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Abstract

The initial foundations of human mathematical reasoning appear to be based on ‘‘naı̈ve

mathematics’’— specific and persistent privileged mental representations that develop as a normal part

of the human evolved phenotype. Based on the proposed existence of privileged representations in the

conceptual domain of mathematics, this paper incorporates findings from early development,

childhood mathematical reasoning, and adult statistical decision-making research. The utility of such a

framework is demonstrated by analyzing how common errors in fraction and decimal use are

explicable in terms of these systematic and reliably developing aspects of human mathematical

reasoning. Additionally, the idea that privileged representations continue to exert some influence

beyond early childhood holds implications for both research and practice in mathematics education.

D 2002 Elsevier Science Inc. All rights reserved.

Keywords: Cognitive development; Mathematical reasoning; Judgments under uncertainty; Mathematics

education; Evolution; Fractions; Decimals

1. Introduction

Although the basic conceptual and procedural knowledge that comprises the academic

field of mathematics (rational numbers, fractions, addition, subtraction, etc.) has existed as a

relatively discrete and consensually established content area for centuries, the nature and
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cognitive development of that same conceptual and procedural knowledge in the minds of

individuals is understood much less well and what is known is of relatively recent vintage.

There is a growing consensus that the core foundations of human mathematical reasoning are

based on some form of naı̈ve mathematical abilities, even as disagreement continues on the

nature, form, and extent of these abilities (e.g., Dehaene, 2001; Geary, 1995; Gelman, 2000).

This paper builds on this emerging consensus by outlining how specific elements of this

proposed naı̈ve mathematics in cognitive development resonate with recent research in the

field of judgments under uncertainty as well as patterns of behavior in the context of learning

how to work with fractions and decimals. Drawing these fields of study together leads to

suggestions for both research and teaching.

2. Privileged representations in mathematical reasoning

The existence of naı̈ve mathematical abilities relies on the proposal that the development of

mathematical knowledge and abilities is guided in significant ways by psychological predis-

positions (variously called constraints, skeletal principles, intuitive ideas, privileged hypo-

theses, or privileged representations). Furthermore, these predispositions are domain-specific

to certain aspects of mathematics and hence are relatively influential within those areas. In this

paper, I will refer to these predispositions as privileged representations.1 Converging lines of

evidence supporting the thesis that privileged representations both exist and are necessary

come from multiple and independent sources (e.g., Gelman, 1998, 2000; Markman, 1990;

Spelke, 1982, 1988, 1990; Tooby & Cosmides, 1992; Wynn, 1995, 1998a, 1998b).

In at least one respect, the success of the privileged representations approach should not be

surprising. It splits the difference along one dimension on which previously proposed

viewpoints— general learning theory and constructivism—sharply conflicted. General

learning theory views learning as a relatively passive process in which learners receive

information from the environment (e.g., teachers) and incorporate that knowledge into their

existing known information (which also came from external tutors). On the other hand, the

constructivist approach draws more extensively from Piaget and Vygotsky and assumes that

children are active learners in the construction of knowledge. That is, the development of

knowledge and abilities is constructed by both the environment (particularly the social

environment of teachers and peers) and the active processes of the individual. If anything, the

student takes the primary role in learning, with the teacher playing a supporting role by

1 A privileged representation is defined here as a form of knowledge that is reliably developing in normal

humans, within the normal range of environments (for example, the grammar structure of language is often argued

to be of this form). As will be covered later in this paper, privileged representations are considered here to be

derived primarily from the human cognitive architecture specified by evolutionary selection pressures (variously

called cognitive adaptations, Darwinian algorithms, and modules), but the term privileged representations is

preferred here because it focuses on the nature of the result of these cognitive structures. ‘‘Privileged re-

presentations’’ is also roughly analogous to Geary’s term of ‘‘biologically primary abilities,’’ as also discussed

later (see also Williams, 1966 classic definition of an evolved adaptation and the more recent definition of Tooby

and Cosmides, 1995).
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providing appropriate materials and social context (see, for example, Empson, 1999; Tzur,

1999). The notion of privileged representations places learners squarely in the arena of

actively contributing to their own knowledge development. At the same time, the external

environment is absolutely essential as the primary source of new information to be learned in

order to move the learner beyond the basic features provided by these skeletal representations.

In a way, it is unfortunate that there is a labeled ‘‘constructivist’’ viewpoint, as all three of

the above viewpoints can be said to involve the construction of mathematical understanding

in children’s minds. The key issue is the identity of the builders. Although both recognize

other contributions, general learning theory focuses on the environment as the builder and the

constructivist view emphasizes the learner as the principle builder. The privileged represen-

tations view identifies the evolved dispositional structure of the human mind as the initial

builder, interacting with the environment in ways that become increasingly important as

mathematical reasoning becomes more advanced. Thus, the privileged representations view is

in some ways very similar to the constructivist viewpoint as it argues for an active role of the

individual (that is, the structure of the individual’s mind) but also similar to general learning

views in recognizing the importance of the environment. The privileged representations

approach, however, does more than strike the middle ground regarding the architects of

knowledge. It is also quite different from these other views in certain key respects. First, the

privileged representations approach aligns much more closely with the biological ideas of

genotype and environment interacting to produce a phenotype or, more simply, the interacting

contributions of nature and nurture. Second, the privileged representations approach rejects

the assumption of equipotentiality of conceptual structures.

The notion of privileged representations conflicts with a background assumption of

equipotentiality to which both general learning and constructivist theories generally adhere.

Equipotentiality means that no concepts (in this case, mathematical concepts) are a priori

considered to be easier or harder to acquire. To some extent, most researchers recognize that

this assumption cannot hold completely: counting whole numbers is certainly easier to acquire

than trigonometry, but when instead of dealing with extremes one looks at conceptions within

a particular domain (such as dealing with fractions), the equipotentiality assumption is often

made. So, for instance, it is assumed that it is equally likely that students will adopt the idea of

a fraction being a ratio, a rational number, a division operation, or an alternative expression for

decimal numbers. This position rests on a long tradition of minimal assumptions of human

nature, ‘‘instincts,’’ or reliably developing abilities (e.g., Hume, 1955/1748). Learning is

commonly assumed to be based on de novo constructions or expansions and reconstructions of

ideas and concepts that were originally de novo.

Differing conceptions of particular mathematical contents can be seen via the several

systematic errors that children often exhibit in the course of learning mathematical topics.

These errors have been called ‘‘bugs’’ or ‘‘buggy algorithms’’ to indicate that the programming

in the child’s mind (i.e., learning) contains one or more errors (e.g., Brown & Burton, 1978;

Silver, 1986). More implicitly, these buggy algorithms are assumed to reflect conceptual or

procedural knowledge that was recently created for some novel purpose (this is an aspect of the

computer programming metaphor from which the term ‘‘buggy’’ is taken). Remediation of

these errors requires additional learning (i.e., reprogramming of the cognitive algorithms to
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eliminate the errors), and the ease with which bugs can be fixed is assumed to be a direct

function of how well the buggy algorithm manages to perform, despite being erroneous.

From both a theoretical and an empirical standpoint, the equipotentiality assumption has

problems. In principle, a system that starts with all possible representations as equally

probable must use some relatively abstract (i.e., content independent and general purpose)

process to generate a preference structure of representations. An example of such a

mechanism is one that takes in examples and definitions provided by the environment,

notices commonalities, and induces general concepts or procedures from these groupings of

experience. Repeatedly, however, it has been found that such open-ended mechanisms are

unable to solve the problems to which they are applied, and the reason for these failures

appears to be inherent to these types of systems. The problem, essentially, is that given a

specific event (or group of events), there is an infinite number of compatible explanations

(i.e., possible general concepts or production procedures). General problem solvers only work

for totally general problems and the real word almost never involves completely general,

abstract problems. This basic phenomenon can be seen throughout the sciences: in linguistics

where Chomsky (1975) labeled it ‘‘the poverty of the stimuli,’’ in statistics where it is

manifested as combinatorial explosion, in philosophy where it is referred to as the problem of

induction (or even the ‘‘scandal of philosophy’’), and in artificial intelligence where it is

referred to as the ‘‘frame problem.’’ It has also been (albeit less directly) a force for

understanding how the human visual system works (Shepard, 1984, 1992; see also Simon,

1973 on ill-structured versus well-structured problems). The very divisions into which

psychology is traditionally divided implicitly recognize the incompatibility—and hence

specificity—of different cognitive tasks. Perception is different from language, which is

different from memory, which is different from social behavior, which are all different from

mathematical reasoning.

Research findings demonstrating that the equipotentiality assumption is generally prob-

lematic go back several decades now (Garcia & Koelling, 1966). Several research findings

over the last decade have documented aspects of cognitive development that appear to violate

the assumption of equipotentiality within the domain of mathematics learning. It is now fairly

well established that even very young children come prepared to learn certain, specific

properties of numbers, and these differentially prepared states evidently continue through

adulthood. Gelman (1998, 2000) and Wynn (1992a) summarize much of the experimental

evidence regarding the acquisition of numerical knowledge. Studies across species, with

infants, with children, and with adults, all support the basic contention that some basic

mathematical concepts (as well as cognitive abilities more generally) develop with the

required aid of specific privileged representations. There is still controversy as to the exact

nature of these privileged representations, but as a basic general statement, one can fairly and

safely say that some simple mathematical abilities are part of a universal human nature and

not arbitrary cultural constructions. Furthermore, many believe that these abilities form an

‘‘intuitive mathematics’’ (or naı̈ve mathematics, or skeletal principles, or biologically primary

abilities, etc.) that is a reliably developing aspect of the normal human phenotype (e.g., Geary,

1995; Geary & Lin, 1998; Gelman, 1998, 2000; Wynn, 1992a, 1992b, 1995, 1998a, 1998b).

Most previous work in this tradition has focused on relatively fundamental numerical
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knowledge, such as numerosity, ordinality, and whole number addition in infants and very

young children. Little work in developmental psychology has gone into if and how these

privileged representations that predispose young children to perceive numerical information

in certain ways influence more advanced mathematical abilities.

3. Privileged representations in judgments under uncertainty

The role of privileged representations has, however, been explored in the context of

advanced mathematical reasoning within the field of judgments under uncertainty. Like the

‘‘buggy algorithms’’ view of children’s learning, many researchers had been led to believe

that sophisticated mathematical tasks such as inferring posterior probabilities are governed by

adequate yet ultimately flawed ‘‘heuristics and biases’’ (Kahneman, Slovic, & Tversky,

1982). This viewpoint has been challenged by a number of researchers taking a theoretical

position that has recently been called ecological rationality (Gigerenzer, Todd, & The ABC

Research Group, 1999). Ecological rationality proposes that the mind is designed to function

in ways that reflect and utilize the regular properties of the world (more precisely, the

properties of the worlds in which our ancestors’ minds evolved). The aspect of ecological

rationality that is particularly of interest here is how the mind views the world and imputes

structures (as opposed to the aspects of the world that the mind simply takes advantage of in

making decisions). A growing body of research indicates that there are privileged represen-

tations that adults use in making judgments under uncertainty (Brase, Cosmides, & Tooby,

1998; Cosmides & Tooby, 1996; Gigerenzer, 1991; Gigerenzer & Hoffrage, 1995; Gigerenzer

et al., 1999; Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000). Some of these privileged

representations are:

Frequencies, as opposed to formats such as single event probabilities (0.05) or fractions

(1/2), are a privileged representational form (cf. Johnson-Laird, Legrenzi, Girotto, Legrenzi,

& Caverni, 1999, but see related comment by Brase, in press). Obviously, this ties in directly

with the findings in developmental psychology on the naı̈ve mathematics of the natural

numbers, but beyond that, it has been pointed out that information about the occurrences of

objects and events in the world would most reasonably yield frequency counts.

Natural sampling is a system of tabulating frequency counts within nested (set/subset)

categories. Thus, for example, one could have counts of how many apple trees you have seen,

how many orange trees you have seen, and the combined total of how many fruit trees you

have seen. This would, again, provide a close correspondence between the cognitive system

and the nature of the environmental information being used by that system (and it also has

some implications for procedures such as inferring posterior probabilities; see Gigerenzer &

Hoffrage, 1995).

The individuation theory qualifies some of the work with frequencies and natural sampling

by pointing out that a system that tracks frequencies must have a priori rules for what is

counted and what is not counted. The basic rule proposed by this theory is that whole objects,

events, and locations are readily encoded as frequency counts, whereas aspects or properties

of those items are difficult to track (Brase et al., 1998; see also the developmental work of
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Shipley & Shepperson, 1990; Spelke, 1988, 1990, which formed one line of evidence used in

developing this theory).

Pictorial representations generally seem to improve mathematical reasoning as well. It has

been pointed out (Brase et al., 1998; Cosmides & Tooby, 1996) that most information fed into

these natural sampling systems (during their evolution as a part of the human cognitive

architecture) would have been visually perceived real objects, real events, and real locations.

The fact that these systems work at all using written word problems with Arabic numerals

instead of counts based on actual experience is a testament to the flexibility of the human

mind. Nevertheless, it should be expected that better approximations of real stimuli, such as

pictorial representations or token objects, will improve subsequent mathematical reasoning

(e.g., see Mix, Levine, & Huttenlocher, 1999).

In a watershed article, Geary (1995) focused on differences between biologically primary

abilities (those that have heavy influences of privileged representations) and biologically

secondary abilities (with little or no influences of privileged representations). The present

paper agrees with this overall view but takes a somewhat different approach. Whereas some

might consider the biologically secondary abilities as, therefore, ‘‘free’’ of privileged

representations, guiding constraints, or skeletal principles, this paper seeks to provide a

specific illustration of how certain biologically secondary abilities— fraction and decimal

understanding—can be influenced by privileged representations. This implies, for example,

that people untutored or still developing knowledge in more complex (i.e., biologically

secondary) mathematical procedures and concepts, such as fractions and decimals, will tend

to interpret numbers as frequency counts. In other words, learning of secondary abilities rests

on the foundation of biologically primary abilities. Furthermore, this biologically primary

frequentist interpretation on the part of learners can be expected to be relatively resistant to

simple modification or elimination. Thus, certain characteristic behaviors can be expected to

commonly emerge when relatively naı̈ve mathematics students are presented with math

problems. Although one might simplistically write off these assumptions as ‘‘bugs,’’ they

may very well instead be indicative of sophisticated algorithms that were designed by natural

selection to reliably develop in humans.2

It may be useful to consider an increasingly common euphemism in the computer software

industry: The description of computer software problems (computer bugs) as ‘‘undocumented

features’’ of the program. The ploy is that the unanticipated behavior of the software program is

a purposefully designed part of the program. In reality, undocumented features of computer

programs are usually simply unforeseen programming glitches (i.e., bugs) and the name

change truly is a deceptive ploy. However, the human mind was not programmed by Mic-

rosoft2 but was programmed by natural selection over millions of years and with continual

feedback from extensive field testing. ‘‘Bugs,’’ in the direct analogy sense, does not hold as

well as it might initially appear. Instead, the mind is filled with true ‘‘undocumented features’’

2 This does not mean that these ‘‘buggy’’ responses should now be considered correct answers. The field of

mathematics, independent of considerations of human cognitive development, continues to apply in matters of

determining correct answers to mathematics problems.
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(thus, experimental psychologists have jobs). To put it another way, if my word processor puts

a red line under the word ‘‘frequentist’’ (as it does) and I do not realize that this is a spell-

checking function, I may conclude that the computer program is bugging up my paper and I

would be labeling an undocumented feature as a ‘‘bug.’’ If, however, I understand this as a

spell-checking function, I can figure out how to turn it off when I do not want it putting red

underlines throughout my documents. Understanding why a certain response occurs can be key

to understanding how to either get that response or circumvent the occurrence of that response.

4. Privileged representations and working with fractions and decimals

Fractions and decimals are related constructs. They both can be defined as ways of

expressing a division of whole numbers. Fractions accomplish this by giving a portion of

some given unit of equivalent division (e.g., 3/20 is 3 parts of what has been divided into 20

equal parts). Decimals give a portion of base-10 equivalent divisions (e.g., 0.15 is 1 part of

what has been divided into 10 equal parts and 5 parts of what has been divided into 100 equal

parts). The difference between them is, therefore, primarily whether the unit of equivalent

division is set to some standard (base-10) or allowed to vary according to the properties of the

situation. Decimals, in fact, can be more formally called ‘‘decimal fractions.’’ Fractions and

decimals both are methods for moving beyond the natural numbers and expressing more

finely graded quantities (i.e., rational numbers).

4.1. Fractions

The fact that elementary school children have difficulty understanding and using fractions

is something generally agreed upon by both researchers and teachers alike. Gallistel and

Gelman (1992, p. 69), for example, call the teaching of fractions ‘‘a major pedagogical

challenge.’’ There are, of course, many opportunities for difficulties in children’s mathemat-

ical education prior to the introduction of fractions, but acquiring the conceptual and

procedural understanding of fractions appears to be a major area that is particularly prone

to trouble. Specifically, problems with fractions manifest themselves not only as straightfor-

ward difficulties in acquiring a basic and accurate conceptual understanding of fractions but

also in the acquisition of faulty procedural understandings of working with fractions. For

example, a common error in learning to add fractions is to simply add the numerators and add

the denominators to reach an answer (e.g., 1/2 + 1/3 = 2/5). The problem, as Mark Twain put

it, is ‘‘not what people do not know but what they know that just is not so.’’

The example just given is common enough that it has been dubbed the ‘‘freshman bug’’ or

more descriptively the ‘‘rational number addition bug.’’ The common explanation is that

these procedural errors are diagnostic symptoms of underlying flawed or incompletely

integrated conceptual knowledge. According to Silver (1986, p. 191), ‘‘it is fairly common

and reasonable to attribute the error, when it is made by young children, to an incorrect

generalization of whole number addition.’’ This is a perceptive account of what a rational

number addition bug is, but it really does not address the origin of the bug or why it occurs in
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such a large number of children. To understand the origins of the rational addition bug, we

must first understand something about the nature of fractions.

Consider the current example of the tendency for students to answer a problem like

‘‘1/2 + 1/3’’ with ‘‘2/5’’ (i.e., [1 + 1]/[2 + 3]). This response should be an expected, albeit

erroneous, response if one understands that frequency representations are privileged in the

human mind. If people are predisposed to view numbers as frequency counts, ‘‘1/2’’ and

‘‘1/3’’ are plausibly treated as ratios of frequencies (1 out of 2 and 1 out of 3) rather than as

normalized fractions (1� 2 and 1� 3). The perfectly correct answer, given such a frequency

ratio interpretation, is, in fact, ‘‘2/5.’’ The rational number addition bug is a manifestation of

an undocumented design feature (frequencies as a privileged representational format). To

obtain the answer that is usually desired (‘‘5/6’’), certain properties must be assumed to

consider the structure of one-number-over-another as properly being a normalized fraction.

These properties are:

(A) Base unit property: The denominator (the base unit) for all the fractions must be:

1. From the same unit, or

2. If not from the same unit, they must

(a) be units of the same size,

(b) combining only the sampled segments, and

(c) evaluated based on the original base unit size.

(B) Unique segments property: The numerator (the sampled segment) for all the fractions

must be nonoverlapping entities.

Given that the assumption of these properties is clearly met, then one can correctly proceed

with the normative mechanics of adding the fractions together. Rittle-Johnson and Siegle

(1998, pp. 96–97) recognized aspects of these properties when they noted that: ‘‘they

[students] must learn that the two numbers within a fraction represent a single quantity, that

units equal in size are necessary for adding and subtracting fractions, and that the same

amount can be represented with fractions that include different numbers (e.g., 1/2 = 3/6).’’

Table 1 shows some simple examples of mathematics word problems that vary in the

satisfaction of the above properties. Note that one cannot violate all these properties

simultaneously (e.g., One cannot have sampling from different units and also overlapping

samples or have sampling from different sized units and maintain an ‘‘original’’ base unit

size). On the other hand, it is possible to violate several different properties within a single

mathematics problem.

By various stretches of meaning, however, all the problems in Table 1 can be notated as

‘‘1/2 + 1/3=?’’ Yet, the content of the word problems clearly makes them nonequivalent in

both their difficulty and their solutions. It is clear that there is not just one way of combining

fractions, and while the normative answers of the classroom are certainly the most general-

izable conclusions, other interpretations may be more than simply ‘‘wrong.’’ Some children

may see ‘‘1/2 + 1/3’’ and interpret it as something like ‘‘one brown egg out of two eggs is

combined with one brown egg out of three eggs,’’ for which the correct answer actually is

‘‘3/5.’’ In such a case, this is not a simple bug to be reprogrammed just as easily as it was
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putatively written in by the child’s earlier experiences. This can instead be an example of a

child not making certain property assumptions because those properties have not been

explained or justified in any way. One can think of this process as a ‘‘default setting’’ in the

Table 1

Various ways in which the assumptions underlying fraction addition can be violated, with attendant examples

Violations Example problem

No violations

(correct answer: 5/6)

You have a carton of eggs that you bought from a local farm. 1/2 of the

eggs in this carton have white shells. 1/3 of the eggs in this carton have

brown shells. The remaining eggs are gone (used for cooking). What

fraction of the carton of eggs is left?

Base Unit 1 violated,

but Base Unit 2 intact

(correct answer: 5/6)

You have two cartons of eggs that you bought from a local farm. 1/2 of

the eggs in the first carton have brown shells. 1/3 of the eggs in the

second carton have brown shells. The remaining eggs are white. You

take the brown eggs out of both their original cartons and place them

together in a new (empty) carton. Then, you fill in the rest of the new

carton with white eggs. What fraction of the new carton is filled with

brown eggs?

Unique Segments Assumption violated

(correct answer: cannot say)

You have a carton of eggs that you bought from a local farm. 1/2 of the

eggs in this carton have brown shells. 1/3 of the eggs in this carton have

cracked shells. The remaining eggs are gone (used for cooking). What

fraction of the carton of eggs is left?

Base Units 2a and 2c violated

(correct answer: cannot say)

You have two packages of eggs that you bought from a local farm. The

first package of eggs came in a large basket, and 1/2 of the eggs in the

basket have brown shells. The second package of eggs came in a carton,

and 1/3 of the eggs in the carton have brown shells. The remaining eggs

are white. You take the brown eggs out of both their original containers

and place them together in a new (empty) box. What fraction of the new

box is filled with brown eggs?

Base Units 2b and 2c violated

(correct answer: cannot say)

You have two cartons of eggs that you bought from a local farm. 1/2

of the eggs in the first carton have brown shells. 1/3 of the eggs in

the second carton have brown shells. The remaining eggs are white.

You take all the eggs out of both their original cartons and place

them together in a basket. What fraction of the basket is filled with

brown eggs?

Base Unit 2c violated

(correct answer: 1)

You have two cartons of eggs that you bought from a local farm. 1/2

of the eggs in the first carton have brown shells. 1/3 of the eggs in

the second carton have brown shells. The remaining eggs are white.

You take the brown eggs out of both their original cartons and place

them together in a basket. What fraction of the basket is filled with

brown eggs?

Base Units 2a–2c violated

(correct answer: cannot say)

You have two packages of eggs that you bought from a local farm. The

first package of eggs came in a small basket, and 1/2 of the eggs in the

basket have brown shells. The second package of eggs came in a large

carton, and 1/3 of the eggs in the carton have brown shells. The

remaining eggs are white. You take all the eggs out of both their

original containers and place them together in a new (empty) box. What

fraction of the eggs in the new box are brown eggs?
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mind of a child as to how to consider numbers. Such a starting point would often be useful in

terms of providing some computationally necessary problem structure. As Clements and Del

Campo (1990, p. 186) pointed out, ‘‘At various times of their schooling, children are told that

the fraction 1/3, for instance, is concerned with each and all of the following: (a) sharing a

continuous quantity between three people, (b) sharing 12 (say) discrete objects between three

people, (c) dividing the number 1 by the number 3, (d) a ratio of quantities, (e) a 1 for 3

replacement operator, (f) a rational number equal to 2/6, 3/9, and so forth, and (g) a decimal

fraction of 0.333. . .’’

4.2. Decimals

Learning to work with decimals is another notorious area in mathematics education.

Decimals are typically taught after students have learned fractions, and by many accounts,

‘‘the decimal number system comprises the lion’s share of the elementary and junior high

school mathematics curriculum’’ (Hiebert & Wearne, 1986, p. 200). This sequence is

sensible, as Hiebert, Wearne, and Taber (1991, p. 322) point out, because ‘‘Decimals are

rather complex mathematical entities. They represent a confluence of common fractions and

whole numbers. Stated most simply, decimals use base-10 (whole number-like) notation to

stand for fractional quantities. This simple-sounding statement carries significant meaning.

Fractional quantities do not necessarily measure a whole number of units. They can have a

continuous nature, such as length or weight.’’

With this greater complexity comes a larger variety of documented ‘‘bugs.’’ Awell-known

example of a decimal-based buggy algorithm is the phenomenon labeled ‘‘Benny’s bug’’

(Erlwanger, 1973), which involves decimal math problems such as ‘‘0.2 + 4.0 = ?’’ Initially,

many students consistently produce the answer ‘‘0.6’’ to this problem. While this is not the

correct answer, it seems to be much less of an arbitrarily wrong answer in light of recent work

on the primacy of frequency representations in statistical reasoning. What produces this bug is

the dominance of a whole number (i.e., frequentist) perspective of numbers. Other decimal-

related bugs include the following:

(a) Adopting the rule that ‘‘more digits means bigger’’ (e.g., 0.1234 is larger than 0.32)

(b) Adopting the rule that ‘‘more digits means smaller’’ as a reaction to learning that the

first rule is wrong (e.g., 0.4321 is smaller than 0.23)

(c) Adopting a rule that attaching zeros to the right of decimal number increases the size of

that number. (e.g., 0.8 < 0.80 < 0.800)

(d) Adopting a rule of ignoring zeros on the left (e.g., 0.8 = 0.08 = 0.008)

(e) Adopting a rule of ignoring decimals, thus lining up digits on the right rather than lining

up the decimal points (e.g., Benny’s bug: 0.2 + 4 = 0.6, and variants: 0.07 + 0.4 = 0.11,

6� 0.4 = 24, and 42� 0.6 = 7)

All of these responses are explainable both methodologically and ontogenetically by

understanding that frequentist representations of numbers tend to dominate the intuitive

psychology of mathematics. In fact, the common patterns of these ‘‘bugs’’ have not escaped
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researchers in this area. Hiebert and Wearne (1986, pp. 204–205) note that ‘‘Extending

concepts of whole numbers into referents that are appropriate for decimal fraction symbols is

a delicate process. Students must recognize the features of whole numbers that are similar to

decimal fractions and those that are unique to whole numbers. . .The evidence suggests that

many students have trouble selecting the features of whole number that can be general-

ized. . .Most errors can be accounted for by assuming the student ignores the decimal point

and treat the numbers as whole numbers.’’ What has again been more elusive in these

accounts, and is provided here, is a way to understand why this aspect of learning about

decimals is so commonly problematic and an explanation that fits these phenomena into a

larger picture of mathematical development and education. Earlier explanations have only

proposed that these buggy procedures result from overgeneralizations of a familiar math-

ematics domain (whole numbers) to a new domain (decimals/fractions; e.g., Resnick et al.,

1989). Why, then, do whole number bugs persist in the learning of decimals when (under the

equipotentiality assumption) fractions could be just as easily used as the familiar domain from

which decimals could be generalized? The answer may be that the use of decimals involves a

different set of background properties that must be met in order to overcome the representa-

tion of numbers as being simple frequencies (see Resnick et al., 1989 for a similar

comparison). These background properties include:

(A) Using the decimal point as a key reference point that determines the status of the

numbers before and after it

(B) Assigning meaning to numbers based not only on their face value but also based on

their positions, relative to the decimal point

(C) Using zeros as ‘‘placeholders’’ rather than contributing to the value of the number

Comparing these property assumptions to those implied in the use of fractions, one can see

that decimals actually involve less background to understand when starting from a default

representation of whole numbers. This would help explain why Moss and Case (1999) found

that introducing decimals before fractions actually led to better pedagogical outcomes than

the more traditional sequence of teaching fractions before decimals.

5. Implications for research

What is the utility of holding frequencies as a privileged representational format? That is,

how does this improve upon the idea that buggy algorithms are overgeneralizations from a

familiar domain (whole numbers) to a novel domain (fractions or decimals)? First, it provides a

stronger theoretical grounding for the very fact that whole numbers are invariably the ‘‘familiar

domain’’ and decimals and fractions are invariably the ‘‘novel’’ domains. As intuitive as this

situation seems, it is a property of how the human mind constructs (and in turn has constructed)

the world, and it is a violation of equipotentiality. Second, this viewpoint usefully integrates

research with adults (in judgments under uncertainty), with children (in mathematical

reasoning), and with infants (in perception of numerosity). The argument that fractions and
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decimals are ‘‘novel’’ domains does not work so well when explaining the better performances

of university students using frequencies (i.e., whole numbers) as compared to other numerical

formats. Furthermore, this integration of research findings illustrates how the naı̈ve math-

ematics of childhood are not eventually subsumed by years of teaching but continue to exert

their influence well into adulthood. Finally, the merits and existence of domain-specific,

content-dependent mechanisms (e.g., privileged representations) in juxtaposition to more

general-purpose, content-independent mechanisms (e.g., general learning) is a broader debate

within psychology that has been explored elsewhere at some length (e.g., Tooby & Cosmides,

1992). These alternative viewpoints point to very different conceptualizations of the human

mind generally.

5.1. On the nature of mental representations of frequency

There is genuine debate as to the form of magnitude representations in the mind. That is,

even if information enters the cognitive system as frequencies, does it retain that form (i.e.,

digital) indefinitely or does the magnitude information at some point become an analog

representation? There is good evidence that at least some magnitude information is accessed

in terms of analog representations (Huntley-Fenner & Cannon, 2000), and the proposal that

the human cognitive system is designed to work with frequency information is actually

untroubled by the fact that some outputs of the system appear to be analog. After all, it is not

necessary (perhaps not even desirable) that someone be able to say that they found food in the

East valley 234 out of 300 times and found food in the West valley 97 out of 200 times. What

is important is that that person be inclined to preferentially go to the East valley when hungry

(see also Klein, Cosmides, Tooby, & Chance, in press).

Once again, it is instructive to consider the environment in which the human mind

evolved. The proposition that people track the frequencies of objects and events within a

natural sampling system does not require that those people have open access to the actual

frequency counts. In fact, it would be likely over most of human evolutionary history and

ecological circumstances that people did not have the symbolic language to adequately

express many of these natural sampling results. Conversely, as noted earlier, the use of sym-

bolic notations for magnitude (i.e., written numbers) is less effective in producing accurate

mathematical reasoning than counting actual objects or events. Interestingly, Mix et al. (1999)

have also found some fascinating results of early competencies in using pictorial analogs of

fractional quantities.

5.2. On the relationship between conceptual and procedural knowledge

A large body of literature exists regarding the relationship between conceptual knowledge

and procedural knowledge in mathematics education. Clearly, the notion of privileged

representations proposes a situation that can be understood as certain forms of conceptual

knowledge preceding procedural knowledge. It is important to emphasize, however, an aspect

in this conceptual/procedural distinction that is sometimes overlooked: the existence of

conceptual knowledge implied to exist by the manifestation of procedural competence does
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not necessarily imply conscious accessibility of that conceptual knowledge. A simple

example of this is when a child throws a ball— something that involves the physics of

force, momentum, and gravity. The child consciously accesses none of these concepts, but all

these concepts are implicitly used in the successful throwing of a ball (see also a similar

example, using language, in Gelman, 2000).

The principles embodied by privileged numerical representations are not necessarily or

automatically open to conscious access, any more than the laws of physics, optics, acoustics,

or grammar are consciously accessed in walking, seeing, hearing, or speaking. For this

reason, children (and adults) can enact procedures for which they do not ‘‘know’’ the

rationale (i.e., there is no conscious access to the underlying conceptual principles). One can

view a part of the educational process as not only teaching procedural skills but also teaching

conceptual information that may or may not be implicitly represented in other parts of the

mind (e.g., Rozin, 1976).3

Some research with adults, along the methodological lines of judgment under uncertainty

research, may be useful in empirically establishing how and to what extent the background

assumptions of fraction and decimal mathematics are employed (e.g., by giving the problems

in Table 1 to participants), but it would perhaps be more interesting and more useful to move

towards applied research with children. Two possibilities for research of this type are

immediately suggested: (1) comparisons of teaching methods using matched classrooms, in

which one group of students experience standard teaching methods regarding a topic (e.g.,

adding fractions) and the other group of students experience teaching methods that based

more strongly on the principles outlined in Section 6, and (2) research using remedial

education efforts that are based on the principles outlined in Section 6 (again compared to

some control group), perhaps similar to the research conducted by Rozin (1976) on

developing reading skills. Finally, there may be some useful implications of this approach,

for example, looking at the individual assumptions for fraction use, in relation to research on

mathematical abilities of nonhuman species (e.g., Beran, Rumbaugh, & Savage-Rumbaugh,

1998; Boysen & Hallberg, 2000; Brannon & Terrace, 2000; Davis & Perusse, 1988).

6. Implications for teaching

This paper now turns to the implications of the above considerations for the teaching of

mathematics. Many of these implications are not entirely, or even primarily, novel. Math-

ematics teachers have spent hundreds of years noting which topics are more difficult, which

learning aids are helpful, and which teaching techniques work. In discussing these implications

for teaching, it is hoped that, by developing a deeper understanding of why the aides and

3 This is also not a purely socratic view that all knowledge is pre-existing in the mind and needs to simply be

drawn out. The fact that one cognitive system uses some phenomenon that has been adequately labeled and

described by science does not make the conceptual understanding of that phenomenon intrinsically easier. The

most that can be claimed generally is that a cognitive system that manifests a particular conceptual principle can

make for a particularly useful example to help someone explicitly understand that same concept.
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obstacles in learning mathematics are structured as they are, effective learning methods can be

applied more wisely and possibly even extended in effectiveness (Geary, 1995 also makes

several excellent suggestions regarding pedagogy that fit with this approach).

6.1. Anticipate the nonequipotential nature of concept learning

That is, plan for a significant number of learners initially understanding fractions as subsets

of whole objects. It is important to realize that this pattern of learning is not necessarily

the result of ‘‘bad’’ teaching and that children are not learning mathematics in a vacuum,

with only their classroom instruction providing information. The evolutionary history of hu-

mans has programmed dispositions into the minds of all normally developing individuals,

such that certain numerical representations will be privileged over other representational

formats. Rather than railing against these privileged representations with rote memorization

and noninsightful procedural rules, one can use an improved knowledge of where children

are ‘‘coming from’’ to guide them in the directions that mathematics instruction needs to

take them.

6.2. Include explicit discussions of deviations from privileged ideas

Good teachers do not just know what they want to teach but they also know what the

learners already understand. In other words, teachers should not make the equipotentiality

assumption but instead actively point out and reveal the all too often implicit properties that

underlie the use of fractions and decimals (e.g., as outlined in this paper; see also Resnick

et al., 1989).

6.3. Include instructions on ‘‘debugging’’

This is in extension to the previous point. When privileged representations make correct

mathematical reasoning more difficult, learners should be specifically taught how to reason

about mathematics correctly. When ‘‘buggy’’ reasoning does occur, more needs to be done

than simply telling the student they are wrong and how to work out the correct answer. Our

understanding of how the mind represents numbers allows us the opportunity to explain why

the student’s initial response is wrong and at the same time point out the underlying

reasonableness for making such an error.

6.4. Value both procedural and conceptual knowledge

There is always a tension between teaching procedures—which are easy to apply and get

immediate results but prone to misapplications—and teaching concepts—which are harder

to teach, yield more distant results, but are longer lasting and often more accurate in

application. Rather than pass a blanket judgment on which type of knowledge is preferable,

the privileged representations view indicates that the merits of teaching procedural or
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conceptual knowledge change with the topic at hand. A mathematical concept that meshes

well with the intuitions of naı̈ve mathematics can be taught first with little trouble, with

procedural knowledge following the concept acquisition. Other concepts are more difficult to

acquire because they run counter to the privileged representations within naı̈ve mathematics.

These concepts may be better left until after some procedural knowledge has been established

to reinforce the relatively difficult concept acquisition. There is a danger here that some

learners will not progress beyond the procedural knowledge in this later situation, and this

possibility should be guarded against (Tirosh, 2000).

6.5. Frame learning situations

Although it would appear that there is little one can do to alter the nature of the privileged

representations that form the basis of the human naı̈ve mathematics, it would be grossly

inaccurate to say that there is little one can, therefore, do to change how concepts are

represented in the process of learning about mathematics. One key to developing desired

representations from the start is to frame the learning situations to promote desired rep-

resentations. Note that this is similar to some ideas within the constructivist viewpoint but

notably different in that is advocates a much more directive role for the teacher. Several

research programs, working from various premises, support this approach. Miura, Okamoto,

Vlahovic-Stetic, Kim, and Han (1999) argued that Korean students performed better in

understanding the part–whole quantitative relationship that exists in fractions because the

concept of that relationship is embedded within the mathematics terminology of East Asian

languages. Moss and Case (1999) found that an inversion of the typical order of introduction

for fractions and decimals (i.e., they introduced decimals first and then fractions as an

alternative notation style) led to better performance on measures of both conceptual and

procedural knowledge. Finally, in his work with teaching children fractions, Silver (1986)

noted in passing that remediation of buggy algorithms with fraction bars and cardboard

regions did not work well, but using measuring cups worked much better. This finding was

not pursued further by Silver because ‘‘It is not clear what aspects of the measuring cup

image were most helpful to subjects. It is possible that other alternative models would also

be effective’’ (p. 196). From a perspective that includes the existence of privileged

representations, it is easy to recognize that the crucial aspect in these different mediums

for remediation is the individuation of items within the materials (i.e., discontinuous objects

that can be clearly counted as frequencies). Items that can be divided into discrete, countable

units (bars, pieces of cardboard, slices of pizza, etc.) will tend to invoke frequentist rep-

resentations of multiple items (Brase et al., 1998; see also Sophian & Kailihiwa, 1998). On

the other hand, items that are perceptually continuous (e.g., liquids, sand, sugar, and flour—

things that typically use measuring cups) will not be easily represented as multiple, dis-

crete, and countable units (more abstract continuous items, such as time, will quite likely

work in a similar manner). From a pedagogical standpoint, it would probably be most

productive to demonstrate concepts such as fractions with both forms of representation and

then discuss the similarities and differences between the media used and the mathematical

procedures involved.
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7. Further issues

This paper has dealt with some common ‘‘buggy algorithms’’ and attempted to show how a

model of privileged representations that includes intuitive assumptions about the existence

and nature of frequentist numbers in the world can help us to understand these phenomena.

The recognition of privileged representations in the mind may not be relevant to every type of

mathematics ‘‘bug’’ that exists, and it is important to make this limitation clear. There are,

however, also privileged representations other than those considered here that just as certainly

might influence the development of mathematics knowledge and skills. It can be informative,

therefore, to review a few other findings in the literature that seem to fit within the

explanatory domain of privileged representations being assigned as ‘‘buggy.’’

Hartnett and Gelman (1998) took a perspective similar to the one developed in much more

detail here: that ‘‘inputs about fraction may not be interpreted as intended by the school

but rather in terms of the child’s theory that number is what one gets when one counts

things. . .Doing this amounts to treating the data as if it were made up of novel counting

examples as opposed to exemplars of a new kind of number’’ (p. 363). They found that

whereas children readily learned a concept such as infinity, which is consistent with frequentist

representations of numbers, children had great difficulty in rank-ordering numbers with frac-

tional notations.

The findings of Sophian and colleagues also fit with the idea of a frequentist representation

that tends to parse the world into discrete, countable units (Brase et al., 1998). Sophian and

Wood (1997) found that children usually begin with part–part relationships when dealing

with proportions (e.g., comparing different parts to each other) and then later develop an

ability to use part–whole relationships (e.g., comparing a part of an object to the whole

object). Sophian and Kailihiwa (1998) found that when children counted arrays of items, ‘‘It

was possible to identify some common unit—whether whole object, pieces, or discrete

things— in virtually all the counts the children produced’’ (p. 583). Sophian (2000) found

that young children (under 5) can take account of object quantities and object sizes but have

difficulty in aggregating across objects to determine combined size.

Finally, there may be alternative explanations for the privileged representational status of

frequencies. Most notably, one could argue that fractions and decimals (and other alternative

formats) are inherently more complex than frequencies. Therefore, frequencies are of course

learned more easily, more quickly, and more pervasive. An analogy would be that it is simply

more difficult to walk up a steep hill than to walk along flat ground. The question, in brief, is

whether a particular format is a privileged representation by virtue of evolved dispositions

that make it so or by virtue of just happening to be inherently simpler to begin with. The crux

of distinguishing between these alternatives actually depends on the existence (or lack of) of

an external, environmental reference factor. That is, the analogy of walking up a hill being

harder than walking on level ground depends crucially upon the existence of gravity—a

factor wholly outside of considerations of psychology and experiences such as ‘‘difficult’’

and ‘‘easy.’’ To establish that the ultimate explanation for frequencies being a privileged

representational format is just their inherent simplicity compared to other formats, one must

identify an external, environmental reference factor that makes this distinction separate from
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human judgments. In other words, frequencies may just seem less complex than other

numbers because our minds are designed to specifically to work with frequencies.
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