptual masking hypothesis. Con-
versely, if scene gist masking is unaffected by mask recognizabil-
ity, it would be consistent with the amplitude similarity hypothesis.

Method

Participants. Seventy-two Kansas State University undergrad-
uate students (41 female, 31 male; mean age � 19.3 years, range �
18–23) participated for course credit. All had normal or corrected
near vision of at least 20/30, scored using a Sloan near acuity letter
chart.

Stimuli. The same set of images was used in this experiment,
with the same six possible levels of phase randomization. All
scenes were used twice, once as a target and once as a mask. The
shortest duration (12 ms) was replaced by a longer duration (306
ms) to better equate performance across Experiments 1 and 2
(durations used: 24, 59, 106, 200, and 306 ms). As in the original
conceptual masking studies that used a rapid serial visual presen-
tation (RSVP) paradigm (Intraub, 1981, 1984; Potter, 1976; Potter
& Levy, 1969), we equated the target and mask durations on each
trial so that the mask:target duration ratio was constant (1:1) across
all target durations. The interstimulus interval (ISI) between target
and mask was 0 ms. Thus, target duration equaled the SOA. This
approach is well-suited to studying the effect of varying target
duration on recognition of masked stimuli.

Design and procedure. The procedure is schematically repre-
sented in Figure 3 (middle panel). On each trial, participants
viewed a scene followed by a mask from a different scene category
(e.g., in Figure 3, a river masked by a market). The target scene
was unaltered, but the mask varied in its extent of phase random-
ization (the extent of randomization was a between-subjects vari-

able). The original pairing of targets and masks was random but
was yoked across phase randomization conditions in order to allow
comparisons of the effects of phase randomization with the same
image pairs. In the normal image mask condition (RAND � 0),
each image was seen twice, once as a target and once as a mask.
In the other masking conditions (RAND � 0.1–1.0), each original
image was seen once as a target and its phase-randomized version
was seen once as a mask. Trial order was randomized for each
participant. Following the scene and mask, a label (or “cue”)
appeared and participants reported whether or not it named the
target scene category. The cue was correct on 50% of trials, and
when it was incorrect, it never matched the scene category of the
mask, and participants were explicitly told this. All categories of
cues were used equally often and were correct equally often.

Results

Masking was strongest with no phase randomization and de-
creased with increasing phase randomization, F(5, 66) � 15.83,
p � .001 (see Figure 5), suggesting that previous conceptual
masking results cannot be explained entirely by greater similarity
in the amplitude spectra of scene masks and targets. Masking was
also affected by stimulus duration (Pillai’s Trace � 0.885), F(4,
63) � 120.77, p � .001, and the effect of stimulus duration
interacted with the level of phase randomization (Pillai’s Trace �
0.971), F(20, 264) � 4.23, p � .001. In essence, the effect of
duration was larger for masks with little phase randomization.
Figure 6 depicts these relationships as masking effectiveness rel-
ative to the unmasked normal image gist recognition from Exper-
iment 1. Masking decreased monotonically with increasing stim-
ulus duration, but only at lower levels of phase randomization
(RAND � 0–0.25). At the highest levels of phase randomization
(RAND � 0.6–1.0), masking was minimal.
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Discussion

Masking strength varied monotonically with mask recognizabil-
ity, consistent with the construct of conceptual masking based on
studies of scene recognition memory (Intraub, 1981, 1984; Loftus
& Ginn, 1984; Loftus et al., 1988; Potter, 1976; Potter & Levy,
1969) and immediate recognition of letters (Michaels & Turvey,
1979) and faces (Bachmann et al., 2005). The current experiment
is the first to show that masking varies monotonically with degree
of mask phase randomization and identifiability. These results,
together with the fact that mask amplitude spectra were held
constant across mask recognizability conditions, weakens the ar-
gument that better masking by scenes than by noise in previous
conceptual masking studies was an artifact of the degree of target–
mask amplitude spectrum similarity.

Interestingly, our results were inconsistent with the results of
Loftus and Ginn (1984) in that we found a conceptual masking
effect even at extremely short SOAs (e.g., 24 ms), at which,
according to Loftus and Ginn, only perceptual, not conceptual,
masking occurs. Our results suggest that conceptual masking can
affect even early encoding processes (see also Bachmann et al.,
2005).

Masking in our experiment varied as a function of mask iden-
tifiability even though the amplitude spectra of target and mask
were relatively similar. These results were therefore inconsistent
with our spatial masking hypothesis, that target–mask amplitude
spectrum similarity should produce strong scene masking, based
on the spatial masking literature (Carter & Henning, 1971; De
Valois & Switkes, 1983; Henning, Hertz, & Hinton, 1981; Legge
& Foley, 1980; Losada & Mullen, 1995; Solomon, 2000; Stro-

meyer & Julesz, 1972; Wilson, McFarlane, & Phillips, 1983; Yang
& Stevenson, 1998). A previous study (Harvey, Roberts, & Ger-
vais, 1983) showed that variations in the spatial frequency contents
of noise masks have their strongest effects on scene recognition at
SOAs � 40 ms. Thus, we might expect to have found the strongest
effect of spatial masking by phase-randomized images at our
shortest SOA (24 ms). Yet even at that short SOA, the masking by
phase-randomized images was minimal. Perhaps this was because
Experiment 2 used the same duration for masks and targets (1:1)
whereas Harvey et al. (1983) used a stronger mask:target duration
ratio of 3:1. Thus, our phase-randomized masks may simply have
been too weak to show the effects of amplitude spectrum similar-
ity. Furthermore, because our ISI was fixed at 0 ms, the effects of
duration and SOA were confounded. If SOA is the critical tem-
poral variable in masking (Di Lollo, von Muhlenen, Enns, &
Bridgeman, 2004; Kahneman, 1967; Turvey, 1973), then by vary-
ing ISI while holding target duration constant (thus varying SOA),
we should be able to detect the time course of masking effects
more readily.

Another possible explanation for the inconsistency of the results
with the spatial masking hypothesis is that phase randomization
affects not only mask recognizability but also some other critical
variable, such as the mask:target contrast ratio (Breitmeyer &
Ogmen, 2006), which in turn affects masking strength. Previous
research has shown that phase randomization reduces contrast
(Bex & Makous, 2002; Wichmann et al., 2006), which might
explain the decreased masking we found as a function of phase
randomization. To explore this possibility, we carried out a control
experiment in which we reduced the contrast of each normal image
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mask to match the perceived contrast of its fully phase-randomized
version (using the lower of two raters’ perceived contrast ratings),
and we compared the gist masking produced by each (reduced-
contrast normal image [i.e., RAND � 0] masks and fully phase-
randomized image [RAND � 1.0] masks). As expected, reducing
the contrast of the normal image masks increased gist accuracy
(i.e., weaker masking; normal image mask, M � .77, SD � .08;
reduced-contrast normal image mask, M � .82, SD � .05), t(20) �
1.94, p � .05 (one-tailed). However, the reduced-contrast normal
image masks still produced lower gist accuracy (i.e., stronger
masking) than the fully phase-randomized masks (phase-
randomized mask: M � .92, SD � .07), t(21) � 3.98, p � .001
(one-tailed). Thus, the reduced masking produced by phase ran-
domization in this experiment cannot be solely attributed to con-
trast reduction. Nevertheless, one way to control for contrast
effects would be to equalize contrast across all target and mask
images.

Experiment 2 also lacked a baseline against which to judge the
effects of target–mask amplitude spectrum similarity on gist mask-
ing. White noise would suit this purpose well because it has a
radically different amplitude spectrum from that of natural scenes.
If the 1/f amplitude spectra of natural scenes is important in the
masking of one scene by another, then fully phase-randomized
scenes should produce stronger masking than white noise.

A final question is what gist masking effects, if any, are caused
by unlocalized amplitude spectrum differences between scene cat-
egories. On average, scenes tend to have a 1/f spatial frequency
amplitude spectrum; however, the amplitude spectra of individual
scenes can differ substantially (Langer, 2000). Such differences

between scene categories are illustrated in Figure 1 and form the
basis for arguing that scenes’ unlocalized amplitude spectra are
used to recognize their gist (Oliva & Torralba, 2001). One ap-
proach to determining the effect of between-categories unlocalized
amplitude spectrum differences on gist masking is to compare
masking caused by (a) phase-randomized masks from different
scene categories than the target versus (b) phase-randomized mask
versions of the target images themselves. In the latter case, in
which target and mask have identical amplitude spectra, one might
predict greater masking due to greater amplitude similarity; con-
versely, one could also predict less masking based on the redun-
dant amplitude spectrum information from the mask helping to
categorize the target scene. If, however, masking is equivalent for
phase-randomized masks generated from (a) scenes from a differ-
ent category than the target and (b) the target itself, then scenes’
unlocalized amplitude spectra likely play little role in scene gist
masking or, by extension, in scene gist recognition.

Experiment 3

This experiment followed up on Experiment 2, which showed
conceptual masking of gist by recognizable scene masks, by ex-
amining potential spatial masking effects on scene gist caused by
information in scenes’ unlocalized amplitude spectra. In this ex-
periment we examined such effects by including two new random
phase masking conditions: one having a very different amplitude
spectrum from that of scenes, namely white noise, and the other
having identical amplitude spectra to those of the targets, namely
phase-randomized versions of the targets themselves. If 1/f spatial
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frequency amplitude spectrum of scenes carries important infor-
mation for scene gist, then phase-randomized scene image masks
should cause greater masking than white noise. Furthermore, if the
unlocalized amplitude differences between scene categories carry
important information for scene gist, then there should be differ-
ences in the scene gist masking produced by the following two
types of masks: (a) the phase-randomized version of the target and
(b) the phase-randomized version of a scene from a different
category.

In this experiment we controlled for target–mask contrast dif-
ferences by equalizing the mean luminance and contrast of all
targets and masks. We more thoroughly sampled the early SOA
range (from 10 to 50 ms) in which spatial masking is more likely
to occur and used a stronger mask:target duration ratio (4:1) more
likely to produce spatial masking effects. In order to more care-
fully examine the time course of masking effects, we decoupled
target duration and SOA by holding target duration constant and
varying SOA.

Method

Participants. Ninety-six Kansas State University undergradu-
ate students (58 female, 38 male; mean age � 19.0 years, range �
18–29) participated for course credit. Two participants were ex-
cluded for failure to follow instructions. All participants had nor-
mal or corrected near vision of at least 20/30, scored using a Sloan
near acuity letter chart.

Stimuli. The entire set of images used in the current experi-
ment, including all target and masking images, were equalized for
both mean luminance and root mean square (RMS) contrast, with
the latter having been shown to be highly correlated with perceived

natural image contrast (Bex & Makous, 2002; see also Appendix
B for details). This equalization resulted in a contrast reduction for
most images; nevertheless, pilot testing indicated that the un-
masked normal images were still highly recognizable. The result-
ant image processing procedure, including details of the phase
randomization procedure and control of mean luminance and RMS
contrast, was equivalent to the RISE algorithm (Javid Sadr, per-
sonal communication, May 8, 2006).

Masks in the current experiment included normal images
(RAND � 0) and fully phase-randomized images (RAND � 1.0),
both of which have, on average, 1/f spatial frequency amplitude
spectra, and a set of 300 white noise images, which have flat
amplitude spectra (see Figure 7). As shown in Figure 7, the spatial
frequency amplitude spectra of the normal and fully phase-
randomized masks are identical and, compared to the white noise
masks, have more power in the lower frequency range and less in
the high-frequency range.

Design and procedure. The procedure is schematically repre-
sented by Figure 3 (right panel) and, except as noted, was identical
to Experiment 2. As illustrated in Figure 8, there were four types
of masks: (a) a normal image (RAND � 0) from a different scene
category than the target, (b) a fully phase-randomized image
(RAND � 1.0) from a different scene category than the target, (c)
a fully phase-randomized version (RAND � 1.0) of the target
image, and (d) a white noise image. Mask type was a randomly
assigned between-subjects variable (23–24 participants each). As
in Experiment 2, the target-to-mask pairings were yoked across
mask conditions, except for Condition 3, in which the mask was
the fully phase-randomized version of the target (e.g., Mountain 23
masked by the fully phase-randomized version of Mountain 23).
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Target duration was fixed at 12 ms, which is near the minimum
necessary for above-chance gist recognition performance, as
shown in Experiment 2 (Bacon-Mace et al., 2005), and the mask
duration was fixed at 48 ms, creating a strong (4:1) mask:target
duration ratio more likely to show spatial masking effects. As
shown in Figure 3 (right panel), a blank ISI was presented between
the target and mask images for 0–84 ms, creating SOAs (target
duration � ISI) between target and mask of 12, 24, 36, 48, or 96
ms (manipulated within participants). These SOAs were chosen so
that we could focus primarily on the first 50 ms of processing,
when one generally finds both the strongest spatial frequency
masking effects on scene recognition (Harvey et al., 1983) and
many important early scene gist processes (Bacon-Mace et al.,
2005; Renninger & Malik, 2004; Schyns & Oliva, 1993). We also
included an SOA near 100 ms, by which time scene gist recogni-
tion generally reaches asymptote, as shown in Experiment 2 (Bied-
erman et al., 1974; Potter, 1976). Furthermore, although Experi-
ment 2 showed that the time course of conceptual masking of
immediate gist recognition differs from that previously reported
for memory (Loftus & Ginn, 1984), we might still expect that
perceptual processes would dominate masking at SOAs � 50 ms
and that conceptual processes might be stronger at an SOA of
roughly 100 ms (Bachmann et al., 2005).

Results

Figure 9 shows both conceptual and spatial masking effects on
scene gist recognition. The recognizable normal image (RAND �

0) mask condition produced significantly lower gist accuracy (i.e.,
more masking) than each of the other three unrecognizable mask
conditions (Sidak, all ps � .001), replicating the conceptual mask-
ing effect on immediate gist recognition of Experiment 2. Impor-
tantly, Figure 9 also shows that both fully phase-randomized scene
mask conditions produced significantly lower gist accuracy than
the white noise mask condition (Sidak, both ps � .001), suggesting
that the unlocalized 1/f amplitude spectrum of scenes is somewhat
effective at masking scene gist. On the other hand, Figure 9 shows
that the two fully phase-randomized masking conditions produced
virtually identical masking (M difference � 0.019, SE differ-
ence � 0.018), t(238) � 1.51, p � .877, n.s., suggesting that
unlocalized amplitude spectrum differences between scene cate-
gories do not affect gist masking. This is inconsistent with the idea
that differences between scene categories in unlocalized amplitude
information are useful for recognizing gist.

Figure 9 also shows strong time course effects on scene gist
masking, with longer SOAs producing greater scene gist accuracy
(Pillai’s Trace � 0.684), F(4, 88) � 47.53, p � .001. Furthermore,
the time courses of spatial and conceptual masking effects dif-
fered: SOA � Masking Condition interaction, Pillai’s Trace �
0.546, F(12, 270) � 5.00, p � .001. Figure 9 shows strong spatial
masking effects based on scenes’ amplitude spectra at the earliest
stages of processing (SOA � 12 ms). At that early stage, the three
masking conditions with natural amplitude spectra (the normal
[RAND � 0] and both fully phase-randomized [RAND � 1.0]
conditions) did not differ significantly from each other but pro-

Figure 8. Relationship between target and mask images in Experiment 3. Examples of the four types of masks
are shown in the right column. Random image structure evolution (RISE) phase-randomized images were fully
randomized (randomization level [RAND] � 1.0).
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duced significantly lower accuracy (stronger masking) than the
white noise mask condition. In contrast, conceptual masking
effects were strongest at later stages of scene gist processing
(SOA � 94 ms). At that later stage, all three unrecognizable
masking conditions (white noise and both fully phase-
randomized [RAND � 1.0] conditions) produced greater accu-
racy (less masking) than the recognizable normal image
(RAND � 0) masks.

Discussion

Experiment 3 confirms the importance of phase information
in scene gist masking and the likely existence of conceptual
masking of immediate gist recognition. This experiment also
shows that randomly localized amplitude spectrum differences
between scene categories are insufficient to produce differences
in scene gist masking. Such a result is inconsistent with the idea
that intercategory unlocalized amplitude spectrum differences
are useful for recognizing scene gist. The theoretical implica-
tion based on this finding is that, although scene categories may
well differ in their amplitude spectra, and such differences have
been hypothesized to allow gist recognition, such differences do
not contribute to basic level scene gist recognition. This mask-
ing result is consistent with the results of Experiment 1, which
showed that unlocalized amplitude differences between scene
categories were insufficient for scene gist recognition. Never-
theless, the current experiment shows that masks having a 1/f
spatial frequency amplitude spectrum are more efficient at

masking scene gist than masks having an unnaturally flat am-
plitude spectrum. This spatial masking effect of the 1/f spatial
frequency amplitude spectrum primarily occurs during early
perceptual processes (i.e., SOAs � 50 ms). At later stages of
processing (i.e., SOA � 100 ms), scene gist masking is affected
more by structured phase information and/or the recognizability
of masks than by their unlocalized amplitude spectra. These
results are consistent with the idea that masking at short SOAs
involves more peripheral processes whereas masking at longer
SOAs involves more central processes, such as attention (Bach-
mann et al., 2005; Loftus & Ginn, 1984; Michaels & Turvey,
1979).

The above interpretations of the time course of gist masking
may need to be tempered, however, because there is an open
question about what occurred at the earliest stages of processing in
Experiment 3. Specifically, as noted above, at the shortest SOA
(12 ms), masking by fully phase-randomized (RAND � 1.0) and
normal (RAND � 0) image masks was essentially equal. This may
indicate that information encoded by the phase spectrum is of little
use for very early peripheral processes. However, Figure 9 sug-
gests that this lack of difference may simply reflect a floor effect
in the normal image (RAND � 0) masking condition. If so, then
raising performance—for example, by using a smaller mask:target
duration ratio—should produce differential masking between fully
phase-randomized and normal image masks, even at a 12-ms SOA,
as found in Experiment 2.
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Experiment 4

In this experiment we resolved the question of whether unlo-
calized scene information conveyed by the amplitude spectrum is
sufficient for gist masking at the earliest levels of processing or
whether localized information conveyed by the phase spectrum is
necessary even then. Experiment 3 suggested that amplitude in-
formation may be sufficient at the earliest point in gist processing
(SOA � 12 ms), because there was no difference between the
completely phase-randomized (RAND � 1) and normal (RAND �
0) image masking conditions, but this may have been due to a floor
effect in the latter condition. Experiment 4 resolved this issue by
replicating two such masking conditions from Experiment 3 while
varying masking strength by means of the mask:target duration
ratio. If conceptual masking occurs even at the earliest stages of
scene processing, normal image masks should cause greater scene
gist masking than completely phase-randomized masks even at a
12-ms SOA. Additionally, we included a no-mask control condi-
tion to assess the impact of the mean luminance and RMS contrast
equalization on baseline unmasked scene gist accuracy.

Method

Participants. One hundred and four Kansas State University
undergraduate students (60 female, 44 male; mean age � 19.4
years, range � 18–30) participated for course credit. All partici-
pants had normal or corrected near vision of at least 20/30, scored
using a Sloan near acuity letter chart.

Stimuli. The stimuli were a subset of those used in Experiment
3 (described below in terms of mask types).

Design and procedure. The design and procedure were iden-
tical to those of Experiment 3, except as follows. First, we used
only two of the mask types used in Experiment 3: (a) a normal
image (RAND � 0) from another scene category than the target
and (b) a fully phase-randomized image (RAND � 1.0) from
another scene category than the target, with mask type a between-
subjects variable (46 participants for each mask type and 12
participants in a no-mask control condition, with random
participant-to-condition assignment). As in Experiments 2 and 3,
the target-to-mask pairings were yoked across mask conditions.

The most important difference from Experiment 3 was that we
varied the mask:target duration ratio from 1:1 to 4:1, by fixing
target duration at 12 ms and varying mask duration from 12 to 48
ms (manipulated between subjects; 14–17 participants randomly
assigned per condition). This was the key manipulation of Exper-
iment 4. All ISIs and SOAs were identical to those in Experi-
ment 3.

Results

The current experiment explains the apparently equivalent gist
masking caused by localized and unlocalized scene amplitude
information at the earliest stages of gist processing in Experiment
3. As shown in Figure 10, we replicated the Experiment 3 inter-
action between mask type and SOA, such that the SOA effect was
greater in the fully phase-randomized (RAND � 1) than in the
normal image (RAND � 0) masking condition (Pillai’s Trace �
0.450), F(4, 83) � 16.96, p � .001, which is consistent with a
possible floor effect in the normal image masking condition. To

manipulate this possible floor effect, we varied the mask:target
duration ratio, and the three panels of Figure 10 show that this
strongly affected accuracy, F(2, 86) � 19.83, p � .001, irrespec-
tive of mask type, F(2, 86) � 1.04, p � .359, n.s. The key tests of
the floor effect were in terms of several a priori planned compar-
isons. First consider the masking condition that replicates the key
condition in Experiment 3, the normal (RAND � 0) image mask,
at a 12-ms SOA, with the strongest masking ratio (mask:target �
4:1; see Figure 10, left panel). Accuracy in this condition (M �
0.51, SD � .04) did not differ significantly from chance (.5),
t(13) � 1.07, p � .303 (two-tailed, n.s.), and there was a flat, 0
slope from the 12- to the 24-ms SOA (both Ms � 0.51), which
together strongly suggest a floor effect. No such floor effect is
found in the weakest masking ratio condition (1:1 mask:target
ratio; see Figure 10, right panel), with accuracy at the shortest
SOA (12 ms) in the normal image condition (RAND � 0; M �
0.56, SD � .05) significantly above chance (0.5), t(16) � 5.26,
p � .001 (two-tailed) and a positive slope from the 12- to the
24-ms SOA (0.2% accuracy increase per SOA millisecond). (The
intermediate masking ratio condition [2:1 mask:target ratio; see
Figure 10, middle panel], produced results closer to the 4:1 mask-
ing ratio condition, with accuracy [M � 0.53, SD � .03] only
slightly, but significantly, greater than chance [0.5], t(14) � 3.81,
p � .002 [two-tailed], but a flat slope between the 12- and 24-ms
SOAs [both Ms � 0.53].) We therefore conclude that there was a
floor effect in Experiment 3 at the shortest SOA (12 ms) in the
normal image (RAND � 0) masking condition, which was largely
due to the strong (4:1) mask:target duration ratio.

This floor effect created a false equivalency in the gist masking
caused by localized and unlocalized amplitude spectrum scene
information at the earliest stages of processing in Experiment 3.
The left panel of Figure 10, in which the floor effect is seen,
replicates the equivalent masking by localized and unlocalized
amplitude information found in Experiment 3 (RAND � 0: M �
0.51, SD � .04; RAND � 1: M � 0.53, SD � .06), t(27) � �1.17,
p � .251 (two-tailed), n.s. In contrast, amplitude localization
strongly affected scene gist masking even at the shortest SOAs, as
shown in the right panel of Figure 10, where there is no floor
effect. There we see significantly lower accuracy in the normal
image masking condition (RAND � 0: M � 0.56, SD � .05) than
in the fully phase-randomized masking condition (RAND � 1:
M � 0.63, SD � 0.08), t(31) � �2.67, p � .012 (two-tailed). (In
the intermediate masking ratio [2:1] condition, the results are
similar to those in the 4:1 masking ratio condition, with no sig-
nificant difference in accuracy between the normal [RAND � 0:
M � 0.53, SD � .03] and fully phase-randomized image masking
conditions [RAND � 1: M � 0.55, SD � .05], t(28) � �1.54, p �
.135 [two-tailed].) We therefore conclude that localized amplitude
scene information is important for gist masking even at the earliest
stages of processing.

Finally, the inclusion of the no-mask control condition allowed
us to gauge the overall effect of the mean luminance and RMS
contrast equalization on perception (relative to that of Experiment
1) of the targets, which were not equalized. A comparison of the
12-ms-duration normal image (RAND � 0) condition in Experi-
ment 1 (see Figure 4; M � 0.92) with the no-mask condition in
Experiment 4 (see Figure 10; M � 0.86) shows that the equaliza-
tion did somewhat reduce accuracy, though accuracy was still
quite high. This set an upper bound for accuracy in the masking
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conditions, and one can see in the right panel of Figure 10 that the
fully phase-randomized (RAND � 1) masking condition was
approaching this level of accuracy at the longest SOA (95 ms),
whereas this was not the case in the normal image (RAND � 0)
masking condition.

Discussion

The results of Experiment 4 show that even at the earliest stages
of processing (i.e., 12-ms SOA), scene gist perception depends on
localized information. Specifically, gist recognition was less dis-
rupted by fully phase-randomized scene masks than by normal
scene masks, though both had identical amplitude spectra. Thus,
even at very earliest stages of scene gist processing, unlocalized
amplitude spectrum information is insufficient for scene gist rec-
ognition. Also, consistent with Experiment 2, conceptual masking
of immediate gist occurs at even the earliest stages of processing,
in contrast to what has been shown for scene memory (Loftus &
Ginn, 1984).

General Discussion

In the current study we examined the role of unlocalized am-
plitude spectrum information in recognizing scene gist (Gorkani &
Picard, 1994; Guyader et al., 2004; Oliva & Torralba, 2001; Oliva,
Torralba, Guerin-Dugue, & Herault, 1999; Oppenheim & Lim,
1981; Wichmann et al., 2006) and showed that it is insufficient to
recognize a scene’s basic level category, on the basis of converg-
ing evidence from the effects of phase randomization on both
unmasked gist recognition and the masking of gist recognition.
The current study also provides the strongest test to date of the
conceptual masking hypothesis, by ruling out the hypothesis that
conceptual masking can be explained simply in terms of target–
mask amplitude spectrum similarity. Furthermore, this study lays
the foundation for more theoretically based and systematic uses of
masking to study scene perception, by applying knowledge from
the extensive literature on masking in spatial vision to understand-
ing scene gist recognition.

The Role of Unlocalized Amplitude Spectrum Information
in Scene Gist Recognition

The current study contributes to our understanding of the pro-
cesses involved in scene gist recognition. The fact that people
recognize scene gist so incredibly quickly suggests that it may be
based on very early processing of low-level stimulus dimensions.
One such candidate dimension is the unlocalized amplitude spectra
of scenes. To test this hypothesis, we randomized the phase spectra
of scenes while maintaining their amplitude spectra, luminance,
and contrast using the RISE algorithm (Sadr & Sinha, 2004), and
we measured the effects this had on both unmasked scene gist
recognition and scene gist masking. Experiment 1 showed that
unmasked scenes with greater than 50% phase randomization
could not be identified above chance, though their unique ampli-
tude spectra remained unchanged. Then, using masking, in Exper-
iments 2–4 we showed that between-scenes category differences
in the amplitude spectra of masking images make no difference in
scene gist masking, though the general 1/f amplitude distribution
of scenes does. Together, these results suggest that scenes’ ampli-

tude spectra provide only limited information for recognizing
scene gist.

The current results are therefore inconsistent with the success of
the spatial envelope model in classifying scenes (at 86% accuracy)
using only stationary, globally distributed, unlocalized information
from scenes’ amplitude spectra (Oliva & Torralba, 2001), suggest-
ing that human observers may not be sensitive to such information,
even though it is potentially useful for scene classification. How-
ever, such an argument cannot explain the current study’s incon-
sistency with Guyader et al. (2004), who found that scenes’ ran-
domly localized amplitude spectra significantly primed human
observers’ scene gist recognition. Importantly, that study used a
very simple two-category discrimination task (beach vs. city) and
found only relatively small priming effects on reaction times
(15–18 ms). Thus, it may be that such effects are detectable only
with a more constrained categorization task and response time
measures. Alternatively, unlocalized amplitude spectrum informa-
tion may be useful for identifying scenes, but only at the level of
the perceptually primitive “natural” versus “man-made” scene
distinction, which Oliva and Torralba (2001) argued is the most
fundamental. Such a hypothesis is entirely consistent with the
results of Guyader and colleagues (2004), who argued that their
beach versus city distinction, a simplified case of the natural versus
man-made distinction, was based entirely on clear orientation
differences (i.e., horizontal � beach vs. vertical � city). We are
currently testing this hypothesis in a series of studies.

Masking studies have played a crucial role in developing theo-
ries of spatial vision (Carter & Henning, 1971; De Valois &
Switkes, 1983; Henning et al., 1981; Legge & Foley, 1980; Losada
& Mullen, 1995; Solomon, 2000; Stromeyer & Julesz, 1972;
Wilson, McFarlane, & Phillips, 1983; Yang & Stevenson, 1998),
and the current study suggests that masking can be similarly
helpful for understanding the information used to recognize gist,
particularly given that the results from our masking experiments
(Experiments 2–4) were consistent with the results of a direct
measure of scene gist recognition (Experiment 1). Using logic
similar to that of Delord (1998), we have argued that the informa-
tion that most efficiently masks scene gist is also the most useful
for recognizing scene gist. Our results are entirely consistent with
arguments that second-order image statistics based on the unlocal-
ized amplitude spectrum provide insufficient information for rec-
ognizing scenes. Instead, higher order image statistics that include
spatial localization, such as wavelets, are necessary to capture the
critical information for recognizing scenes (Field, 1987, 1999;
Olshausen & Field, 1996; Simoncelli & Olshausen, 2001; Thom-
son & Foster, 1997). Such a claim is consistent with more recent
versions of the spatial envelope model, which emphasize the
importance of spatially localized coding, and specifically layout, in
recognizing scenes (Oliva, 2005; Oliva & Schyns, 2000; Oliva &
Torralba, 2006; Sanocki, 2003; Sanocki & Epstein, 1997; Schyns
& Oliva, 1993). Indeed, the results of the current study indirectly
support claims for the importance of layout in gist recognition
because decreased gist recognition and gist masking accompany
the loss of layout information produced by phase randomization.
This suggests a prediction worth testing in further research, that
increasing layout information in masks will increase scene gist
masking.

Our results are also consistent with the idea that low spatial
frequency information is important for recognizing scene gist

1445IMPORTANCE OF LOCALIZATION IN SCENE GIST



(Loschky & Simons, 2004; McCotter, Gosselin, Sowden, & Schyns,
2005; Oliva & Schyns, 2000; Schyns & Oliva, 1993). Experiment 3
showed that phase-randomized scene images, which have 1/f spatial
frequency amplitude spectra, are more efficient at masking scene gist
than are white noise images, which have relatively more high-
frequency information but less low-frequency information. Our re-
sults are also consistent with Harvey et al. (1983), who found that
lower frequency noise masks were more efficient than higher fre-
quency masks at disrupting scene recognition, but inconsistent with
the recent results of Bacon-Mace et al. (2005), who found that higher
frequency noise masks were more effective at masking animal detec-
tion in scenes. One explanation for the latter discrepancy is that
animal detection, a subset of object recognition at the superordinate
level, depends more on higher frequency information, whereas scene
gist recognition depends more on lower frequency information
(though see Oliva & Schyns, 1997).

Conceptual Masking of Immediate Scene Gist Recognition

The current study provides a rigorous test of the existence of
conceptual masking as distinct from noise and structural masking,
using a novel approach in which we systematically varied masks’
recognizability while holding their amplitude spectra, mean lumi-
nance, and contrast constant. The study was thus able to show that
scene gist masking varies monotonically with mask identifiability,
while largely ruling out an alternative explanation in terms of
spatial masking based on target–mask similarity in the unlocalized
Fourier amplitude domain (Carter & Henning, 1971; De Valois &
Switkes, 1983; Henning et al., 1981; Legge & Foley, 1980; Losada
& Mullen, 1995; Sekuler, 1965; Solomon, 2000; Stromeyer &
Julesz, 1972; Wilson, McFarlane, & Phillips, 1983). Such a rigor-
ous test of the conceptual masking hypothesis is important, given
that the noise masks in previous conceptual masking studies (Lof-
tus & Ginn, 1984; Loftus et al., 1988; Potter, 1976; Potter & Levy,
1969) shared few if any spatial characteristics with the scene target
images (though see Bachmann, Luiga, & Poder, 2005; Intraub,
1984, Experiment 3 [Inverted Condition]). Consistent with predic-
tions based on previous spatial masking research, the results of
Experiment 3 showed greater masking by phase-randomized scene
images having 1/f amplitude spectra than by white noise, which
has a flat amplitude spectrum. However, the 1/f amplitude spec-
trum affected gist masking only at early stages of perceptual
processing (SOAs � 50 ms), as would be predicted by conceptual
masking theory (Loftus & Ginn, 1984; Loftus et al., 1988). On the
other hand, inconsistent with previous work on the time course of
conceptual masking (Loftus & Ginn, 1984), when we carefully
controlled masking strength, recognizable normal scene images
produced greater masking than unrecognizable images, which is
the hallmark of conceptual masking, from even the earliest stages
of target processing (i.e., the shortest SOA of 12 ms).

It is important to point out that an alternative version of the
spatial masking hypothesis may still explain why normal scene
images are more efficient than phase-randomized images at mask-
ing gist. Normal images may be better scene gist masks because
they contain spatially localized higher order structure critical for
scene gist recognition. In fact, further studies in our laboratory
using noise that has been coerced to share the wavelet-based
texture statistics of scenes indicate that such noise more efficiently
masks scene gist than the fully phase-randomized scene masks of

the current study (Loschky et al., 2006). In order to make a claim
for conceptual masking, it is critical to eliminate such alternative,
simpler, low-level masking explanations.

Finally, the current study is an important first step towards
providing a principled basis for choosing spatial and temporal
mask parameters for use in studies of scene perception. We have
shown that, after controlling for the spatial parameters of target
and mask amplitude spectra, mean luminance, and RMS contrast,
and the temporal parameters of mask:target duration ratio and
SOA, a normal scene is more efficient at masking gist than a fully
phase-randomized version of that scene. However, we have also
shown that, given the same controls, noise having a 1/f amplitude
spectrum is more efficient than white noise at masking gist. More
generally, we have shown that masking can be used to elucidate
the types of information used to recognize scene gist. These
findings provide important information for vision scientists study-
ing both the information underlying scene gist and the time course
of scene perception, because masking is necessary for studying the
effects of stimulus duration on scene processing.
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Appendix A

Implementation of the RISE Algorithm

Basic Concepts of the Fourier Transform Applied to
Digital Images

A two-dimensional (2-D) Fourier transform F(u,v) expresses a 2-D
function f(x,y) as a weighted linear combination of spatially shifted
2-D sinusoidal basis functions e2i	(ux�vy), as shown in Equation A1:

f
x,y� � �
��

�

�
��

�

F
u,v�e2i	
ux�vy�dudv (A1)

The Fourier transform is calculated using Equation A2:

F
u,v� � �
�

�

�
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�

f
x,y�e�2i	
ux�vy�dxdy (A2)

A digital image of size M � N pixels is a discrete signal that can
be expressed as a 2-D array f(x,y), where x is an integer from 0 to
M�1 and y is an integer from 0 to N�1. It can be expressed as a
linear combination of MN Fourier basis functions e2i	(ux/M�vy/N),
as shown by Equation A3:

f
x,y� � �
u�0

M�1�
v�0

N�1

F
u,v�e2i	
ux/M�vy/N� (A3)

The 2-D array of multiplicative weights F(u,v) is called the Fourier
coefficients, or the discrete Fourier transform (DFT) of the image
f(x,y). In general, the image pixel values f(x,y) are real non-
negative numbers, whereas the Fourier coefficients F(u,v) are
complex numbers. The DFT array has the same size as the image
array. The DFT is calculated according to Equation A4:

F
u,v� �
1

MN�
x�0

M�1�
y�0

N�1

f
x,y�e�2i2	(ux/M�vy/N) (A4)

The fast Fourier transform (FFT) is an algorithm to efficiently com-
pute the DFT, and often DFT and FFT are used synonymously.
Depending on the context, the term FFT is used to describe the FFT
algorithm or the output of the algorithm (the FFT array).

A Fourier coefficient, which is a complex number, can be
represented as a sum of a real and an imaginary number. Alterna-
tively, it can be represented in the polar form as a product of a real
and non-negative number (called the magnitude) and a complex
number with unit magnitude. The angle of the complex number
with unit magnitude to the positive real axis on the unit circle in
the complex number plane represents the phase of the complex
number. These relations are represented in Equation A5:

F
u,v� � au,v � ibu,v � ru,ve
iu,v (A5)

In Equation A5, ru,v represents the magnitude (also known as the
amplitude) corresponding to the frequency (u,v) cycles per spatial
dimension, and u,v represents the phase of the basis function of
that frequency, e2i	(ux/M�vy/N). The phase determines the shift
(spatial offset) of the sinusoidal pattern represented by the basis
function e2i	(ux/M�vy/N). Thus, the important information about the
image structure and location of patterns is embedded in the phase
of the FFT. Magnitude, on the other hand, stores the energy or
gradient information of patterns of various spatial frequencies. The
original image can be recovered from the FFT array by taking the
inverse FFT (IFFT) of the FFT array. The IFFT algorithm is quite
similar to the FFT algorithm, with some minor differences, as
represented by Equations A3 and A4.

Implementing the RISE Algorithm

To control the energy distribution in the spatial frequencies of
an image, the magnitude of the Fourier transform should be pre-
served. The image appearance (spatial structure) can still be
changed by altering the phase information. This is the basic idea
behind RISE, which stands for random image structure evolution
(Sadr & Sinha, 2001, 2004). To progressively degrade the image
structure, the phase at every spatial frequency location (u,v) is
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linearly and progressively interpolated between its original value
and a target value. The extent of interpolation towards the target
value is controlled by a parameter � (which is a number between
0 and 1) common for all the locations. The parameter � determines
the extent of damage to the original image structure (0 representing
the unaltered image). For each location (u,v), a target phase �u,v is
chosen as a random value between �	 and 	. Half of the locations
(u,v) are chosen at random for further alteration to their target
values. The target phase �u,v of such a chosen location is com-
pared to the original phase u,v (which is also [reduced to] a
number between �	 and 	). If the two have the same sign, then
no further action is taken. Otherwise, 2	 is added to �u,v if u,v is
positive and �2	 is added to �u,v if u,v is negative. This is done
to ensure that at least half of the interpolated phases will not cross
zero during interpolation. Having too many phases close to zero
tends to produce white corners in the IFFT image (which will be
the RISE image in this case). The altered Fourier coefficients
FR(u,v) are expressed in terms of the original magnitude ru,v,
original phase u,v, target phase �u,v and the interpolation factor �
by Equation A6:

FR
u,v� � ru,ve
i

1���u,v���u,v� (A6)

When we start with an original image of real numbers f(x,y), we
are guaranteed that its FFT will satisfy the property that any given
Fourier coefficient will be the complex conjugate of the coefficient
at the diametrically opposite location in the 2-D FFT array (con-
sidering the zero/DC frequency as the center, and wrapping around
at the boundary of the array). This property is expressed in Equa-
tion A7, where the complex conjugate of a complex number z is
expressed by z*:

F
u,v� � F*
M � u,N � v� (A7)

Taking the complex conjugate is same as preserving the magnitude
and taking the negative of the phase. This means that Equations A8
and A9 must hold:

ru,v � rM�u,N�v (A8)

u,v � � M�u,N�v (A9)

However, the inverse also holds true. This means that we need to
guarantee that the RISE image fR(x,y) is also an array of real
numbers by enforcing a constraint similar to Equation A7 on the
modified FFT FR(u,v). Because the F(u,v) and FR(u,v) share the
same magnitude (see Equations A5 and A6), this constraint can be
satisfied by ensuring that Equation A10 holds for all (u,v):



1 � ��u,v � ��u,v� � � 

1 � ��M�u,N�v � ��M�u,N�v�

(A10)

Using Equation A9, Equation A10 can be satisfied if Equation A11
holds for target phase �u,v:

�u,v � � �M�u,N�v (A11)

Equation A11 represents the mathematical constraints needed to
ensure that the RISE image fR(x,y) (which is the IFFT of FR(u,v))
will be an array of real numbers. These constraints are enforced in
our algorithm. Equations A9 and A11 also constrain the phase at
half the maximum frequencies to be zero, when (u,v) is (0,0),
(0,N/2), (M/2,0), or (M/2,N/2), when M and N are multiples of two,
and they usually are.

Finally, after computing the RISE image, some of the pixel
values can have very small imaginary parts due to the limit of
numerical precision associated with the computing setup. This
residual imaginary part is discarded, and only the real part is kept.
In addition, some of the real parts of the pixel values may be
negative or may be outside the display range of the image system.
All image pixel values are linearly scaled and shifted by a common
amount to fit the display limits. Common display limits are 0 to 1
and 0 to 255 and are often quantized. For example, pixel values
can be integers between 0 and 255 on most systems. Such linear
scales and shifts can also be tailored to match the average pixel
intensity or the RMS contrast (but not necessarily both) of the
original and the RISE images. However, if the original image itself
is also linearly scaled and shifted, then both the average pixel
intensity and RMS contrast can be matched. Such an algorithm is
described in Appendix B.

Appendix B

Equalizing Mean Luminance and RMS Contrast of All Images in a Set

Let the coordinates of a pixel be represented by the ordered pair

x,y�, where x and y are integers ranging from 1 to the number of
columns (M) and rows (N), respectively, in the image. Let the pixel
intensity at a location 
x,y�be represented by I
x,y�. Let the mean
intensity be represented by Î and RMS contrast be represented by
&

I. The mean intensity and RMS contrast can be calculated as
shown in Equations B1 and B2:

Î �

�
x�1

M �
y�1

N

I
x,y�

MN
(B1)

&

I �
��

x�1

M �
y�1

N


I
x,y� � Î�2

MN
(B2)

Let us suppose that we have a set of n images Ii, where i ranges
from 1 through n. We want to find a linear operator (scale and
shift) for each image so that when these operators are applied to
the pixel intensities of their associated images, all the resultant
images have the same mean and RMS contrast after applying their
respective operators. A simple two-step method for this is to make
these images zero mean and unit contrast by applying an appro-
priate linear operator to each image then applying a common linear
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operator to all the resultant zero mean and unit contrast images,
such that the resultant images of this second step occupy the entire
range of displayable image intensities (or a sub-range thereof). The
first step can be done as follows. Let Ii

� represent the resultant
images of the first step that have zero mean and unit RMS contrast.
The linear operator for the image intensities of Ii that results in Ii

�

is represented as shown in Equation B3:

Ii
� �

Ii � Îi

&

Ii

(B3)

Now, the maximum and the minimum pixel values in all the
images, Imax and Imin, respectively, can be represented as shown in
Equations B4 and B5:

Imax � max
i,x,y

Ii
�
x,y� (B4)

Imin � min
i,x,y

Ii
�
x,y� (B5)

Note that Imin will be negative because the images Iis are zero
mean. Now, we want to scale and shift these images so that Imax

and Imin, respectively, map to 0 and 255 (assuming that to be the
displayable range) in the final images, represented by Ii

�. This can
easily be done, as shown in Equation B6:

Ii
� � 
I�i � Imin� �

255

Imax � Imin
(B6)

This can suitably be quantized for the display system (such as an
integer in most cases). As is obvious from Equation B6, the new

mean intensity Î � and RMS contrast
&

I for all the images Ii� are the
same because the same linear operator is applied to all the zero
mean and unit contrast images resulting from the first step. This
new mean and contrast can be represented as shown in Equations
B7 and B8:

Î � �
� 255 Imin

Imax � Imin
(B7)

&

I �
255

Imax � Imin
(B8)

And because the algorithm consists of applying two linear opera-
tors to every image, the entire transformation from Ii to Ii� is a
linear operation.

This completes the outline of our algorithm for equalizing the
mean luminance and RMS contrast of all images in a set.
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