Diet-induced impulsivity: The effect of high-fat and high-sugar diets on the mechanisms of impulsive choice

Catherine C. Hill*, Jessica R. A. Pirkle, & Kimberly Kirkpatrick
Kansas State University

Methods

- **Subjects:** 36 male Sprague Dawley rats
- **8 week diet manipulation**
 - Chow: 100% rat chow
 - Fat: 60% rat chow and 40% Crisco
 - Sugar: 60% rat chow and 40% powdered sugar
- **Behavioral testing**
 - Two impulsive choice tasks (delay and magnitude) to test the effect of diet on impulsive choice
 - Two discrimination tasks (time and reward discrimination) to test the effect of diet on the mechanisms of impulsive choice
- **Data analysis:** multilevel logistic regression

Results

Impulsive Choice: Delay
- High-fat and high-sugar diets led to more impulsive choices when the SS delay was 5 and 10 s.

Time Discrimination
- High-fat diet led to deficits in overall time discrimination ability.
- High-sugar diets led to reduced sensitivity to shorter delays compared to chow rats.

Summary: Diet-induced impulsive choice seen on the delay task may be a result of timing deficits, particularly in the high-fat diet group.

Discussion

- Diets high in fat and sugar induced impulsive behavior, likely due to deficits in time discrimination.
- Impulsive behavior was not induced by the high-sugar diet on the magnitude task, possibly due to increased preferences for the larger reward.
- Despite the increased preference for the larger reward in the reward discrimination task, the high-sugar diet induced impulsive behavior on the delay task indicating the importance of time discrimination.
- Time-based interventions have been shown to reduce impulsive choice by improving time discrimination.
- Behavioral interventions could be used to treat obesity by addressing the timing deficits that contribute to impulsive choice.
- Promoting self-controlled choices may break the vicious cycle in which poor diet leads to impulsive, unhealthy food choices and potentially help reduce obesity rates.

Acknowledgements

Thank you to the members of the Kirkpatrick RTD lab, especially Ian Davis and Jeremy Lott, for your help with this project.

References

Email: cchill@ksu.edu