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Bayesian statistical methods are slowly creeping into all fields of science and are becoming ever more
popular in applied research. Although it is very attractive to use Bayesian statistics, our personal
experience has led us to believe that naively applying Bayesian methods can be dangerous for at least 3
main reasons: the potential influence of priors, misinterpretation of Bayesian features and results, and
improper reporting of Bayesian results. To deal with these 3 points of potential danger, we have
developed a succinct checklist: the WAMBS-checklist (When to worry and how to Avoid the Misuse of
Bayesian Statistics). The purpose of the questionnaire is to describe 10 main points that should be
thoroughly checked when applying Bayesian analysis. We provide an account of “when to worry” for
each of these issues related to: (a) issues to check before estimating the model, (b) issues to check after
estimating the model but before interpreting results, (c) understanding the influence of priors, and (d)
actions to take after interpreting results. To accompany these key points of concern, we will present
diagnostic tools that can be used in conjunction with the development and assessment of a Bayesian
model. We also include examples of how to interpret results when “problems” in estimation arise, as well
as syntax and instructions for implementation. Our aim is to stress the importance of openness and
transparency of all aspects of Bayesian estimation, and it is our hope that the WAMBS questionnaire can
aid in this process.
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Bayesian statistical methods are slowly creeping into all fields
of science and are becoming ever more popular in applied re-
search. Figure 1 displays results from a literature search in Scopus
using the term “Bayesian estimation” and, as can be seen, the
number of empirical peer-reviewed articles using Bayesian esti-
mation is on the rise. This increase is likely due to recent compu-
tational advancements and the availability of Bayesian estimation
methods in popular software and programming languages like
WinBUGS and OpenBUGS (Lunn, Thomas, Best, & Spiegelhal-
ter, 2000), MlWiN (Browne, 2009), AMOS (Arbuckle, 2006),
Mplus (Muthén & Muthén, 1998–2015), BIEMS (Mulder, Hoij-
tink, & de Leeuw, 2012), JASP (Love et al., 2015) via the Bayes-
Factor package in R, which is also a standalone Bayesian package
(Morey, Rouder, & Jamil, 2015), SAS (SAS Institute Inc., 2002–
2013), and STATA (StataCorp., 2013). Further, there are various
packages in the R programming environment (Albert, 2009) such

as STAN (Stan Development Team, 2014) and JAGS (Plummer,
2003) that implement Bayesian methods.

When to Use Bayesian Statistics

There are (at least) four main reasons why one might choose to
use Bayesian statistics. First, some complex models simply cannot
be estimated using conventional statistics (see, e.g., Muthén &
Asparouhov, 2012; Kruschke, 2010, 2011; Wetzels, Matzke, Lee,
Rouder, Iverson & Wagenmakers, 2011). Further, some models
(e.g., mixture or multilevel models) require Bayesian methods to
improve convergence issues (Depaoli & Clifton, 2015; Skrondal &
Rabe-Hesketh, 2012), aid in model identification (Kim, Suh, Kim,
Albanese, & Langer, 2013), and produce more accurate parameter
estimates (Depaoli, 2013, 2014). Second, many scholars prefer
Bayesian statistics because they believe population parameters
should be viewed as random (see, e.g., Dienes, 2011; van de
Schoot et al., 2011). Third, with Bayesian statistics one can incor-
porate (un)certainty about a parameter and update this knowledge
through the prior distribution. Fourth, Bayesian statistics is not
based on large samples (i.e., the central limit theorem) and hence
may produce reasonable results even with small to moderate
sample sizes, especially when strong and defensible prior knowl-
edge is available (Hox, van de Schoot, & Matthijsse, 2012; Moore
et al., 2015; van de Schoot, Broere, Perryck, Zondervan-
Zwijnenburg, & van Loey, 2015; Zhang, Hamagami, Wang,
Grimm, & Nesselroade, 2007).

This article was published Online First December 21, 2015.
Sarah Depaoli, Department of Psychological Sciences, University of

California, Merced; Rens van de Schoot, Department of Methods and
Statistics, Utrecht University, and Optentia Research Program, Faculty of
Humanities, North-West University.

The second author was supported by a grant from the Netherlands
organization for scientific research: NWO-VENI-451-11-008.

Correspondence concerning this article should be addressed to Sarah
Depaoli, Psychological Sciences, University of California, Merced, 5200
N. Lake Road, Merced, CA, 95343. E-mail: sdepaoli@ucmerced.edu

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Psychological Methods © 2015 American Psychological Association
2017, Vol. 22, No. 2, 240–261 1082-989X/17/$12.00 http://dx.doi.org/10.1037/met0000065

240

http://dx.doi.org/10.1037/met0000065.supp
mailto:sdepaoli@ucmerced.edu
http://dx.doi.org/10.1037/met0000065


For a full introduction to Bayesian modeling, we refer the
novice reader to, among many others: Bolstad (2007); Carlin and
Louis (2009); Christensen, Johnson, Branscum, and Hanson
(2010); Depaoli and Boyajian, (2014); Gelman and Hill (2007);
Kaplan, 2014; Kruschke (2010); Jackman (2009); Lynch (2007);
Ntzoufras (2009); or van de Schoot and Depaoli (2014). Likewise,
a more technical introduction can be found in Gelman, Carlin,
Stern, and Rubin (2004); Lee (2007), or Press (2003).1

Making Decisions When Implementing
Bayesian Methods

Although it is very attractive to use Bayesian statistics, estimat-
ing models within this framework involves making some nontriv-
ial decisions throughout the estimation process. Likewise, these
decisions can become increasingly more complex to judge based
on the complexity of the model being estimated. Our personal
experience has also led us to believe that naively applying Bayes-
ian methods can be dangerous for three main reasons. First, Bayes-
ian statistics makes use of (subjective) background knowledge
formalized into a, so-called, prior distribution. The exact influence
of the prior is often not well understood and priors might have a
huge impact on the study results, which requires careful consid-
eration we detailed in subsequent sections. Second, akin to many
elements of frequentist statistics, some Bayesian features can be
easily misinterpreted. As is true with any statistical paradigm,
misleading inferences can be drawn if results are not interpreted
precisely. A danger here is that most statistical training, at least in
the field of psychology, comes from a frequentist approach. In
addition, without proper training, it may be that interpretations of
Bayesian statistics can be confused with those in the frequentist
framework. Third, reporting on Bayesian statistics follows its own
rules because there are elements included in the Bayesian frame-
work that are fundamentally different from frequentist settings.
Given that Bayes is only slowly increasing its presence in the
methodological and applied literature, there is not a strong prece-
dence for how to report results; this became even more evident
when we noted most of the articles we found from Scopus cited

earlier failed to report each of the 10 points we have deemed
important and detailed below. These points have been described
in Bayesian textbooks and articles implementing Bayesian
methodology. However, to our knowledge, there is no succinct
summary of these important diagnostics that appears in a single
source.

We conducted a systematic review on applied Bayesian articles
published in psychology see (van de Schoot, Ryan, Winter,
Zondervan-Zwijenburg, & Depaoli, under review). In this review,
we discovered that the majority of articles we reviewed (99 em-
pirical Bayesian articles were deemed eligible for the review) did
not properly report important issues surrounding Bayesian estima-
tion. For instance, 55.6% of the articles did not report the hyper-
parameters specified for the prior, 56.6% did not report checking
for chain convergence, and 87.9% did not conduct a sensitivity
analysis on the impact of priors. We address all of these issues here
and discuss the importance of being completely transparent when
reporting Bayesian results.

To deal with these points of potential danger, we have devel-
oped a succinct checklist: the WAMBS-checklist (When to worry
and how to Avoid the Misuse of Bayesian Statistics), see Figure 2.
The purpose of the checklist is to describe 10 main points that
should be thoroughly examined when applying Bayesian anal-
ysis. We provide an account of “when to worry” for each of
these issues related to: (a) issues to check before estimating the
model, (b) issues to check after estimating the model but before
interpreting results, (c) understanding the influence of priors,
and (d) actions to take after interpreting results. To accompany
these points of concern, we will present diagnostic tools that
can be used in conjunction with the development and assess-
ment of a Bayesian model.

1 For a comprehensive list of introductory, intermediate, and advanced
readings on Bayesian statistics, see the following web site: http://support
.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#
statug_introbayes_sect011.htm.

Figure 1. Number of articles published with “Bayesian estimation” in the title or abstract (Source: Scopus). See
the online article for the color version of this figure.
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Figure 2. WAMBS-Checklist.
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Intended Audience, Scope, and Outline for the
Current Article, and Its Limitations

Intended Audience

The intended audience of this article consists of applied re-
searchers who are implementing Bayesian techniques, novice
Bayesian users, or doctoral-level students wanting to implement
Bayes. As a motivating example, take a situation where a doctoral-
level student wants to use Bayesian methods to solve an applied
problem. In this situation, the supervisor is unfamiliar with such
techniques and cannot be of direct help for diagnosing and solving
problems with estimation and priors. The current article can be
used as a guide and tutorial for checking and diagnosing “prob-
lems” with priors to ensure that the doctoral-level student is
proceeding with data analysis appropriately, even if the supervisor
is unable to help with this process. We do not intend this article to
replace formal, proper training in implementing and interpreting
Bayesian statistics. Although we hope this article can act as a guide
to proper use of these methods, thorough training is essential when
conducting Bayesian methods.

One important warning regarding the use of this checklist is that
fully addressing the items is likely to be a nontrivial task, espe-
cially for the novice user of Bayesian methods. For example, some
of the first stages of the checklist could take several months or
more to adequately address. However, we believe that the time
investment is necessary and that the quality and replicability of
results are ensured once this Checklist has been properly imple-
mented.

Scope

To keep the current study as general as possible with respect to
implementing Bayesian methods, there are several concepts that
we will be focusing on and several that we will not specifically
address outside of providing references of additional sources.
Because of space considerations, we will assume that the user of
these methods is estimating one particular model with one set of
priors. We are assuming researchers are using any general model
that implements MCMC (with any sampling method—e.g., Gibbs
or Metropolis-Hastings), where the number of iterations in the
chain is known. We are also assuming the researcher is imple-
menting user-known or user-specified priors that can be freely
altered within the software; note that some Bayesian programs do
not allow the user to directly alter priors (e.g., the JASP and
BIEMS programs).

There are many specialized topics in traditional statistical mod-
eling that are also important to address under the Bayesian frame-
work such as Bayesian model fit, missing data, model specifica-
tion, model identification, and parameterization. These specialized
topics are beyond the scope of the current article but we refer the
reader to more technical sources such as Gelman et al. (2004) and
Lee (2007) for details on such topics. Finally, we recognize that a
variety of open-source and commercial software programs can be
used to implement Bayesian methods. To keep this discussion as
encompassing as possible, we do not focus on any particular
software; however, we do at times make note of specific features
to be aware of in different programs. Supplementary material
representing work from a variety of software programs is pre-

sented online to aid in implementing various topics discussed and
can be found here: www.sarahdepaoli.com/manuscript-files/ This
material includes a variety of resources to aid in implementing the
recommendations presented here. We include the following types
of information separated into seven folders of content online:

• Examples for using nine different Bayesian software pro-
grams (e.g., AMOS, JAGS, JASP, BUGS, and STAN, to
name a few),

• A detailed exercise document walking through the use of
the WAMBS-checklist,

• All code, output, and data for the examples provided here,
and

• A step-by-step set of directions for implementing the
PSRF convergence diagnostic (discussed in Point 8) for
assessing sensitivity analysis results.

Outline

This article includes 10 main points, comprising the WAMBS-
checklist, to consider when implementing Bayesian statistics.
These points are broken down into four main categories: (a) to be
checked before estimating the model—Point 1; (b) to be checked
after estimation but before inspecting model results—Points 2–6;
(c) understanding the exact influence of the priors—Points 7–9;
and (d) interpretation of model results—Point 10. Within each of
these main categories, we provide background information neces-
sary for understanding each point listed, and we provide a simple
example to show how to fill in the WAMBS-checklist. Next, we
present the individual points, where we include a description of
the issue, a description of what output should be provided to the
supervisor for checking this point, details of when to worry about
certain outcomes, and guidelines for when a Bayesian expert
should be consulted.2 The information required from each of these
sections can be addressed through the WAMBS-checklist provided
in Figure 2.

We include small examples illustrating the different issues that
can arise when applying the checklist. Many of the examples
provided use one of two main datasets to highlight issues such as
convergence, priors, and sensitivity analysis. The first dataset
contains longitudinal information on burn victims (see van Loey,
Maas, Faber, & Taal, 2003) and was selected because previous
work on these data (e.g., Depaoli et al., 2015) showed problems in
obtaining convergence and stable estimates. The second dataset is
from the large-scale Early Childhood Longitudinal Study-
Kindergarten class (NCES, 2001) database, where we illustrate
how priors can be derived and thoroughly examined. All examples
are available in the online material and we also provide an example
online where a single dataset is used to illustrate the entire check-
list from start to finish (see Folder 7 in online material).

2 We are using the broad term of “expert” here to capture the fact that
Bayesian experts come from a variety of subdisciplines. For the sake of this
article, “expert” refers to anyone with ample expertise in Bayesian statistics
to advise on the current topics being addressed. This group may include
statisticians, psychometricians, quantitative psychologists, education stat-
isticians, or those with Bayesian expertise from other disciplines.
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Limitations

The checklist detailed next should be followed precisely in order
to ensure proper implementation and reporting of Bayesian meth-
ods. From a practical point of view, using this checklist will be
time-consuming and require a great deal of critical thinking and
decision making—both of which will improve the quality of the
work being presented. However, the implementation of this check-
list will not ensure that every aspect of the modeling process has
been properly conducted. This article should be viewed as a tool
that can be used to improve clarity and replication of results when
implementing Bayesian methods. It is not our intention to focus the
article on early errors that could have been committed—for exam-
ple, errors in the data collection or model-building phase. Of
course, it is possible that the incorrect model or set of priors can be
chosen before the checklist is addressed. In addition, it is important
to recognize that errors at earlier stages (e.g., selecting an inap-
propriate model to estimate) will impact subsequent phases of the
model estimation process addressed in this checklist. This article
should be used in conjunction with other tools and knowledge that
can help the user avoid errors or mistakes that are beyond the
scope here. Although the focus of this article is not about early
phases of why the model looks the way it does, or if the prior
information came from the “proper place,” using this Checklist
will aid in proper review and dissemination of work because the
estimation process will be completely transparent.

Stage I: To Be Checked Before Estimating the Model

Background Information on Priors

When specifying priors, it is important to recognize that prior
distributions fall into three main classes related to the amount of
(un)certainty they contribute to the model about a given parameter:
(a) noninformative priors, (b) weakly informative priors, and (c)
informative priors.3 Before describing each of these categories, we
note that levels of informativeness fall on a continuum and are
defined subjectively in line with the metric and scale of the
particular parameter under study. For example, a prior (e.g., Uni-
form[0,1]) may be quite informative for one parameter (e.g., an
intercept for a growth model measured on a continuous metric) and
quite noninformative for another (e.g., a parameter on the proba-
bility scale); the level of informativeness is dependent on the scale
of the parameter. We therefore recommend to use graphs to visu-
alize how well the prior maps onto the scale of the parameter;
Folder 1 of the Supplementary Material presents examples for
doing this.

First, noninformative priors represent a complete lack of knowl-
edge about the value of the parameter being estimated. A nonin-
formative prior is typically denoted by a distribution that places an
equal probability for each possible value under that distribution.
Typically, a noninformative prior would be represented by a dis-
tribution with a relatively flat density, where the different values
the parameter can take on have approximately equal likelihood
under the distribution. If, for example, a continuous intercept for a
growth model was being estimated, a noninformative prior might
be Normal(0,1010)—of course, depending on the scale of the
parameter. This prior distribution is centered at zero and has a very
wide variance of 1010, which provides complete ambiguity about
the parameter value.

The next level of informativeness represents a prior distribution
that holds some useful information, but that does not really influ-
ence the final parameter estimate to a large degree. These prior
distributions are referred to as weakly informative priors. A weakly
informative prior is perhaps more useful than a strictly noninfor-
mative prior because some information is conveyed within the
distribution. Essentially, weakly informative priors do not supply
any strict information, but yet are still strong enough to avoid
inappropriate inferences that can be produced from a noninforma-
tive prior (Gelman, Jakulin, Pittau, & Su, 2008). Taking the same
example of a continuous intercept for a growth model, a weakly
informative prior might be Normal(50,15). Perhaps the researcher
knows an approximate intercept and also knows negative starting
points of the growth trajectory are unlikely. The mean for this prior
is set at 50 and the variance is 15. This distribution still covers a
relatively wide-range of values, but it is allowing for quite a bit of
variation surrounding the center of the distribution. In the case of
some model parameters, such as a growth model intercept, the
researcher will have information about the possible range of values
for the intercept from basic descriptive statistics of the growth
data. In this case, the researcher could use that information to help
construct the weakly informative prior that covers the range of
possible values for the parameter. It may even be helpful for the
researcher to plot the potential prior on a graph, where the x-axis
relates to the scale of the parameter. In this case, seeing how the
prior maps onto the scale of the parameter could be very insightful
when constructing the prior.

The other end of the spectrum includes prior distributions that
contain strict numerical information that is crucial to the estima-
tion of the model. These priors are often referred to as informative
prior distributions. Specifically, the hyperparameters for these
priors (e.g., the prior mean and prior variance) are specified to
express particular information reflecting a greater degree of cer-
tainty about the model parameters being estimated. In the case of
our growth model intercept, an informative prior could be Nor-
mal(50,2). In this case, the researcher implies through the prior that
the intercept is very close to 50 since the variance is set to such a
small value. The information embedded in the informative prior
can come from a variety of places, which is referred to as prior
elicitation (O’Hagan et al., 2006; Van Wesel et al., 2011). Some
elicitation strategies include the following techniques. First, the
researcher can ask an expert, or a panel of experts, to provide an
estimate for the hyperparameters based on knowledge of the field;
see, for example: Bijak and Wisniowski (2010); Fransman et al.
(2011); Howard, Maxwell, and Fleming (2000); Martin et al.
(2012); and Morris, Oakley, and Crowe (2014). Second, the re-
searcher can use the results of a previous publication as prior
specification (Kaplan & Depaoli, 2013). Third, they can use the
results from a meta-analysis to define hyperparameter values for
the prior, where multiple studies are combined to form information

3 The term “noninformative prior” refers to the case where researchers
supply vague information about the population parameter value; the prior
is typically defined with a very wide variance (Gill, 2008). Although
“noninformative” is one term commonly used in the Bayesian literature to
describe this type of prior (see, e.g., Gelman et al., 2004), other phrases
such as “diffuse” (see, e.g., Gill, 2008), or “flat” (Jeffreys, 1961) are also
used to describe this type of prior. We use “noninformative” and “diffuse”
interchangeably in this article.
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about the parameter (Ibrahim, Chen, & Sinha, 2005; Rietbergen et
al., 2011). Fourth, a pilot study can be used with the same popu-
lation of interest and a sampling method can be implemented to
obtain an estimate for the parameter that can then be used to define
a prior for a subsequent data set (Gelman, Bois, & Jiang, 1996).
Finally, data-based priors can be derived based on a variety of
methods including maximum likelihood (see, Berger, 2006;
Brown, 2008; Candel & Winkens, 2003; van der Linden, 2008) or
sample statistics (see, e.g., Darnieder, 2011; Raftery, 1996; Rich-
ardson & Green, 1997; Wasserman, 2000). Note that there are
some arguments against using such “double-dipping” procedures
where the sample data are used to derive priors and then used in
estimation; we refer the reader to Darnieder (2011) for more
details on this topic.

Much research has indicated that priors can have an impact on
parameter estimates and therefore also on substantive findings; for
details on the different ways in which priors can adversely impact
findings, see: Depaoli (2013); Gelman and Shalizi (2013); Johnson
(2013); Seaman, Seaman, and Stamey (2012); and van de Schoot
and Depaoli (2014). Moreover, whether the priors typically used as
noninformative (or informative) priors are actually acting as non-
informative (vs. informative) priors has not been fully examined in
the methodological literature. There is reason to believe that such
supposedly noninformative priors may in fact be acting in an
unexpectedly informative way. For example, a prior specification
that is truly noninformative may have an adverse impact on final
parameter estimates via the posterior, especially when sample sizes
are small; see Lambert, Sutton, Burton, Abrams, and Jones (2005)
for a meta-analytic example of this. Alternatively, a prior that is
meant to be noninformative but is actually acting as informative
can have unintended effects on the posterior (see, Gelman, 2006a).
For example, a Dirichlet prior of D(10,10) for a two-class mixture
model can distort the posterior and push the classes to be equal in
size even if they are far from equal (Depaoli, 2013); note that this
is the default “noninformative” prior in Mplus. Likewise, diffuse
or noninformative priors can have an adverse impact on parame-
ters that are transformed. Specifically, Seaman et al. (2012)
showed that diffuse (noninformative) priors used in logistic regres-
sion actually acted as informative priors once the logit transfor-
mation was computed. The result was that the diffuse priors had an
unintended impact on the posterior of the transformed parameters,
which were the parameters ultimately interpreted in the model. As
a result of the impact that even “default” diffuse priors can have,
it is important to indicate and justify when default univariate priors
are implemented in the data analysis process.4

Given that priors in general may have a rather large impact on
final estimates, especially when sample sizes are small, it is
important to understand the priors used in the model under inves-
tigation. That is, if a researcher specifies prior distributions, the
results are affected by the subjective choices a researcher makes.
The question is how much the results are influenced and whether
the influence is wanted or unwanted. If a researcher uses Bayesian
estimation without exactly understanding the role of the prior
distribution, then the results and conclusions (!) might be impacted
in a manner that makes them invalid. Therefore, priors can be
dangerous and researchers should always convince their supervi-
sors, the editor, and the reviewers the impact that the prior is
having on the final conclusions. When using our diagnostic tool,
the exact effect of the priors on the results can be uncovered, as

well as whether the influence of the prior is wanted or unwanted.
In conclusion, the first point of our diagnostic tool seems rather
intuitive and simple, but the importance of understanding your
priors cannot be stressed enough given the potential impact that
priors may have on conclusions.

Point 1: Do You Understand the Priors?

Item description. To convey your understanding of your
prior, you must address five different points. First, one needs to
specify the distributional form of the priors (e.g., normal, inverse
gamma, etc.).5 For a list of possible types of priors, see Appendix
A on pages 573–577 in Gelman et al. (2004). Second, the re-
searcher must decide whether they will use conventional or “de-
fault” priors, which we also refer to as noninformative in this
article.6 This distinction in the type of prior is rooted in whether
Bayesian estimation is used as a method that incorporates previous
knowledge into the estimation process (via weakly or informative
priors) or simply as just another estimator (via noninformative
priors); for a discussion on this topic, see Press (2003). Third, if
weakly informative or informative priors are used, then the re-
searcher must include information about where the background
knowledge used to form the prior came from, see O’Hagan et al.
(2006) for more details on prior elicitation. Fourth, the researcher
must include visual plots depicting weakly informative and infor-
mative priors. Plotting priors can help to visually detect levels of
informativeness. Many programs such as Mplus, Amos, the R
programming environment, and many online web tools can be used
to plot priors—including the code we provide in the online Sup-
plementary Material in Folder 2. Fifth, specific hyperparameter
values must be determined and reported for all priors. This final
request is perhaps the most difficult because it is tied to the issue
of prior elicitation so it is important to be meticulous and thorough
when determining hyperparameter values.

What to show to your supervisor. Table 1 provides an ex-
ample of how to summarize these five points. Perhaps the most
important portion of this table is where the information used to
determine the hyperparameters came from. This information is
especially important to cover with one’s supervisor to ensure that
the correct source of information was used to construct the prior.
If the user is unsure of how to solicit or specify a certain prior, then
the supervisor should be consulted during the prior-specification
phase as well.

When to worry. Worry if you cannot fill in all of the infor-
mation for Table 1.

When to ask an expert. If after going through these recom-
mendations, reading the literature, talking to the supervisor, and

4 Additional information will be provided in a subsequent section about
common, default multivariate priors for covariance matrices.

5 First, the researcher must select the distributional family and then,
within the family, the specific form of the distribution is selected.

6 We also note that the researcher will need to decide whether conjugate
priors (those of the same parametric form as the posterior) are used or not.
Conjugate priors are convenient for interpretation since the posterior will
follow a known distribution form (Gelman et al., 2004; Gill, 2008).
Although computational advances no longer require the need for conjugate
priors, some models (e.g., finite mixture models) require them to speed up
mixing time and aid in proper convergence. This topic of conjugacy is
largely beyond the scope of this article but we refer the reader to Gelman
et al. (2004) and Gill (2008) for more details about conjugate priors.
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following a Bayesian course the researcher still has questions
about the elicitation process, then an expert can be consulted to
help.

Stage II: To Be Checked After Estimation but Before
Inspecting Model Results

Background Information on Convergence

All textbooks introducing Bayesian statistics caution users to
always inspect the trace plots (Bolstad, 2007; Carlin & Louis,
2009; Christensen, Johnson, Branscum, & Hanson, 2010; Gelman,
Carlin, Stern, & Rubin, 2004; Gelman & Hill, 2007; Jackman,
2009; Lynch, 2007; Ntzoufras, 2009). This section is about the
importance of these plots and how to assess them. After specifying
the prior distribution and entering the data into the software, the
posterior distribution needs to be obtained. To approximate the
posterior, often the Gibbs sampler is used; although, other sam-
plers can also be implemented here.7 The idea behind the Gibbs
sampler is that the conditional distribution of one set of parameters
given other sets can be used to make random draws of parameter
values (see for more information about the Gibbs sampler: Geman
& Geman, 1984; Casella & George, 1992). This process results in
an approximation of the joint distribution of all the parameters.
The Gibbs sampler consists of t iterations (t � 1, . . . , T) to obtain
new values in each step drawing from a conditional posterior
parameter distribution. Typically, a large number of iterations are
performed to construct the posterior distribution. If we plot the
estimates of all iterations after burn-in (the iterations discarded
before convergence is obtained), then a histogram is obtained. It is
typically desired to visually depict the samples pulled from the

posterior, and the histogram or a Kernel density plot can be used
to visually represent the samples.

Before inspecting the Kernel density plot, there is one issue of
high importance: namely, convergence of the trace plot. As pre-
viously mentioned, after running enough iterations, the Gibbs
sampler converges to the posterior distribution of interest. Theo-
retical results imply that the Gibbs sampler always converges if
run long enough. The solution to when convergence is not met,
however, is simple providing proper specification of the model:
use more iterations and only use that part of the chain which has
reached convergence. However, the question is how many itera-
tions to use and as such, how to determine convergence of our
statistical chains?

The decision of whether a chain has converged can be based on
statistical criteria, but should always be accompanied by a visual
inspection of the trace-plot, as will become clear below. Although
Sinharay (2004) and others (see, e.g., Brooks & Roberts, 1998)
discuss several diagnostic tools to determine convergence, there is
no consensus which statistical criterion can be considered as the
“best” one. Much of this lack of consensus is because the various
convergence criteria focus on different aspects of chain conver-
gence; it is much more difficult to assess convergence in distribu-
tion than convergence to a particular number (akin to maximum
likelihood via the EM algorithm). However, it is also important to
note that convergence is still equally important and sometimes
difficult to assess for maximum likelihood estimation.

7 We generalize to the Gibbs sampler here, but the same issues we
discuss will arise with other samplers. In turn, the same solutions we
suggest can also be implemented.

Table 1
Table to Show Your Supervisor for Point 1: Do You Understand the Priors? Consider a Basic Regression Analysis With One
Dependent Variable (Y) and Two Predictors (X1 and X2)

Parameters

Distributional form of the
priors (e.g., normal,
inverse gamma, etc)

Type of prior (nonweakly,
highly informative)

Source of background
information Picture of plot Hyperparameters

Y on X1 Normal Highly informative Table x on page xx of the
meta-analysis of Author
et al. (2000)

N(.8, 5)

Y on X2 Normal Highly informative Obtained from expert
knowledge, see
Appendix X for more
information.

N(.1, 10)

Y: Mean Normal Noninformative (software
default)

n/a n/a N(0, 1010)

Y: Residual
variance

Inverse Gamma Noninformative (software
default)

n/a n/a IG(�1, 0)

Note. The example is purely hypothetical and serves only to illustrate how to fill in the table. Supplementary documents for this example can be found
in the online material in Folder 3. See the online article for the color version of this table.
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To determine whether the algorithm has converged, one should
check the stability of the generated parameter values. A visual
check of the stability of the generated parameter values implies
estimating multiple chains (when possible), where each chain
starts at a disparate place in the parameter space. Then the re-
searcher should visually observe from which iteration onward the
generated parameter values display a stable pattern in the mean
and in the variance of the parameter across chains (i.e., the mean
of the chain is stable and the variance, or fluctuations in the chain
is stable). Note that this visual check should be carried out for each
and every estimated parameter, even if the parameter is not of
particular substantive interest.

It is important to note that there are several other commonly
implemented convergence diagnostics in programs such as R; for
example, the Geweke diagnostic (Geweke, 1992), the Heidelberger
and Welch diagnostic (Heidelberger & Welch, 1983), and the
Raftery and Lewis diagnostic for determining the length of the
burn-in and postburn-in portions of the chain (Raftery & Lewis,
1992). The interested reader is referred to Kaplan and Depaoli
(2012); Sinharay (2004), or Kim and Bolt (2007) for an overview
of additional convergence diagnostics commonly implemented in
the Bayesian literature. At times, we will also suggest implement-
ing some of these techniques to satisfy the Checklist.

Point 2: Does the Trace-Plot Exhibit Convergence?

Item description. For each parameter estimated in the model,
extract the trace plot and put it in Table 2, column 2. For each trace
plot, one must visually inspect chain convergence (i.e., the mean
and the variance of the chain show stability). If the visual inspec-
tion does not show chain convergence, then run more iterations
and increase the burn-in phase. The number of iterations should be
increased until all of the parameters in the model show visual
convergence in the trace plots. If the number of iterations has been
increased and convergence still has not been obtained, then per-
haps there are still not enough iterations. We recommend having at
least 10,000 iterations in the burn-in phase and 10,000 iterations in
the postburn-in phase, but some complex models (e.g., multilevel
or mixture models) may require up to 500,000 or one million
iterations in the burn-in phase. These are very rough guidelines,
but our point is that the researcher should be open to the idea that
the chain length necessary to converge (i.e., one with a stable mean
and stable variance) may be very long.8 Most of the time, non-
convergence can be remedied by increasing the length of the chain.
However, if running the chain for a large number of iterations does
not yield convergence, then consider changing starting values or
altering the model. Mathematically, every model will converge to
the target distribution, and if convergence is not obtained after
going through these recommendations then there may be another
issue causing problems (e.g., model mis-specification or a model
that is not identified).

What to show to your supervisor. Show the supervisor Table
2, column 2 with converged trace plots for every parameter in the
model. It may be that in order to fill in this table with converged
trace plots for every parameter that you will have to rerun the
model several times using different lengths of burn-in and
postburn-in portions of the chain to obtain visual convergence for
every parameter.

When to worry. Worry if at least one trace plot does not show
convergence after implementing the suggestions listed above.

When to ask an expert. If substantially increasing the num-
ber of iterations (e.g., up to two million iterations) does not solve
the issue, then an expert should be consulted.9

Point 3: Does Convergence Remain After Doubling the
Number of Iterations?

Item description. Once visual convergence appears to have
been established through the trace plots, a second check of con-
vergence is necessary using: (a) another visual check, (b) a con-
vergence diagnostic, and (c) computation of relative deviation.
This second check is specifically to avoid obtaining what we call
local convergence. Local convergence can be thought of as the
case where convergence appears to be visually obtained—often
with a smaller number of iterations—but when the chain is left to
run longer, then the chain shifts and converges to another location.

To check for local convergence, rerun the model with twice the
number of iterations. As an example, see Table 3, where we show
results for two different chains. Example data used to illustrate this
point were based on a reanalysis of longitudinal data presented in
van Loey, Maas, Faber, and Taal (2003). Specifically, we esti-
mated a four-class Bayesian latent growth mixture model exam-
ining different trajectories representing posttraumatic stress disor-
der (PTSD) changes over the course of a year following a
traumatic burn event. Initial model estimation using 6,000 total
iterations in the chain, and the first half discarded as burn-in,
indicated model convergence via convergence diagnostics and
visual inspection.10 However, upon extending the length of the
chain, we found that local convergence had actually been obtained.
Table 3 shows an example of the mean of the slope for the first
latent class. Once extending the chain out substantially to 50,000
iterations (first half discarded as burn-in), we can see that the chain
stabilized in a different area of the parameter space. In this case,
the shorter and longer chains both exhibited convergence based on
convergence diagnostics. However, despite the convergence diag-
nostics indicating the chain was stable, it is clear that local con-
vergence was initially obtained under 6,000 iterations. Supplemen-
tary documents for this example can be found in the online
material in Folder 4.

We recommend assessing for local convergence using some
additional criteria. Specifically, convergence diagnostics can be

8 If a very large number of iterations are required, and this number is
unreasonable to compute, then the researcher may consider using a differ-
ent estimation algorithm or Bayesian program to help speed computation
time.

9 The number of iterations is not of direct concern as long as conver-
gence has been obtained. There are many features that can result in needing
a larger number of iterations such as poor starting values, complex statis-
tical models (e.g., multilevel or mixture), and the sampler implemented in
the MCMC estimation algorithm.

10 Note that this shorter chain does appear to display patterns associated
with large autocorrelation. Large degrees of autocorrelation can typically
be viewed in the chain as patterns showing systematic deviations from the
mean (or other central tendency measure) of the chain. It is also likely that
this portion of the chain does not reflect convergence given the results and
the context of the model parameter. However, the purpose of this example
was to illustrate what local convergence might look like. It can be seen
through the longer chain displayed in Table 3 that convergence was
obtained once lengthening the chain substantially.
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used to help establish convergence, and next relative deviation can
be computed to assess potential differences after extending the
length of the chain. We also discuss cases where cumulative
average plots can aid in diagnosing convergence problems and
when multiple chains should be used in the estimation process.

One convergence diagnostic test that can be incorporated here is
the Geweke diagnostic (Geweke, 1992); note that there are others
that can also be used, but Geweke can be used to specifically
compare the running mean of two chains to identify potential
differences (Smith, 2005). After doubling the number of iterations,
the Geweke convergence diagnostic can be implemented to see
how stable the full length of the chain is. The Geweke diagnostic
uses a z test for the first and last portions of a chain. If the z test
yields a significant test statistic, then the two portions of the chain
significantly differ and full chain convergence was not obtained.
To test local convergence, the Geweke convergence diagnostic can
be used on the first half and last half of the chain. If the z-statistic
rejects, then the two portions of the chain are assumed to be
significantly different from one another. In this case, one can
conclude that local convergence was an issue and a longer burn-in
phase is likely necessary. This process should be repeated until
Geweke indicates that local convergence was not an issue via a
nonsignificant z-statistic. Implementing the Geweke convergence
diagnostic is rather straightforward using the BOA (Bayesian
Output Analysis) package in R (Smith, 2005). Specifically, one
would save out the CODA files (from BUGS or akin) and then
read these files into the BOA package in R. A guide for imple-
menting diagnostics in BOA can be found in the online Supple-
mentary Material in Folder 6.

Another approach that can be taken here, which addresses a
similar issue as the Geweke diagnostic, is to compute a relative
deviation score between the estimates. Both of these approaches

(the Geweke and the relative deviation computation) address sim-
ilar inquiries (i.e., whether the estimate is stable and convergence
has been obtained), but they yield slightly different interpretations.
In the case of the relative deviation, some information about the
magnitude of the scale for the parameter is being retained whereas
this is not the case with the Geweke diagnostic. However, both
approaches are meant to assess whether convergence can be as-
sumed with the number of iterations specified in the chain.

The relative deviation can be computed between the estimates
obtained during the converged result obtained for the initial model
(Analysis 1) and the model where the number of iterations was
doubled (Analysis 2); this relative deviation should be computed
for each parameter in the model. Computing relative deviation will
provide information about the fluctuations in the estimates across
both chains. The researcher can then substantively interpret any
fluctuations observed in the chains. The formula for computing
relative deviation for each model parameter is: relative deviation
(in percent) � [(initial converged analysis � analysis with double
iterations)/initial converged analysis] � 100. The researcher
should then use substantive knowledge about the metric of the
parameter of interest, as well as substantive interpretations of the
amount of fluctuation exhibited between chains, to determine
when levels of relative deviation are negligible or problematic. For
example, with a regression coefficient of 0.001, a 10% relative
deviation level might not be substantively relevant. However, with
an intercept growth parameter of 50, a 10% relative deviation level
might be quite meaningful. The specific level of relative deviation
should be interpreted in the substantive context of the model. Some
examples of interpretations are:

If relative deviation is �|1|%, then do not worry;
If relative deviation �|1|%, then rerun with 4-times and compare

(called Analysis 3).

Table 3
An Example of Local Convergence Using PTSD Latent Growth Trajectories: Slope Mean
Parameter for Latent Class 1

Length of chain
Parameter

estimate (SD) Trace plot
Geweke z-statistic

(Significant or not):a

Shorter chain: 6,000
iterations

�.309 (.417) Nonsignificant

Longer chain:
50,000 iterations

�2.574 (.535) Nonsignificant

a The Geweke convergence diagnostic compares the first and last halves of the postburn-in portion of the chain.
If the z-statistic is significant for the Geweke diagnostic, then there is evidence of local convergence. In this case,
the burn-in would need to be increased substantially and the local convergence test should be conducted again
by doubling the number of iterations to ensure a static statistic is obtained. However, as we see in this table, it
is also possible to obtain results of a nonsignificant Geweke statistic when local convergence was exhibited. In
this case, running the chain out much longer was necessary to identify local convergence problems and obtain
a static statistic. The computation of relative deviation becomes particularly important to capture differences in
the chains under this circumstance. Supplementary documents for this example can be found in the online
material in Folder 4. See the online article for the color version of this table.
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Compare results from Analyses 2 and 3 by computing relative
deviation.

By providing these examples of interpretation, we are not
trying to present a new “rule” for interpreting relative deviation.
Rather, we use this as a guideline for researchers to interpret
findings. Another option that researchers can use here is to look
at a cumulative average plot for the mean of the posterior. This
type of plot would be able to detect if the mean of the posterior
was not consistent and stable throughout the postburn-in itera-
tions.

Finally, it is also the case that a single Markov chain may not be
able to expose all issues with convergence. Specifically, in a
context where a distribution has multiple modes, a single chain
may not be able to adequately display this information. As a result,
we would recommend researchers to implement multiple chains
(e.g., at least two) for a given model parameter to explore the
possibility of multiple modes existing in the posterior. The main
point is to assess whether fluctuations in the chains impact the
results. Thus, critical thinking about what dictates a substantive
fluctuation is necessary.

What to show to your supervisor. A model where all chains
have passed the visual check, the Geweke convergence diagnostic
test, relative deviation levels that are considered to be substan-
tively negligible or a stable cumulative average plot, and the first

portion of Table 4 related to Point 3, which captures relative
deviation and Geweke information for each model parameter.
Note that results for relative deviation and the Geweke diag-
nostic will likely coincide given that the Geweke diagnostic
uses the mean of different fractions of the chain to assess
convergence.

When to worry. If after doubling and perhaps rerunning the
model with four times the number of iterations, results are still not
comparable (e.g., if relative deviation results indicate substantial
substantive fluctuations, or if the Geweke convergence diagnostic
test statistic is still significant), then worry.

When to ask an expert. If problems exist after changing start-
ing values, double-checking model specification and checking the
literature to see if default priors implemented should have been
altered, then consult an expert. Note that at this point, the subjective
priors should not be changed, assuming that Point 1 was implemented
properly, but the expert can help identify other potential issues that
may be creating a problem.

Point 4: Does the Histogram Have Enough
Information?

Item description. The amount of information, or smoothness,
of the histogram should be checked visually for each model

Table 4
Computing Relative Deviation or the Effect of Priors for Model Parameters: Points 3 (Section
I), 7 (Section II), and 8 (Section III)

Parameters Relative deviation or size of effect
Convergence

diagnostic

(i) Deviation for Point 3a [(initial converged
analysis � analysis with double
iterations)/initial converged
analysis] � 100

Geweke z-statistic
(Significant or
not)

Y on X1 [(.969 � .970)/.969] � 100� �.10 Nonsignificant
Y on X2 [(.650 � .650)/.650] � 100 � .00 Nonsignificant
Y: Mean [(.510 � .511)/.510] � 100� �.19 Nonsignificant
Y: Residual variance [(.953 � .951)/.953] � 100 � .21 Nonsignificant

(ii) Size of the effect for Point 7 [(initial
priors � default/noninformative
priors)/ initial priors] � 100

PSRF (convergence
or not)

Y on X1 [(.969 � .969)/.969] � 100 � .00 Convergence
Y on X2 [(.650 � .650)/.650] � 100 � .00 Convergence
Y: Mean [(.510 � .510)/.510] � 100 � .00 Convergence
Y: Residual variance [(.953 � .949)/.953] � 100 � .42 Convergence

(iii) Size of the effect for Point 8 [(initial
priors � default/noninformative
priors)/ initial priors] � 100

PSRF (convergence
or not)

Y on X1 [(.969 � .969)/.969] � 100 � .00 Convergence
Y on X2 [(.650 � .650)/.650] � 100 � .00 Convergence
Y: Mean [(.510 � .510)/.510] � 100 � .00 Convergence
Y: Residual variance [(.953 � .953)/.953] � 100 � .00 Convergence

Note. The Geweke convergence diagnostic compares the first and last halves of the postburn-in portion of the
chain. If the z-statistic is significant for the Geweke diagnostic, then there is evidence of local convergence. In
this case, the burn-in would need to be increased substantially and the local convergence test should be
conducted again by doubling the number of iterations to ensure a static statistic is obtained. PSRF � potential
scale reduction factor computed from the Gelman and Rubin convergence diagnostic for two chains. Typically
values beyond 1.0 � .05 point toward nonconvergence; in this case, priors leading toward different estimates.
Supplementary documents for this example can be found in the online material in Folder 3.
a Initially with 5,000 iterations, alternative model with 10,000 iterations.
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parameter. The purpose of this point, as well as Point 5, is to
ensure that the samples pulled from the posterior are ample enough
and adequate representations of the posterior distribution. Notice
that the plots for our simple example show histograms with no
gaps or other abnormalities, see Table 2, column 3. This level of
information is desired for histograms. Alternatively, we see a
variety of plots in Figure 3, which represent histograms from the
estimated chain. Looking at the histograms, rather than the
smoothed densities, is important in order to assess whether there
were “enough” iterations in the chain to approximate the posterior.
We need to ensure that there were enough samples drawn in the
chain in order to properly reconstruct the posterior. In Figure 3, we
can see that plots (a) and (b) clearly do not display a smoothed and
precise histogram. In both of these cases, more samples should be
drawn to ensure that there is “enough” information to fully capture
various features of the posterior (e.g., central tendency and varia-
tion of the posterior). In contrast, plot (c) is showing more infor-
mation, and finally plot (d) illustrates a histogram with enough
information to approximate the mean and variance of the posterior.
We can confidently draw substantive conclusions about the shape
of plot (d).

The practical issue here is how to make the decision that
“enough” information is incorporated into the posterior. Much of
this decision is subjective and directly tied to the point at which the
researcher feels the posterior is substantively interpretable (e.g.,

the mean and variance can be derived and interpreted with confi-
dence by the researcher). With computationally complex models,
this decision is likely going to be a trade-off between computa-
tional time and the amount of information gathered for the param-
eter estimates. If computation time is incredibly long, then we
recommend running the chain until the level of information in-
cluded in the histogram makes substantive sense and can be
interpreted; of course, this is a subjective judgment call. We also
note that the shape and smoothness of a histogram is linked to the
number of bins used to create the plot. If too few bins are used,
then some information may be lost and it would be more difficult
to establish whether or not there is “enough” information in the
chain. An objective check that can be done in this situation is to
reestimate the model with different starting values and compute
the size of the effect between estimates to ensure results are stable.
If the difference in estimates is substantively irrelevant between
the two sets of starting values, then results are likely stable. The
main point here is that enough samples have been compiled to
form the posterior such that substantive conclusions can be appro-
priately drawn.

What to show to your supervisor. Histograms with a high
level of information and column 3 of Table 2.

When to worry. Worry if a smooth histogram is not obtained
for each parameter.

Figure 3. Illustrating the level of information in a histogram, which represents the estimate for the posterior
(A) and (B). illustrate cases where more samples are needed to accurately portray the posterior; (C) and (D)
illustrate histograms with adequate information for capturing the nature of the posterior, with (D) representing
the most information of the four plots. See the online article for the color version of this figure.
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When to ask an expert. There is no direct need to consult an
expert, but the number of iterations should be increased until
smoothness in the histograms is obtained.

Point 5: Do the Chains Exhibit a Strong Degree
of Autocorrelation?

Item description. The very nature of a Markov chain is that
the iterations in the chain are dependent on one another, and this
dependency is captured by the amount of autocorrelation present in
a chain. To remove (or decrease) the amount of autocorrelation in
the chain, some researchers will use a process called thinning,
where every t-th sample (t � 1) is selected to form the postburn-in
samples to lessen the dependency in the posterior. It is important
to stress that thinning is not a necessary component for obtaining
convergence because convergence can still be obtained with de-
pendent samples, providing a long enough chain is specified. In
fact, thinning is typically not viewed as optimal because of the
impact it can have on sample variance estimates for parameters
(Geyer, 1991; Link & Eaton, 2012). Specifically, when a chain is
thinned, sample variance estimates from the iterations must be
down-weighted to account for larger lags (or higher thinning
intervals) in order to produce a decent variance estimate.

Although we do not recommend thinning in general, high de-
grees of autocorrelation can be indicative of other problems with
the model estimation process that should be addressed. For exam-
ple, high autocorrelation can be a sign that there was a problem
with the functioning of the MCMC sampling algorithm or in the
initial setup of the model. If convergence is also not obtained with
an extreme number of iterations, then these issues can be indicative
of a model specification problem. In these cases, the validity of the
model results can be questionable. As a result, the cause of
autocorrelation should always be investigated in order to deter-
mine if other features (e.g., the sampling algorithm or structure of
the model) need modification to obtain valid results. Researchers
should always examine autocorrelation plots for the model param-
eters. If the chains have high levels of dependency, but conver-
gence was obtained and the model was estimated properly other-
wise, then autocorrelation can be ignored. However, if the patterns
of autocorrelation suggest other estimation problems, or problems
with the specification of the model, then model modification may
be necessary.

What to show your supervisor. Autocorrelation plots for all
parameters as seen in Table 2, column 4.

When to worry. It depends. If there is natural dependency
among samples in the chain that is left unaccounted for in the
model, then a longer chain is generally needed before convergence
is achieved. Whenever possible, the source(s) of natural depen-
dency should be incorporated into the model. Convergence will be
obtained with a long enough chain, and the amount of autocorre-
lation present is not a problem for interpretation of results as long
as convergence was obtained. However, if the dependency among
samples in a chain seems overly excessive, or shows strange
patterns when comparing across similar types of parameters in the
model, then the sampling algorithm or the specification of the
model may need to be modified.

When to ask an expert. If the autocorrelation plots suggest
there may be a problem with the sampling algorithm (e.g., some
parameters are showing rather excessive autocorrelation, thus re-

quiring much longer mixing times), then an expert can be con-
sulted to help determine whether an alternative sampling algorithm
might be necessary.

Point 6: Does the Posterior Distribution Make
Substantive Sense?

Item description. Substantive abnormalities in the posterior
distribution should be examined (e.g., through Kernel density
plots). The main things that should be checked in a posterior
distribution are that it: is smooth, makes substantive sense, does
not have a posterior standard deviation that is greater than the scale
of the original parameter, does not have a range of the posterior
credible interval greater than the underlying scale of the original
parameter, and does not show great fluctuations in the variance of
the posterior.

What to show to your supervisor. Posterior distributions that
are smooth and make substantive sense, and column 5 of Table 2
should also be filled out.

When to worry. Worry if the posterior does not make sense
substantively.

When to ask an expert. If the results show convergence in
Points 2–6 but the posterior does not make sense substantively,
talk to your supervisor and go into the literature to find out if there
is an alternative substantive justification for these findings. If these
recommendations fail, then see an expert.

Stage III: Understanding the Exact Influence
of the Priors

For cases where only noninformative or default-setting priors
are used, Points 7–9 can be skipped. However, if (weakly) infor-
mative priors were implemented for any model parameters, then
Points 7–9 should be addressed.

Warning

It is imperative that decisions made during Points 7–9 are
presented in a completely transparent manner. If Points 7–9 indi-
cate that results from the sensitivity analysis are problematic (e.g.,
some parameters are extremely sensitive to the prior specification),
then any changes made to the model or priors should be presented
in a completely clear way and the checklist should be started over
with the model that incorporates any changes made.

Although this next section recommends playing around with
some of the prior settings, it is important to note that this is an
exercise to improve the understanding of the prior specified in
Point 1 and not a method for changing the original prior and
continuing forward. There are several dangers of adjusting priors
at this stage of the process. This issue is related to questionable
research practices. For example, if a researcher changes the prior
after seeing results of Points 7–9, then this can be considered as
manipulating the results. Furthermore, priors can be altered to
influence results in whatever way the researcher wants. Finally,
if the original priors are updated after seeing the results of
Points 7–9 and the new prior is implemented with the same
data, then it is the considered double-use of the data. All three
of these examples are highly discouraged and may even be
considered violating the moral integrity of science. Specific to
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Bayesian work, openness and transparency in the selection of
priors is imperative for this reason.

If Points 7–9 indicate instability of results through a sensitivity
analysis (e.g., a parameter is particularly sensitive to prior set-
tings), then it is possible that the model was mis-specified or the
parameters are not fully identified by the data or model. In this
case, researchers should consider making the necessary changes to
the model to combat any identification or mis-specification issues.
However, once any changes have been made, the process of
implementing the checklist should start over from the beginning.
The following points are designed to help researchers better un-
derstand Bayesian results and understand the impact of the priors
selected in Point 1 above.

Point 7: Do Different Specifications of the Multivariate
Variance Priors Influence the Results?

The information provided for Point 7 is decidedly more techni-
cal than the other points presented here. Handling a multivariate
variance prior has technical complexities that are often not elab-
orated upon in applied Bayesian articles but some severe issues
can arise if this prior is not specified properly. Although it is true
that univariate priors used for variances (or standard deviations/
precisions) have some similar complexities (see, e.g., van de
Schoot et al., 2015), we highlight some of the issues specific to the
multivariate treatment of these priors. In our experience, the mul-
tivariate priors used in this situation can be quite difficult to
navigate and require detailed consideration during implementation.
It is our aim in this section to describe some of these complexities
in order to introduce researchers to this multivariate prior, describe
some of the problems that can arise, and provide guidance for
handling this type of prior.

Background information. Just as with Point 1 and the uni-
variate model priors, it is also important to understand your mul-
tivariate prior for a covariance matrix. A multivariate prior such as
this would be placed on the matrix of variances and covariances.
In cases where data are distributed multivariate normal (MVN), the
data distribution can be written as MVN([�Y1, �Y2], 	), where 	
(the covariance matrix) is commonly specified as following an
inverse Wishart distribution (IW). The IW distribution is perhaps
the most common prior specification for covariance matrices.
There are two hyperparameters for the IW distribution such that
	 
 IW(�, d), where � is a positive definite scale matrix and d is
an integer representing the degrees of freedom for the IW distri-
bution. The integer d can vary depending on the informativeness of
the prior distribution.

Overall, the Wishart family of multivariate priors is important to
handle properly. There have been many comments published on
the optimal specification of the (inverse) Wishart prior. Specifi-
cally, O’Malley and Zaslavsky (2005) and subsequently Gelman
and Hill (2007) have recommended using a scaled inverse-Wishart
prior, where the covariance matrix is broken up into a diagonal
matrix of scale parameters and an unscaled covariance matrix
which is then given the prior (for additional details see Gelman,
2006b). The exact specification of the Wishart prior has also been
found to have a large impact when variances (diagonal elements)
in the covariance matrix are small (Schuurman, Grasman, & Ha-
maker, in press). It is especially important to assess hyperparam-
eters for the multivariate prior through a sensitivity analysis to

examine the potential impact of the prior. For example, as a
preliminary analysis Depaoli (2012) conducted a sensitivity anal-
ysis for the IW prior in the context of a mixture confirmatory
factor analysis model and found that even slightly modifying the
hyperparameters of the IW changed final estimates substantially.

Given the complexity of the (inverse) Wishart prior, our advice
is twofold. First, the default settings for the prior can be specified
to ensure that the prior is properly specified according to a mul-
tivariate probability distribution. Second, if the default settings are
changed for the (inverse) Wishart prior, then we recommend
consulting an expert to ensure that the prior is positive definite and
that it will perform properly during estimation. Note that the
practitioner may still choose to consult with an expert, even if the
default settings are used. The complexity of this prior often war-
rants careful consideration.

Item description. The action to take in order to examine the
impact of this multivariate prior is to always assess an alternative
setting for the prior and compare structural and measurement
model results to the original default setting results obtained in
previous stages. There are three specifications of the inverse
Wishart (IW) that are discussed as noninformative in Asparouhov
and Muthén (2010, p. 35). The first specification is IW(0, -p-1) for
covariance matrices, where p is the dimension of the covariance
matrix, and mimics a uniform prior bounded at (-�,�). The second
specification is IW(0,0). The last specification discussed is IW(I,
p  1), where this prior mimics the case where off-diagonal
elements (covariances) of the covariance matrix would have uni-
form priors bounded at [�1,1] and diagonal elements (variances or
residual variances) distributed as IG(1, .5), where IG represents the
inverse gamma distribution. Once a second specification of the IW
is implemented, then the effect of the prior should be computed
between the two IW specifications.11 To compute this effect, one
can use the following formula for the parameter estimates: Effect
of the prior (in terms of % difference) � [(initial prior specifica-
tion � subsequent prior specification)/initial prior specification] �
100. We present an example in Table 4.12

What to show to your supervisor. The size of the effect for
all model parameters between the first and second specifications of
the IW prior should be provided; see Table 4, column 2 (section ii).

When to worry. When the size of the effect between the two
IW specifications are substantively meaningful (e.g., �|1|% for
any measurement or structural model parameter), then worry about
the impact of the IW prior.

When to ask an expert. If the technical details related to this
section are confusing, or anytime the size of the effects are
substantively meaningful (e.g., �|1|%).

11 Here we use the terminology of “effect of the prior” rather than the
term “bias,” which is commonly used in comparable frequentist settings.
Within the Bayesian framework, “bias” does not take on the same meaning
since bias that is directly related to priors will diminish and disappear under
large sample sizes given that the impact of the prior will also diminish
(Gelman et al., 1996). As a result, we refer to differences between prior
settings as “effects.”

12 We have also included a column in Table 4 corresponding to the
PSRF convergence diagnostic. We expand on using this statistic in the next
section.
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Point 8: Is There a Notable Effect of the Prior When
Compared With Noninformative Priors?

Item description. In order to understand the impact that the
subjective (i.e., weakly informative or informative) prior is having
on model results, we recommend that comparisons be made be-
tween subjective and noninformative priors. Specifically, this
point involves estimating the model with all noninformative priors
and comparing results via the size of the effect of the subjective
prior as defined in Point 1. This point is simply to understand the
subjectivity of the prior and can aid in the discussion of the prior
impact. We note here that priors will impact different parameters
in different ways. For example, mean structure parameters are less
sensitive to priors, but parameters in more complex models may be
more sensitive (e.g., latent variable models, mixture class models,
or multilevel models).

If the size of the effect is relatively small (e.g., less than |1|%)
and the substantive conclusion remains the same, then the subjec-
tivity embedded into the prior has no impact.13 The researcher
should continue to use informative priors but recognize their
limited impact in the discussion. If the size of the effect is mod-
erate (e.g., |1–10|%) and the substantive results are the same, then
the subjectivity of the prior may have had a moderate impact on
final results. However, if the size of the effect is moderate (e.g.,
|1–10|%) and the substantive results differ, then the subjectivity of
the prior had a large impact. If the size of the effect is large (e.g.,
greater than |10|%) or substantive interpretations are different, then
the subjectivity of the prior had a large impact on results. Although
we have supplied some example cutoffs here, we recognize that
relative deviation levels, or sizes of effects, are largely interpreted
in the substantive context of the metric of the parameters being
examined. Therefore, we are not attempting to create new rules of
thumb that span across all research scenarios. Rather, this section
should be meant as a guide for interpreting one’s own results.

Another method that can be used to examine the similarity of
results obtained across models with two sets of priors specified is
to use the Gelman and Rubin (1992a, 1992b) convergence diag-
nostic. This diagnostic produces something called a potential scale
reduction factor (PSRF). If this factor is near 1.0, within some
preset bound, then two chains are said to have converged. Typi-
cally this method is used to examine convergence between two
chains in the same model. However, we propose a novel use of the
PSRF where two equal-length chains from separate analyses (e.g.,
one model with two sets of priors) are compared. If the PSRF is
quite large, then this is another indication that the results obtained
from the different prior settings may be substantively different.
This finding could point toward the prior having a meaningful
impact on results, which should be thoroughly described in the
discussion section of a article. For an example of implementing the
PSRF in this novel manner, please refer to online Supplementary
Material in Folder 6. Next, we provide an example of interpreting
such findings.

As an example, we pulled reading achievement data from the
Early Childhood Longitudinal Study-Kindergarten (ECLSK) data-
base (NCES, 2001) for children throughout kindergarten and first
grade (two timepoints of data collected in each grade). We have
estimated a latent growth curve model with the 3,856 children akin
to the model presented in Kaplan (2002). To illustrate this point,
we used the intercept estimate from Kaplan’s model (Kaplan,

2002, p. 204) as the mean hyperparameter for the prior we spec-
ified for the intercept of the growth model. Further, we arbitrarily
specified a variance hyperparameter of 1, thus giving us a subjec-
tive prior for the latent intercept mean of N(31.37, 1). Results from
an analysis with 10,000 burn-in and 10,000 postburn-in iterations
using the OpenBUGS software are presented in Table 5. We then
estimated a second model using a diffuse prior for the intercept
mean (N(0,106) to see how much of an impact our subjective prior
has on results. We can see in Table 5 that the percent of relative
deviation is quite low (under 1%); the corresponding PSRF value
is 1.477, which may be considered high given that PSRF values are
often required to be smaller than 1.1 or 1.2 when assessing con-
vergence. However, this use of the PSRF is novel and we might
expect more drastic changes in the model since more than just
starting values have been modified across chains.14 Although the
PSRF is a bit high, we can interpret results as being relatively
stable when the subjective prior is compared to a diffuse prior. In
this case, we can conclude that our theory (incorporated into the
subjective prior) had little impact on the results. Supplementary
documents for this example can be found in the online material in
Folder 5.

For Bayesian updating, it is essential that researchers report the
priors used, even if there is no substantive impact on results. In the
case where there is a large difference between results, do not
despair. These findings are interesting and fun. The entire focus of
the discussion section can turn toward the discrepancy between
results obtained using informative versus noninformative priors.
This discussion illustrates the mismatch between theory and data,
and it is up to the researcher to come up with an explanation.

What to show to your supervisor. The size of the effect
between informative (or weakly informative) priors and noninfor-
mative priors, see Table 4, section iii.

When to worry. Do not worry at all. Either results match and
the subjectivity of the prior does not have an impact, or results
differ and that becomes an interesting talking point for the discus-
sion.

When to ask an expert. Never. All findings are fun and if
discrepancies do not make sense at first, then turn to the literature
for explanations.

13 The size of the effect for a parameter using a percent relative deviation
computation can be computed using the following formula: [(model with
initial subjective parameter) – (model with noninformative prior)/(model
with initial subjective parameter)] � 100. The estimates for each model
would be embedded into this equation and the size of the effect is pro-
duced. The relative size of this effect should be interpreted in the context
of what is substantively meaningful (i.e., 5% might represent a large effect
in one context and a very small effect in another context). In the case of our
reference to specific cut-off values (e.g., 1%), our intention was to present
an example of a negligible difference between effects. However, results
should always be interpreted in the context of the particular model and
parameters being investigation.

14 The PSRF is typically used to assess chains when the only difference
is in the starting values specified for the chain. This use that we propose is
completely novel (to our knowledge), and further research should be
conducted on the use of the PSRF in this context in order to provide
additional guidelines for cut-off values of the diagnostic when comparing
across types of priors, and so forth.
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Point 9: Are the Results Stable From a
Sensitivity Analysis?

Item description. If informative or weakly informative priors
are used, then we suggest running a sensitivity analysis of these
priors. When subjective priors are in place, then there might be a
discrepancy between results using different subjective prior set-
tings. A sensitivity analysis for priors would entail adjusting the
entire prior distribution (i.e., using a completely different prior
distribution than before) or adjusting hyperparameters upward and
downward and reestimating the model with these varied priors.
Several different hyperparameter specifications can be made in a
sensitivity analysis, and results obtained will point toward the
impact of small fluctuations in hyperparameter values.

Take the same ECLSK reading achievement example where we
estimate a simple latent growth curve model. If we assume a

normal distribution for the intercept prior, then we will need to
specify values for the mean and variance hyperparameters of the
subjective prior. If we have the intercept mean hyperparameter
specified at 31.37 (based on a previous analysis presented in
Kaplan, 2002), then we can start the sensitivity analysis at this
point by varying this value upward and downward to see how
much of an impact the mean hyperparameter of this prior has on
the final estimate for the intercept. Specifically, we can examine a
series of priors with mean hyperparameters specified in 5-point
increments from this initial value of 31.37. Specifically, we can
test mean hyperparameters of: 21.37, 26.37, 31.37 (the value in our
original prior), 36.37, and 41.37. In this case, there would be five
different models estimated and we can compare through the
Gelman and Rubin convergence diagnostic whether the chains
resulting from the respective priors are comparable. We can also

Table 5
An Example of a Sensitivity Analysis to Examine the Impact of Priors: Points 8 and 9

Chain comparison Intercept estimate (SD) Trace plot PSRF
Size of effect

(relative deviation)a

Point 8: Compare subjective prior to diffuse prior
Subjective prior: N(31.37,1) 23.19 (.149)

Compared with: N(0, 106) 23.01 (.152) 1.477 .776%

Point 9: Sensitivity analysis for subjective prior—altering the mean hyperparameter (alter hyperparameters upward and downward)

Compared with: N(21.37, 1) 22.97 (.149) 1.645 .948%

Compared to: N(26.37, 1) 23.08 (.149) 1.194 .474%

Compared with: N(36.37, 1) 23.31 (.150) 1.194 �.517%

Compared with: N(41.37, 1) 23.42 (.150) 1.646 �.992%

Point 9: Sensitivity analysis for subjective prior—altering the mean and variance hyperparameters
Compared with: N(41.37, .1) 26.91 (.166) 20.442 �16.041%

Note. PSRF � potential scale reduction factor computed from the Gelman and Rubin convergence diagnostic for two chains. Typically values beyond
1.0 � .05 point toward nonconvergence; in this case, priors leading toward different estimates. Note that estimates may be different from Kaplan (2002)
due to no covariates being present in the current example. Supplementary documents for this example can be found in the online material in Folder 5.
a Percent of relative deviation can be computed as: [((estimate using subjective prior) � (estimate using new prior))/(estimate using subjective prior)] �
100. Interpreting percent of relative deviation results is largely subjective and dependent on the metric of the parameters. However, relative deviation under
1% would likely be considered negligible. See the online article for the color version of this table.
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compute the size of the effect to assess how different the results are
when the prior mean is specified at these levels.

The purpose of this sensitivity analysis is to assess how much of
an impact the location of the mean hyperparameter for the prior
has on the posterior. For the ECLSK reading data, we have
reported results from the sensitivity analysis in Table 5. Note the
column labeled “PSRF” indicates how comparable the new priors
specified through the sensitivity analysis are to the original prior
with a mean hyperparameter of 31.37. We can see that PSRF
values all indicate nonconvergence with values beyond 1.0 � .05;
notice greater evidence of nonconvergence as the mean hyperpa-
rameter becomes more extreme (i.e., 21.37 and 41.37 have com-
paratively larger PSRF values). However, percent of relative de-
viation is quite low (under 1% for all comparisons) so we can
interpret results as being relatively stable with the use of different
mean hyperparameters. We would then continue our sensitivity
analysis investigation for the intercept to examine the variance
hyperparameter (see bottom of Table 5). In this case, we tested the
prior of N(41.37,0.1) to see the impact of varying both hyperpa-
rameters. This is perhaps an extreme example of a sensitivity
analysis cell, but it illustrates the type of results one might get if
the prior has a substantial impact on estimates. Specifically, we see
in Table 5 that the PSRF value is quite high (over 20), indicating
nonconvergence between the chains from the two priors. We can
also see a very large effect between the estimates (over 16%),
which further indicates this prior specification had a substantial
impact on the results. In this case, the researcher would describe
the substantive differences in the discussion section.

As another illustration, Figure 4 exhibits how changes in sub-
stantive results can be tracked throughout a sensitivity analysis. In
this case, we have one parameter with a normally distributed prior,
where we varied the mean and variance hyperparameters. Each of
the lines in the plot represent a different mean hyperparameter. The
y-axis represents the posterior parameter value obtained for the
estimate, and the x-axis represents the variance hyperparameter for
the prior. In this example, significance for the parameter of interest
is identified with a solid line, and nonsignificance of this parameter
is denoted with a dashed line. These results show that with a large

variance hyperparameter of 1,000, the value of the mean hyper-
parameter makes no difference on the final parameter estimate. As
the variance hyperparameter decreases, the mean hyperparameter
has more influence on the final estimate obtained. A plot like this
can be very helpful in examining how significance patterns and
substantive interpretations change as the prior is modified. Sup-
plementary documents for this example using ECLSK data can be
found in the online material in Folder 5. For more examples and
details on sensitivity analysis of priors see: Hamra, MacLehose,
and Cole (2013); Heydari, Miranda-Moreno, Lord, and Fu (2014);
Lopes and Tobias (2011); Millar (2004); and van de Schoot et al.
(2015).

Upon receiving results from the sensitivity analysis, assess the
impact that fluctuations in the hyperparameter values have on the
substantive conclusions. Results may be stable across the sensitiv-
ity analysis, or they may be highly instable based on substantive
conclusions. Whatever the finding, this information is important to
report in the results and discussion sections of an article. We
should also reiterate here that original priors should not be mod-
ified, despite the results obtained.

What to show to your supervisor. A report showing the
(in)stability of the results for the entire sensitivity analysis; a
table akin to Table 5 or a plot akin to Figure 4 will be
particularly useful.

When to worry. Do not worry necessarily, but note if there is
a great deal of instability in substantive conclusions, even with
small fluctuations in the hyperparameter values. Even if there are
only minor substantive differences, this is an important factor to
discuss in the article. If there are some parameters that are partic-
ularly sensitive to changes in the prior through the sensitivity
analysis, then this could be an indication that the model was
mis-specified or there are identification issues regarding certain
parameters in the model. If this is the case, then the model should
be respecified and the checklist should be repeated with the new
model starting with Point 1. In this case, it is important to be 100%
transparent about any changes that were made in the model or
priors as a result of the original sensitivity analysis findings.
However, if after carefully checking the priors and the model the

Figure 4. Illustrating how substantive results can change and be tracked through a sensitivity analysis of priors.
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results are still sensitive to different prior specifications, then this
may just be the result of the study. In this case, the sensitivity of
results to the prior settings should be thoroughly described in the
discussion section.

When to ask an expert. If there is a great deal of instability
in substantive conclusions, even with small fluctuations in the
hyperparameter values. This high instability could be a symptom
of a larger problem with the model or the priors.

Stage IV: After the Interpretation of the
Model Results

Point 10: Is the Bayesian Way of Interpreting and
Reporting Model Results Used?

Item description. After Points 1–9 have been carefully con-
sidered and addressed, model interpretation and the reporting of
results become the next concern. First, we will consider the issue
of properly interpreting Bayesian results, which is then followed
by a discussion on reporting Bayesian results.

There are some important distinctions between the interpretation
of frequentist and Bayesian statistics. One of the most notable
distinctions is that the Bayesian framework no longer deals in
terms of point estimates compared to frequentist approaches. Re-
sults obtained under the Bayesian framework reflect the posterior
distribution obtained, where each parameter is estimated with a
density capturing uncertainty in the true value. It is common for
researchers to summarize the posterior density with the mean,
median, or mode of the distribution. This summary should be
interpreted as the central tendency measure for the posterior dis-
tribution, rather than as a point estimate. To capture the spread
(and potentially the shape) of the posterior, Bayesian credible
intervals are constructed. The Bayesian credible interval is akin to
the frequentist confidence interval, but the interpretations rely on
different probability theories thus making interpretations different
across the two frameworks. For example, a 95% frequentist con-
fidence interval of [0.05, 1.12] for a regression coefficient would
indicate that over long-run frequencies, 95% of the confidence
intervals constructed in this manner (e.g., with the same sample
size, etc.) would contain the true population value. In contrast, the
95% Bayesian credible interval of [0.05, 1.12] would be inter-
preted such that there is a .95 probability of the population regres-
sion coefficient falling between 0.05 and 1.12, indicating that this
regression coefficient likely represents a positive effect.

As it has hopefully been made clear at this point, Bayesian
analyses have many distinct features that are not a part of tradi-
tional frequentist methods. As a result, there are different consid-
erations when writing up results for a Bayesian model to ensure
that all information has been properly conveyed and that results
can be replicated or priors can be extracted and then updated in
future Bayesian models. There are several key components that
must be included in a write-up of Bayesian results and these
include information from all of the previous Points 1–9 listed
above, see for an example Matzke, Dolan, Logan, Brown, and
Wagenmakers (2013).

What to include in the write-up. When writing an empirical
Bayesian article one could use the following list to ensure complete-
ness (see also, van de Schoot and Depaoli, 2014). If one of the

following points is not adequately addressed in the text, then we feel
the article should not be published in its current form. Particular to
Bayesian work, openness and transparency is imperative. Specifically,
it is imperative that in the analytic strategy section a paragraph should
be devoted to providing information about how priors were obtained
and why each prior was specified in that way. Also the hyperparam-
eters should be reported in a table or in an online supplementary file.
Next, information about estimation and convergence must be detailed.
The Method section should reveal the program used for estimation,
the sampler (e.g., Gibbs) implemented, the number of chains, the
number of burn-in iterations, seed and starting values for the chains,
the number of postburn-in iterations, and how convergence was
checked or monitored (e.g., visual inspection and convergence criteria
such as the Gelman and Rubin diagnostic). All of the points addressed
earlier for identifying and checking convergence should also be de-
tailed so that the reader understands the extent to which chain con-
vergence was checked. One could refer to our WAMBS-checklist to
ensure convergence has been established. Next, the impact of the
priors should be carefully described. If (weakly) informative priors
were used, then the substantive differences to noninformative priors
must be compared to understand the impact of the prior. Likewise,
results of the sensitivity analysis must also be described in the text as
a means to further describe the impact of the prior on the final model
results. Again, the WAMBS-checklist could be used for this investi-
gation.

What to show to your supervisor. The supervisor should be
given a full write-up of the results, as well as any relevant infor-
mation appearing in the discussion section. We have provided a
hypothetical example of a Bayesian results section in Appendix A.

When to worry. Worry if you cannot understand or convey the
differences between conventional and Bayesian model results, or if
you are not able to create results and discussion sections that reflect all
of the information constructed in Points 1–9 described above.

When to ask an expert. Never. There is likely no need to
consult an expert for interpretation. Instead, the researcher can
consult the many reference books and articles we have listed in the
introduction to aid in Bayesian statistics interpretation. However,
if you are unable to write up a section of the Bayesian findings
after consulting examples and other readings on interpretation and
reporting Bayesian results, then consult an expert.

Conclusion

It is our aim to highlight some of the most important nuances of
implementing Bayesian methods and to provide the succinct, but
comprehensive, When to worry and how to Avoid the Misuse of
Bayesian Statistics (WAMBS) checklist to aid in avoiding the misuse
of Bayes. If the 10 points in this checklist are carefully considered and
addressed, then many of the common problems or mistakes that arise
in Bayesian estimation can be avoided or corrected.

There are some limitations and warnings surrounding the use of
the WAMBS-checklist that should be highlighted. First, we note
that this checklist may be rather tedious and time-consuming to
implement in cases where models have many parameters being
estimated. For example, item response theory models can become
cumbersome with sometimes thousands of person parameters be-
ing estimated under large sample size cases. We acknowledge
from experience that implementing such a checklist under cases
where there are many model parameters is difficult. However, we
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also feel a thorough check is imperative, regardless of the number
of model parameters being estimated. If, for example, a model with
5,000 model parameters is estimated but a few parameters do not
reach stable convergence, then the model results would not be
appropriate to report. It is important to check all model parameters,
however tedious that may be. To assist in implementing such
massive parameter checks, we recommend the use of software
(e.g., the MplusAutomation package implemented in R) that can
aid in handling a large number of model parameters. We feel the
added complexity of using a checklist is a heavy price to pay when
implementing Bayesian statistics because it does require a good
deal of work. However, we also feel using the checklist is a
necessary price to pay to ensure that results are trustworthy, the
model estimation process is transparent and can be replicated, and
that estimation and reporting of results exhibit best practice.

Second, we did not directly deal with issues tied to the assess-
ment of model fit/selection within the Bayesian framework. Prop-
erly assessing model fit and model selection are important issues to
handle alongside the implementation of this checklist. Data-driven

model selection techniques (e.g., comparing deviance information
criteria across competing models) are typically considered after the
estimation of model parameters. Therefore, it is likely that this
checklist would be implemented simultaneously with the model
selection process. Although we do not directly address Bayesian
model fit and selection here (these topics would likely warrant
their own checklists, in fact), we recognize that these issues would
likely be handled in parallel to the issues addressed through the
WAMBS-checklist. At a very minimum level, researchers should
consult an expert about issues surrounding model fit and selection.

Finally, there may be times when specific points are not easily
satisfied when implementing the WAMBS-checklist. For example, it
is possible that convergence may not be obtained even after doubling
the number of iterations. In cases where specific points in the checklist
are not satisfied, we have provided some additional guidelines to act
as a starting point for troubleshooting and continuing to strive to
satisfy each point. These guidelines are presented in Table 6 and
should act as “next steps” in thinking if some of the points are not
fulfilled using the checklist guidelines presented here.

To conclude, this checklist should act as a guide for implementa-
tion and for writing-up findings. We stress that openness and trans-
parency are vital for implementing any statistical tool, but this is
especially the case for Bayesian tools. One of the main goals for the
WAMBS-checklist is to aid in improving replicability of results in
Bayesian statistics. There are so many points within the process of
implementing Bayesian methods where things can go awry (e.g.,
misinterpretation, problems with nonconvergence, unintended impact
of priors). It is our aim to promote clarity during implementation and
dissemination of Bayesian modeling, and we hope that the WAMBS-
checklist assists with this goal. Finally, we hope that researchers
working within the Bayesian framework realize the advantages of
estimation and interpretation, and we hope they have fun interpreting
any (mis)match between data and theory!
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Appendix

Example Write-Up of Bayesian Results

The following provides an example of how to write up Bayesian
results to adhere to Point 10. Take a simple example of a regression
model with predictors X1 and X2, and outcome Y. The following is a
portion of a contrived Results section for the model results.

The Analytical Strategy

The regression model was estimated using Bayesian estimation
in the Mplus version 7.3 software program (Muthén & Muthén,
1998–2015) using a seed value of 200 and starting values based on
the ML-estimates. Three Markov chains were implemented for
each parameter and distinct starting values were provided for each
of the chains. To assess chain convergence, the Gelman and Rubin
convergence diagnostic was implemented as described in the
Mplus manual with a stricter convergence criterion than the default
setting: 0.01 instead of 0.05. An initial burn-in phase of 10,000
iterations was specified, with a fixed number of postburn-in iter-
ations of 10,000. The Gelman and Rubin diagnostic indicated that
convergence was obtained with these fixed iterations for each of
these three chains. Next, the trace plots for each model parameter
were visually inspected. For each of the model parameters, all
three chains appeared to converge in that they were visually
stacked with a constant mean and variance in the postburn-in
portion of the chain. To ensure that convergence was obtained and
that local convergence was not an issue, we estimated the model
again but with the number of burn-in and postburn-in iterations
doubled (40,000 iterations total). Again, the Gelman and Rubin
(1992a, 1992b) convergence diagnostic indicated convergence was
obtained and the visual inspection of plots was consistent with that
finding. Percent of relative deviation can be used to examine how
similar (or different) parameter estimates are across multiple analyses.
Upon computing the percent of relative deviation for model param-
eters obtained in these two analyses, we found that results were almost
identical with relative deviation levels less than |1|%. The computa-
tion for percent of relative deviation for a given model parameter is as
follows: [(estimate from initial model) � (estimate from expanded
model)/(estimate from initial model)] � 100.

We implemented an informative prior for the regression of Y on
X1, and relied on the default prior settings of the software for the

other parameters (see Mplus manual). The background information
for specifying the hyperparameters, 
N(.5, 0.1) stems from the
meta-analysis conducted by Author et al. (200x), see Table x on
page x. Note that all of the points of the WAMBS-checklist
(Depaoli & van de Schoot, 2016) were addressed and the results
from this checklist can be requested from the first author (or
downloaded as supplementary material).

At the End of the Results Section

Because it is important to understand the impact of this
theoretically-driven prior, we estimated the model using default non-
informative priors in Mplus as a method for detecting how much
influence our informative prior had on the posterior results. Findings
from the default prior settings were substantively different in that the
default settings indicated the regression parameter estimate was neg-
ative and the informative prior settings found that it was positive.
Next, we conducted a sensitivity analysis for the informative prior to
see what kind of impact the prior might be having. As indicated in the
Method section, the informative prior based on theory for the regres-
sion parameter was distributed normal with hyperparameters of N(.5,
0.1). In this sensitivity analysis, we varied the mean hyperparameter
upward and downward by .2 and examined the additional priors: N(.3,
0.1) and N(.7, 0.1). Upon estimating models implementing these two
priors, we computed the effect of the priors with the results from the
original N(.5, 0.1) prior. The effect of the prior captures the differ-
ences between prior settings as “effects” and can be computed using
the following equation: Effect of the prior � [(initial prior specifica-
tion � subsequent prior specification)/initial prior specification] �
100. Using this assessment, we found that statistical and substantive
findings were comparable for all models in the sensitivity analysis.
The Discussion section will detail explanations for the differences in
results and the impact these findings may have on the theory under
investigation.
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