
Using R for Analyzing Indifference Point Data 

The public domain software R can be downloaded for the Windows, Mac, or Linux 

platforms at https://cran.r-project.org.  This download contains the core functionality of R and a 

wide range of “libraries” that can be loaded as needed.  Furthermore, various R packages can be 

downloaded and installed that contain additional libraries with specific functionality.  Both the 

core program and the various libraries are frequently updated, so issues can arise when a user 

downloads a new library that is incompatible with their currently installed version of R.  The 

solution is to download a new version of R and to reinstall the packages that contain the libraries 

of interest.  Although R contains help files for every command, these files are often rather cryptic 

for the average user.  A more accessible general reference to learn how to perform many of the 

basic tasks in R is the Quick-R website, http://www.statmethods.net, as well as numerous books.  

In the examples below, I make heavy use of the “nlme” library in R that is part of the 

initial download.  Another library that is of significant utility for graphing multilevel data is the 

“lattice” library.  At the time of writing, there are over 9,500 packages available for R, most of 

which are not part of the core installation and would require separate installation.  In general, I 

commonly use only a handful of libraries that are not automatically installed with the core 

download.   

Some users will get an obscure error when attempting to download and install a package.  

This usually arises either because the person has not checked the “install dependencies” box or 

the computer’s virus protection software is blocking part of the install.  Checking “install 

dependencies” ensures that the download will also install any libraries necessary for the 

functioning of the library being downloaded.  If you are still having problems, you should 



temporarily disable your virus protection while you install new libraries (note, this is only 

necessary for the initial installation, not for subsequent calls of the library).  

There are two R packages that are important when making condition comparisons and 

simple effects tests, multcomp and lsmeans.  I prefer multcomp despite its need for greater 

understanding of variable coding because of its flexibility, but lsmeans is more user-friendly 

when performing basic comparisons.  The multcomp basics are covered in https://cran.r-

project.org/web/packages/multcomp/vignettes/multcomp-examples.pdf and the lsmeans package 

is covered in https://cran.r-project.org/web/packages/lsmeans/vignettes/using-lsmeans.pdf.  Note 

that these files demonstrate the range of functionality in these packages, but the typical 

psychologist is likely to only need a couple of the commands in these libraries (see file “Example 

with interactions” for an example of the use of the multcomp library).  

The Logic of Nonlinear Multilevel Modeling 

Here, I will outline the basic logic and syntax involved in using R to fit a hyperbolic 

function to discounting data.  The basic syntax for fitting discounting curves in R is illustrated in 

the following two commands:  

myrList<-nlsList(Value~1000/(1+exp(logk)*Delay)|Subject, 
data=myd, start=c(logk=-2))  

myr<-nlme(Value~1000/(1+exp(logk)*Delay), fixed=logk~1, 
random=logk~1|Subject, data=myd, start=c(logk=-2)) 

The first command fits the hyperbolic to each subject individually whereas the second command 

uses multilevel modeling to fit the subjects as a collective.  The elogk hyperbolic variation 

(Equation 2) lies at the heart of both function calls.  The value of the numerator of the hyperbolic 

equation (here, 1000) would vary depending on the amount immediately available.  In the nlsList 

syntax, the “| Subject” simply indicates that the fit is to be done separately for each subject, and 

the “data=myd” phrase designates the name of the dataframe being analyzed (in this case “myd”, 



see the accompanying R command files for a full example).  When doing nonlinear curve fitting, 

it is necessary to provide an initial estimate of the parameters in the model.  Intelligent choice of 

these starting values is critical for the model to converge on a solution, and it is worth the time to 

try different values to ensure that you have the model with the best fit.  While I tend to use AIC 

as a model selection criterion, there are published treatments of alternative model metrics that 

can help inform the researcher’s choice (Burnham & Anderson, 2004; Pitt & Myung, 2002).  

For the multilevel modeling function nlme, the additional arguments fixed and random 

are specified.  The “fixed=logk~1” component indicates that there is one value of logk to be 

estimated for the entire set of data.  The “random=logk~1 | Subject” component indicates that 

each subject is assumed to have a logk that varies around the fixed (or group) estimate of logk.  

These so called “random effects” do not generate statistical tests of their values; they are 

included to model the covariance between data values produced by the same subject.  A failure 

to model these dependencies can create egregious errors in statistical analysis; these major 

problems with ignoring data dependencies prompted the development of repeated measures 

ANOVA. There are a range of additional options that can be passed to these functions to 

improve model fit and convergence, some of which are included in the Supplemental Materials; 

for a full treatment, see Pinheiro and Bates (2004).  

The nlsList command will produce individual estimates of the logk values along with 

their standard errors for each subject for which the algorithm converged (the 

“summary(myrList)” command provides this information).  Thus, there is no overall assessment 

of the model in terms of R2, AIC, BIC, RMSE, or other fit metrics.  Furthermore, the 

consideration of additional within- or between-subject variables must be included in a second 



analysis stage that is, of course, ignorant of the varying precisions of the logk values revealed by 

the nlsList analysis.   

In contrast, the nlme command will produce an estimate of a single overall logk for the 

subjects along with its standard error (and associated statistical details) as well as an overall 

metric of its fit to all of the subjects’ data (the AIC and BIC are automatically provided and 

recommended for nonlinear fits).  The individual logk estimates can be obtained from the “coef” 

function.  Furthermore, nlme can include between- and within-subject variables as modifiers of 

the estimated discount rate.  Estimating the effects of these variables occurs concurrently with 

the estimation of the discount rate.   

To illustrate the inclusion of a categorical predictor of discounting rate, the following 

examples are based on the $500 and $10,000 conditions of Kaplan and Reed (2013).  Although 

the design was within-subject, for the between-subject analysis shown below the data from only 

one condition from each subject was used.  For the within-subject analysis (i.e., consistent with 

the actual design), the full data set was used.  Before analyzing the data, each indifference point 

was standardized by dividing it by its condition’s undiscounted value of $500 or $10,000 thus 

necessitating the use of 1.0 in the numerator of the hyperbolic function. 

The following command illustrates the inclusion of a single two-level, between-subject 

categorical predictor into the nlme call: 

myr<-nlme(Value~1/(1+exp(logk)*Delay), 
fixed=logk~Condition, random=logk~1|Subject, data=myd, 
start=c(logk=-2, 0)) 

In the following treatment, I will assume the default 0/1 dummy coding of condition. In this 

command, logk is allowed to have two estimates, one for the condition value that was dummy-

coded as 0 (logk.(Intercept) in the output) and one for the difference between this value and that 

of the condition value that was dummy-coded as 1 (logk.Condition in the output).  Because there 



are now two parameters that must be estimated, there are two start values; the first is for the 

intercept (i.e., the logk for the first condition) and the second is for the difference in logk between 

the two conditions (by choosing the value to be 0 here, I assume no difference as a starting 

point).  The critical portion of the output generated from a summary of the model along with the 

first five subjects’ model coefficients is shown below.  

> summary(myr) 
Nonlinear mixed-effects model fit by maximum likelihood 
 

AIC         BIC     logLik 
-369.1762   -349.8098     188.5881 
 
Fixed effects: logk ~ Condition  
                         Value Std.Error  DF    t-value p-value 
logk.(Intercept)    -2.9808499 0.1917112 779 -15.548645  0.0000 
logk.Condition10000 -0.4340097 0.2713859 779  -1.599234  0.1102 
 
> coef(myr) 
    logk.(Intercept) logk.Condition10000 
1        -1.39074185          -0.4340097 
2        -4.34986279          -0.4340097 
3        -1.33801175          -0.4340097 
4        -1.50858139          -0.4340097 
5        -3.48339436          -0.4340097 
 
Thus, the estimated logk for the $500 magnitude condition was -2.98 (and significantly different 

from zero) and the estimated logk for the $10,000 condition was -2.98 – .43 = -3.41 (the 

difference was not significantly different from zero, p = .11).  The coef command reveals the 

variation in logk estimates across subjects.  Note that the effect of the condition difference 

(logk.Condition10000) is constant across subjects because this variable was between-subject; 

although present for every row in the coefficients table, this adjustment will only be applied for 

subjects in the $10,000 group.  

The situation for a within-subject variable is a bit more complicated.  The following 

command assumes the condition variable varies within-subject:   

myr<-nlme(Value~1/(1+exp(logk)*Delay), 
fixed=logk~Condition, random= logk~Condition|Subject, 
data=myd, start=c(logk=-2, 0)) 



The key difference here is the inclusion of “Condition” in the random effects specification.  This 

indicates that the condition difference in logk values at the individual subject level is allowed to 

vary across subjects.  The fixed effect of condition is the result of empirical interest to most 

researchers.  The random effect involving condition must be included to model the within-

subject dependence between conditions involving the same subject as well as to allow the effect 

of this within-subject variable to vary across subjects (this is called a “slope effect” in multilevel 

parlance).  Some subjects might have produced similar discounting rates across the conditions 

whereas others might have produced very different rates. It is common to evaluate whether it was 

necessary to allow this variation by omitting condition in the random effect specification and 

then comparing the model that included it with the model that excluded it.  Model comparison 

can be done by comparing AIC/BIC values or with a direct likelihood ratio test using 

“anova(modelname1, modelname2)”.  In this case, the model including condition as a random 

effect was much more likely to have produced the data therefore providing strong evidence that 

the subjects were differentially affected by the $500 versus $10,000 manipulation.  It is critical to 

use the model including condition as a random effect if it generates a significantly better fit 

because such a result suggests that it is necessary to model the dependency between observations 

collected from the same condition (Gelman & Hill, 2006; Pinheiro & Bates, 2004).    

A portion of the output from this model is shown below, first for the model summary and 

second for the first five subjects’ model coefficients that include the random effect variation in 

intercept (here, estimating the k for the $500 condition) and slope (here, estimating the difference 

between the $500 and $10,000 conditions) across subjects:  



> summary(myr) 
 
Nonlinear mixed-effects model fit by maximum likelihood 
 
        AIC       BIC   logLik 
  -880.1351 -846.9265 446.0676 
 
Fixed effects: logk ~ Condition  
                         Value  Std.Error   DF    t-value p-value 
logk.(Intercept)    -2.9468562 0.12696647 1715 -23.209719       0 
logk.Condition10000 -0.4712007 0.09726704 1715  -4.844403       0 
 
> coef(myr) 
    logk.(Intercept) logk.Condition10000 
1        -1.27146190        0.4206014520 
2        -4.25984389        0.4988673153 
3        -1.59223555       -1.5678549232 
4        -1.61661335       -1.3761303983 
5        -3.51849744       -0.8712103308 
 

Each subject in this analysis had a different estimated adjustment for the condition difference 

because the size of this effect could be different for each subject and was allowed to vary in the 

random effect designation.  For example, for the first subject the estimated logk for the $500 

condition was -1.27 and for the $10,000 condition was -1.27 + .42 = -.85.  

Model Assumptions 

In the examples provided here and in the accompanying R command files, the residuals 

are assumed to be normally distributed and to satisfy the homogeneity of variance assumption 

common to linear regression techniques.  These assumptions were satisfied for the data presented 

here.  It is possible that an experiment including a lot of steep discounters or non-discounters 

might run into more ceiling (indifference points near the max) or floor (indifference points near 

zero) effects that can truncate one or the other tail of the distribution of the residuals.  When 

encountered, it is possible to use an extra parameter for the nlme fit in which the residuals are 

differentially weighted as a function of the delay: “weights=varPower(form=~Delay).”  To 

determine its necessity, versions of the model with and without the weighting can be run and 



then compared using the AIC or running a likelihood ratio test (e.g., “anova(model1, model2)” 

where model1 and model2 are the variables containing the two models). 

If the residuals are not normally distributed, a generalized nonlinear multilevel model 

could be explored.  Unfortunately, the existing tools are not well tested and I cannot yet 

recommend their use.   However, for the datasets I have analyzed, the nlme command has been 

sufficient.   
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