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What information do people use to categorize scenes? Computational scene classification models have proposed that
unlocalized amplitude information, the distribution of spatial frequencies and orientations, is useful for categorizing scenes.
Previous research has provided conflicting results regarding this claim. Our previous research (Loschky et al., 2007) has
shown that randomly localizing amplitude information (i.e., randomizing phase) greatly disrupts scene categorization at
the basic level. Conversely, studies suggesting the usefulness of unlocalized amplitude information have used binary
distinctions, e.g., Natural/Man-made. We hypothesized that unlocalized amplitude information contributes more to the
Natural/Man-made distinction than basic level distinctions. Using an established set of images and categories, we varied
phase randomization and measured participants’ ability to distinguish Natural versus Man-made scenes or scenes at the
basic level. Results showed that eliminating localized information by phase randomization disrupted scene classification
even for the Natural/Man-made distinction, demonstrating that amplitude localization is necessary for scene
categorization.
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Introduction

While channel surfing, you can rapidly recognize a
series of unrelated images such as a tennis match, a
person cooking in the kitchen, a lifeguard rescuing
someone at the beach, or a street battle. A key question
is, what allows such rapid recognition of the overall gist
of each scene? A recent, counter-intuitive, and thus
intriguing claim has been that viewers use the unlocalized
amplitude information of a scene, i.e., the distribution of
spatial frequencies and orientations in an image without
regard to their location, in order to categorize it (e.g.,
Gorkani & Picard, 1994; Guerin-Dugue & Oliva, 2000;
Guyader, Chauvin, Peyrin, Hérault, & Marendaz, 2004;
Herault, Oliva, & Guerin-Dugue, 1997; Oliva & Torralba,
2001). Evidence, both consistent and inconsistent with
this claim has been put forward (Guyader et al., 2004;
Kaping, Tzvetanov, & Treue, 2007; Loschky et al.,
2007). We hypothesized that a possible explanation of
these discrepancies lies in the level of categorization
measured, specifically that unlocalized amplitude infor-
mation is not useful for discriminating basic level
categories, such as “Highway” or “Street,” but it could
be more useful in discriminating “Natural” versus

“Man-made” scenes. The current study directly tests
this hypothesis.
Viewers can reliably apply a one-word category label to

a scene after a masked image presentation as brief as 40–
60 ms (Bacon-Macé, Macé, Fabre-Thorpe, & Thorpe,
2005; Fei-Fei, Iyer, Koch, & Perona, 2007; Loschky et al.,
2007), with this process frequently called scene gist
recognition (Oliva, 2005). Scene gist helps direct our
attention in scenes (Eckstein, Drescher, & Shimozaki,
2006; Gordon, 2004; Torralba, Oliva, Castelhano, &
Henderson, 2006), may influence object recognition in
scenes (Boyce & Pollatsek, 1992; Davenport & Potter,
2004; but see Hollingworth & Henderson, 1998) and
affects later memory for scenes (Brewer & Treyens, 1981;
Pezdek, Whetstone, Reynolds, Askari, & Dougherty,
1989). Thus, scene gist is important for driver safety
(Shinoda, Hayhoe, & Shrivastava, 2001), eyewitness
testimony (Greenberg, Westcott, & Bailey, 1998), and
artificial vision (Torralba, 2003; Vailaya, Jain, & Zhang,
1998).
Several computational models have explored the idea

that a scene can be categorized using only (or primarily)
unlocalized amplitude information (e.g., Gorkani &
Picard, 1994; Guerin-Dugue & Oliva, 2000; Guyader
et al., 2004; Herault et al., 1997; Oliva & Torralba, 2001).
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A biological rationale for such models is the well-known
sensitivity of complex cells in V1 to orientation and
spatial frequency (De Valois & De Valois, 1988; Hubel &
Wiesel, 1968). This has led to the well-known claim that
scene gist recognition does not require prior recognition of
the component objects in it (Oliva & Torralba, 2001).
Less commented upon is the implication that scene
categorization may be similarly independent of scene
layout, i.e., knowing that a coastline image has strong
horizontal and diagonal information in the low spatial
frequency range would be more important than knowing
that the main diagonal (waterline) descends from the main
horizontal (horizon). For example, the Spatial Envelope
model (Oliva & Torralba, 2001) correctly categorized
images into eight basic level scene categories with 86%
accuracy (vs. 12.5% chance) using only unlocalized
amplitude information. Localizing that information only
increased accuracy to 92%, suggesting that most of the
useful information was unlocalized.
The usefulness of unlocalized amplitude information

has received mixed support from human behavioral
studies. Guyader et al. (2004) showed a small priming
effect (15–18 ms) on scene categorization that was
equivalent for normal scene primes and scene primes
with normal amplitude spectrum but randomized phase
(i.e., no preserved localization). In addition, Kaping et al.
(2007) showed biasing of scene categorization by adapta-
tion to noise roughly sharing the amplitude spectra of
Natural versus Man-made scenes. However, scene cate-
gorization at the basic level is disrupted when phase is
randomized without changing the amplitude spectrum
information (Loschky et al., 2007; see also Wichmann,
Braun, & Gegenfurtner, 2006 for animal detection in
scenes). Converging evidence from visual gist masking
studies supports the idea that amplitude localization is
necessary for gist identification (Loschky et al., 2007).
An intuitively appealing explanation for these conflict-

ing results is that unlocalized amplitude information,
while not particularly useful for explicit basic level scene
categorization such as “Mountain” or “Forest” (Tversky &
Hemenway, 1983), may be more useful for the simpler
discrimination between “Natural” versus “Man-made”
scenes. In support of this hypothesis, Oliva and Torralba
(Oliva & Torralba, 2001, Table 1, p. 148) found that the
Natural/Man-made distinction corresponds to subjects’
first-pass scene image sorting behavior. Likewise, the
Natural/Man-made distinction is the first stage of the
Spatial Envelope model, which is based entirely on
unlocalized amplitude information, since “the introduction
of spatial information does not seem to improve the
classification” (Oliva & Torralba, 2001, p. 158). This
explanation is consistent with previous studies supporting
the usefulness of unlocalized amplitude information for
scene categorization, given that those either used the
Natural/Man-made task (Kaping et al., 2007) or a task that
could be treated as such by subjects (i.e., “Beach” vs.
“City,” Guyader et al., 2004).

The current study tests the hypothesis, derived from the
Spatial Envelope model (Oliva & Torralba, 2001), that
unlocalized amplitude information is more useful for
discriminating “Natural” versus “Man-made” scenes than
for discriminating basic level scene categories. Its
method is to compare observers’ scene category recog-
nition for images with varying levels of phase random-
ization in two different tasks: 1) basic level scene
categories, and 2) the Natural/Man-made distinction.
The key prediction is that fully phase-randomized scenes
should be more recognizable in the Natural/Man-made
task than in the basic level task. If not, it would suggest
that localization, via absolute phase, is necessary for
normal explicit scene processing (Field, 1987, 1999;
Simoncelli & Olshausen, 2001; Thomson & Foster, 1997),
even for the purportedly primitive Natural/Man-made
distinction. Our study follows the tradition of using
demonstrations to test models of vision by generating
images having characteristics predicted to be useful for
image recognition and observing their effects. Such
demonstrations have been used to informally test spatial
vision models (Anstis, 1998; Piotrowski & Campbell,
1982; Tadmor & Tolhurst, 1993) and the Spatial Envelope
model (Oliva & Torralba, 2006; Torralba & Oliva, 2002).
The current study goes beyond a demonstration, however,
to more formally test the above hypothesis using exper-
imental methods.

Methods

Participants

160 Kansas State University students (120 females,
Mean age = 18.91) participated for course credit. All
subjects had at least 20/30 corrected to normal vision.

Stimuli

We randomly sampled 256 images from the Oliva and
Torralba (2001) image set (http://cvcl.mit.edu/database.
htm), 32 images from each of eight categories: (Natu-
ral): Coast, Forest, Mountain, Open Country; (Man-
made): City Center, Highway, Street, Tall Building. All
images were reduced to grayscale and put through five
levels of phase randomization (0, .2, .4, .6, 1.0) using
the RISE algorithm (Loschky et al., 2007; Sadr & Sinha,
2001, 2004), which included equalization of mean
luminance and RMS contrast across all images and
phase-randomization levels (see Figure 1). Images
measured 256 � 256 pixels, and viewed at a distance of
53.34 cm from the monitor (using a chinrest) they
subtended 10.12- � 10.12- visual angle. The 85 Hz
Samsung SyncMaster 957 MBS monitors were calibrated
for luminance and contrast.
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Design and procedures

The study used a 2 � 5 between-subjects factorial
design: 2 (task: Basic, Natural/Man-made) � 5 (Phase
randomization factor (hereafter called “RAND”): 0, 0.2,
0.4, 0.6, 1). 16 participants were randomly assigned to
each of the 10 groups.
Participants were familiarized with the category labels

by presenting a separate sample set of 80 labeled images,
and the task, by performing 32 practice trials. The actual
experiment had 256 trials. Figure 2 shows the sequence

of trial events. On each trial, participants looked at a
fixation cross prompting them to push a key to display
an image. The target image appeared for 24 ms,
followed by a 750 ms gray screen (matched to the
image set mean luminance), followed by a category cue,
which remained until the participant made a “YES” or
“NO” button press. Participants were encouraged to
respond as quickly and accurately as possible. Each of
the 256 images appeared once, and each of the cue
categories ((8) basic level, or (2) Natural/Man-made)
was used equally often, with equal cue validity for all

Figure 1. Two example scenes, a “Coast” (top) and “Tall Building” (bottom), each having five levels of phase randomization (range: 0–1).
“RAND = 0” represents a phase randomization factor of 0 (an unaltered image); “RAND = 1” represents a phase randomization factor of 1
(completely randomized).
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categories. The basic level task average cue validity was
0.5, but due to an error in the Natural/Man-made task
the average validity was 0.56. This discrepancy is
addressed in the Results section.

Results

To distinguish sensitivity from response bias (poten-
tially caused by the slight difference in cue validity across
tasks), results are reported in terms of the non-parametric
signal detection measures AV and BW (Grier, 1971;
Macmillan & Creelman, 2005). Figure 3 shows that
sensitivity greatly decreased with increasing phase ran-
domization regardless of task (F(4, 150) = 251.40,
p G .001). However, sensitivity also showed a cross-over
interaction with task (F(4, 150) = 7.58, p G .001), with
higher sensitivity in the Natural/Man-made task than the
Basic level task for phase randomization levels at or
below 0.4, and a reversal of this pattern for greater levels
of phase randomization. Consistent with Loschky et al.
(2007), the threshold level of phase randomization for
scene categorization seems to be 0.5 (between RAND =
0.4 and 0.6)Vsensitivity to scene categories is at a
minimum when the phase randomization factor exceeds
this value. Consistent with Oliva and Torralba’s (2001)
suggested primacy of the Natural/Man-made distinction,
in the unaltered image condition (RAND = 0), sensitivity
was greater for the Natural/Man-made task (M = .97,
SD = .02) than for Basic level task (M = .93, SD = .03),

t(30) = 4.37, p G .001. However, inconsistent with our
primary hypothesis, in the completely phase-randomized
condition (RAND = 1), sensitivity was lower in the
Natural/Man-made task (M = .53, SD = .09) than in the
Basic level task (M = .62, SD = .05), t(30) = 3.34, p = .003
(equal variances not assumed), suggesting that unlocalized
amplitude is insufficient for scene categorization, even at
the primitive level of the Natural/Man-made distinction.
Bias differed between the two task conditions, with a

“YES” bias in the Natural/Man-made task (M = j.05,
SD = .02), and a “NO” bias in the basic level task (M =
.05, SD = .02), F(1, 150) = 14.59, p G .001. This bias
difference was only found in the most recognizable
conditions (RAND = 0–0.2), probably because in the
unrecognizable conditions (RAND = 0.6–1) participants
were unaware of the difference in the base rate for cue
validity (since their lack of sensitivity in these conditions
means that they could not distinguish valid and invalid
cues).
More importantly, Figure 4 shows a different bias found

in the Natural/Man-made task at phase randomization
levels below the gist recognition threshold (RAND =
0.6–1). In the completely phase randomized condition
(RAND = 1), there was a strong bias to perceive images
‘as being “Natural,” whereas no such bias was found for the
normal unaltered images (RAND = 0), #2(1, N = 8189) =
435.39, p G .001. For this analysis, responses were
recoded such that “YES” to “Natural” or “NO” to “Man-
made” were coded as “Natural” (and vice versa for “Man-
made”). Thus, for example, in Figure 1, the RAND = 1
Tall Building image had a .94 (= 15/16 participants)

Figure 2. Schematic of the events in a trial.

Figure 3. Sensitivity (AV) to scene category as a function of phase
randomization factor (RAND = 0–1) and categorization task (Basic
level vs. Natural/Man-made). “RAND = 0” represents a phase
randomization factor of 0 (an unaltered image); “RAND = 1”
represents a phase randomization factor of 1 (completely
randomized). Error bars represent 1 standard error of the mean.
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“Natural” response rate. This “Natural” bias produced the
drop in sensitivity in the Natural/Man-made task for
images below the gist recognition threshold, because it
increased false alarms to “Natural” cues and misses for
“Man-made” cues. An explanation for the “Natural” bias
is that below the gist recognition threshold, images lose
sharp edges (due to a lack of phase alignment across
spatial frequencies), and that this signals the “Natural”
category. Conversely, then, the presence of sharp edges
should signal the “Man-made” category.
We carried out a further analysis to determine which, if

any, basic level distinctions viewers were able to make
when phase-randomization has exceeded the 0.5 level.
The analysis was therefore limited to the Basic level task,
and included both the RAND = 0.6 and 1.0 conditions,
which had identical accuracy levels (see Figure 3). To
determine the Basic level distinctions viewers could make,
we analyzed the percent correct for each image category

as a function of the cue category (see Table 1). The main
diagonal of Table 1 represents the percent of hits (vs.
misses) for each validly cued image category, while off-
diagonal cells represent the percent of correct rejections
(vs. false alarms) for invalid cues. The main diagonal
shows clear evidence of the Natural Bias, in that viewers’
hit rates were all greater than 50% for the “Natural”
categories and all less than 50% for the “Man-made”
categories. The off-diagonal cells allow us to ask, for each
image category, whether viewers were better at discerning
that certain cues were invalid compared to others. Further
inspection of Table 1 shows more evidence of the
“Natural” bias. Specifically, correct rejection rates were
high for pairs of “Natural” images with invalid “Man-
made” cues (in the upper right quadrant), whereas correct
rejections were lower (i.e., false alarms were higher) for
pairs of “Man-made” images with invalid “Natural” cues
(in the lower left quadrant). The upper left and lower right
quadrants of Table 1 are made up of inverse pairings of
image and cue categories. Inverse pairings, for example
“Forest” images paired with “Street” cues (in the upper
right quadrant, M = 75.4) versus “Street” images paired
with “Forest” cues (in the lower left quadrant, M = 30.7),
should have equal correct rejection rates if there is no
bias. The differences clearly show a bias.
Evidence for the “Natural” bias shown in Table 1

becomes even clearer when we set a threshold of 75%
correct (midway between 50% chance and 100% perfect)
for further analysis, as shown in Table 2. Each row of
Table 2 shows, from left to right, a combination of image
and cue category that produced a correct rejection rate of
Q75%, followed by the inverse pairing of image and cue
categories and corresponding correct rejection rate. A
clear pattern is that all (but one) of the image and cue
pairings that produced correct rejection rates Q75%
involved an implicit Natural/Man-made distinction. (We
discuss the one exception below.) Consistent with the
Spatial Envelope model (Oliva & Torralba, 2001), this
suggests that the Natural/Man-made distinction underlies
basic level distinctions. However, this process was highly
influenced by the “Natural” bias. Specifically, all of the
pairings that produced high correct rejection rates were for

Image Category

Cue Category

Coast Forest Mountain Open Country City Center Highway Street Tall Building

Coast 68.6 53.7 63.2 50.8 81.1 62.3 60.3 82.8
Forest 79.3 74.7 50.6 51.4 71.6 82.1 75.4 83.6
Mountain 47.7 37.5 57.4 41.5 74.0 66.2 77.0 79.7
Open Country 36.4 41.8 53.1 61.7 76.5 56.8 70.7 80.3
City Center 64.5 25.4 55.6 59.7 41.4 72.1 63.9 65.8
Highway 36.1 53.7 55.9 43.0 75.7 37.6 71.1 88.2
Street 71.4 30.7 39.4 64.3 63.1 72.5 28.9 61.2
Tall Building 72.0 37.1 56.9 71.8 47.9 64.1 62.5 49.4

Table 1. Percent correct for image and basic level cue category pairings. All images had 90.5 phase randomization.

Figure 4. Percent of “Natural” versus “Man-made” responses as a
function of phase randomization factor (RAND = 0 vs.1). “RAND =
0” represents a phase randomization factor of 0 (an unaltered
image); “RAND = 1” represents a phase randomization factor of 1
(completely randomized).
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“Natural” image categories paired with “Man-made” cue
categories (left half of Table 2, M correct rejection =
79.83%). There were much lower correct rejection rates
for the corresponding inverse pairings of “Man-made”
image categories and “Natural” cue categories (right half
of Table 2, M correct rejection = 53.98%). This
asymmetry suggests the Natural Bias because viewers
readily rejected a “Man-made” cue category as describing
a phase-randomized “Natural” image, while they also
readily false alarmed to a “Natural” cue category describ-
ing a phase-randomized “Man-made” image.
The only image and cue category pairing with a high

correct rejection rate that did not involve an implicit
Natural/Man-made distinction was that of “Forest” images
and “Coast” cues (Table 2, bottom row). Interestingly, the
correct rejection rate for this pairing was virtually
identical to the average for “Natural” images paired with
“Man-made” cues. Likewise, the much lower correct
rejection rate for “Coast” images paired with “Forest”
cues was virtually identical to the average for “Man-
made” images paired with “Natural” cues. Thus, para-
doxically, the “Forest” and “Coast” contrast seems to
epitomize the Natural Bias.
We note that there were two combinations of image and

cue category that produced relatively symmetrical and
high correct rejection rates: “Coast” images with “Tall
Building” cues (or vice versa) and “Open Country”
images with “Tall Building” cues (or vice versa). For
both combinations, the distinction would seem to depend
on a strong contrast between the dominant orientations
associated with the two categories (horizontal vs. verti-
cal), which may underlie an implicit Natural/Man-made
distinction. The highly discriminable “Coast” versus “Tall
Building” pairing is essentially the same as the “Beach”
versus “City” pairing Guyader et al. (2004) used to show
priming of scene gist by unlocalized amplitude informa-

tion, which suggests a resolution to the apparently
conflicting results between studies of the role of unlocal-
ized amplitude information in scene categorization. Speci-
fically, while the discriminability of these pairs of
categories is consistent with claims that unlocalized
amplitude information is useful for scene categorization
(Gorkani & Picard, 1994; Guerin-Dugue & Oliva, 2000;
Guyader et al., 2004; Kaping et al., 2007; Oliva &
Torralba, 2001; Oliva, Torralba, Guerin-Dugue, & Her-
ault, 1999), the limited scope of the utility of this
information is also very clear (i.e., only 2 of the 28
unique pairings of 8 image and 8 cue categories).

Discussion and conclusions

The current results are consistent with those of
Loschky et al. (2007), as well as other studies that have
shown the necessity of localization (via absolute phase
information) for object recognition or animal detection
(Sadr & Sinha, 2004; Wichmann et al., 2006). Conversely,
the results fail to support the claimed usefulness of
unlocalized amplitude information in explicit scene
categorization, even for the most primitive Natural/Man-
made scene distinction.
How can we reconcile the current results with studies

showing adaptation or priming effects on scene catego-
rization based on generalized amplitude information
(Guyader et al., 2004; Kaping et al., 2007)? In the current
study, observers attempted to recognize the category of
fully phase-randomized scenes but could not do so, except
in the case of a very limited number of category contrasts
(e.g., “Coast” vs. “Tall Building”). In Guyader et al.
(2004), observers were primed by fully phase-randomized

Image and Cue Category Pairs with Q75% Correct Rejection Inversely Ordered Image and Cue Category Pairs

Image Cue %CR Image Cue %CR

Coast City Center 81.1 City Center Coast 64.5
Coast Tall Building 82.8 Tall Building Coast 72.0
Forest Highway 82.1 Highway Forest 53.7
Forest Street 75.4 Street Forest 30.7
Forest Tall Building 83.6 Tall Building Forest 37.1
Mountain Street 77.0 Street Mountain 39.4
Mountain Tall Building 79.7 Tall Building Mountain 56.9
Open Country City Center 76.5 City Center Open Country 59.7
Open Country Tall Building 80.3 Tall Building Open Country 71.8
Average 79.83 Average 53.98
Forest Coast 79.3 Coast Forest 53.7

Table 2. Image and basic level cue category pairings producing high correct rejection rates (Q75%), and their corresponding inversely
ordered pairings. All images had 90.5 phase randomization. “% CR” = percentage of correct rejection (vs. False alarms).
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scenes prior to recognizing unaltered scene images, and
showed a 15–18 ms priming effect, when contrasting
same-category priming with priming across the “Beach”
versus “City” contrast. In sum, it seems that unlocalized
amplitude information may play a facilitative role in scene
categorization for a limited number of category contrasts,
but, by itself, such information is far from sufficient to
categorize most scenes.
Interestingly, the current study strongly suggests that

the presence or absence of sharp edges serves as a
discriminative feature in distinguishing Natural versus
Man-made scenes. Wichmann et al. (2006) have shown
that decrements in image categorization that accompany
phase randomization are specifically due to the loss of
“features such as local edges” (p. 1526) rather than simple
reductions in contrast. The current study has shown that
such a lack of sharp edges greatly increased the likelihood
of categorizing scenes as “Natural” in images having more
than 50% phase-randomization (i.e., the gist recognition
threshold). An interesting question is whether this “Nat-
ural” bias is somehow related to the “Outside” bias found
by Fei-Fei et al. (2007).
On the surface, the fact that there is a “Natural” bias

could seem problematic for studies using phase-random-
ized scenes to investigate the role of unlocalized ampli-
tude information on scene gist. The problem is that
responses of subjects will be biased. Nevertheless, studies
using phase-randomized scenes have been very useful in
showing that unlocalized (or randomly localized) ampli-
tude information is insufficient to recognize scene gist.
Importantly, careful consideration suggests that it is this
very lack of localized information that produces the
“Natural” bias.
Consistent with the Spatial Envelope Model (Oliva &

Torralba, 2001), the current study suggests that it is easier
to make the Natural/Man-made distinction than to distin-
guish basic level scene categories, such as “Mountain,”
“Forest,” or “Street” (Tversky & Hemenway, 1983). This
conflicts with the standard finding that basic level catego-
ries are easier to process than superordinate categories, of
which “Natural” and “Man-made” are clear examples
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976;
Tversky & Hemenway, 1983). Gosselin and Schyns (2001)
point out that the level at which categorizations are easiest
depends on “the ease with which [a category] can be
accessed from its defining features” (p. 738). Generally,
intermediate level “basic” categories are accessed most
easily because they have more redundant features than
superordinate or subordinate level categories. However,
Gosselin and Schyns (2001, p.
742) point out that superordinate categories can be accessed
very easily if they depend on “a set of singly sufficient
values” (e.g., Murphy, 1991, Experiment 5). This is
consistent with Oliva and Torralba’s (2001) claim that the
Natural/Man-made distinction relies on highly redundant,
primitive features, such as edges at dominant orientations
(horizontal vs. vertical). Nevertheless, the current results

strongly suggest that even such simple features must have
sufficient localization to form configurations if they are to
be useful in discriminating scene categories, including the
primitive Natural/Man-made distinction.
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