

Theory-Driven Versus Theory-Free Modeling of Decision-Making Data

Kimberly Kirkpatrick Kansas State University

> Invited talk delivered at the 2016 Winter Conference on Animal Learning and Behavior, Winter Park, CO

Hyperbolic discounting (Mazur, 1987, 2001)*

- -V = A / (1 + kD)
- V = Subjective Value
- A = Amount
- D = Delay
- k = discounting rate
- Add 1 to avoid bad math

*Gibbon (1977) Derived hyperbolic discounting from scalar timing processes

Hyperbolic Discounting: Problem 1 Using models fits for statistical analyses

- Hyperbolic discounting fits are used to extract k-values, which are often the target for statistical analysis
 - Hyperbolic functions aren't always the best fit
 - Additional parameters, such as a sensitivity parameter (Rachlin, 1989; Myerson & Green, 1995) can lead to better fits but variants on the hyperbolic model are often overlooked (Mitchell et al. 2015)
 - Poor model fits can lead to misestimates of k-values, which can then influence group-level statistics
 - It has become increasingly common to remove "non-systematic" subjects (Johnson & Bickel, 2008) from the analysis, which can be problematic for smaller-n designs (e.g., neuroimaging; animal studies)

Hyperbolic Discounting: Problem 2 Bias versus Sensitivity

AUC and k have a non-linear relationship (Mitchell et al, 2015)

LL CHOICES

A theory-free modeling example

Garcia & Kirkpatrick (2013). Behavioral Brain Research
Tested strains of rats (Lewis versus Wistar)

- Magnitude task
 - ■SS = 1 pellet, 10 s
 - ►LL = $2 \rightarrow 3 \rightarrow 4$ pellets, 30 s

Delay task

- ■SS = 1 pellet, $10 \rightarrow 15 \rightarrow 20$ s
- ►LL = 2 pellets, 30 s

Impulsive Choice

Strain differences in impulsive choice

The LEW strain showed increased impulsive choice relative to WIS Strain x Magnitude and Strain x Delay interactions

Garcia & Kirkpatrick (2013)

New Analysis Approach

- Conducted a mixed effects logistic regression model on the original data
- Instead of collapsing into log odds ratios, we entered each binary choice
 - For this reason we used a logistic regression
- Looked for the best-fitting model using an AIC
 - Goodness of fit measure of models that takes into account the number of parameters
- Potential fixed effects: Strain, LL Magnitude (or SS Delay), Strain x LL Magnitude (or SS Delay)
- Potential random effects (individuals): LL Magnitude (or SS Delay), Intercept

BIAS (MEAN) EFFECTS SENSITIVITY (SLOPE) EFFECTS

Magnitude New Analysis/Results

BEST MODEL INCLUDED FIXED EFFECTS OF STRAIN, LL MAGNITUDE AND THEIR INTERACTION, AND THE RANDOM EFFECT OF INTERCEPT

MODEL	RANDOM EFFECTS	FIXED EFFECTS	AIC	ΔAIC
0	Intercept		10331	
1	Intercept	Strain x LL Mag	7750	-2581
2	Intercept	Strain, LL Mag	7761	-2570
3	Intercept	Strain	10329	-2
4	Intercept	LL Mag	7762	-2569
5	Intercept, LL Mag	Strain x LL Mag	7765	-2566

Model Fits and Interpretation

Comparison with ANOVA

ANOVA

- LL Magnitude, <u>F</u>(2,32) = 103.3, <u>p</u> < .001, η_p² = 0.87
- Strain, <u>F(1,16)</u> = 3.6, <u>p</u>.077, η_p² = 0.18
- Strain x LL Magnitude, <u>F(2,32)</u> = 4.3, <u>p</u> = .022, η_p^2 = 0.21

MIXED MODEL

- LL Magnitude, <u>t</u>(8713) = 41.5, <u>p</u> < .001, b = 1.82</p>
 - Strain, $\underline{t}(8713) = -2.2$, $\underline{p} = 0.025$, $\underline{b} = -0.53$
 - Strain x LL Magnitude, $\underline{t}(8713) = -3.6,$ $\underline{p} < .001, b = -0.16$

SS Delay New Analysis/Results

BEST MODEL INCLUDED FIXED EFFECTS OF STRAIN, SS DELAY AND THEIR INTERACTION, AND THE RANDOM EFFECTS OF INTERCEPT AND SS DELAY

MODEL	RANDOM EFFECTS	FIXED EFFECTS	AIC	ΔAIC
0	Intercept		9702	
1	Intercept	Strain x SS Delay	7682	-2020
2	Intercept	Strain, SS Delay	7869	-1833
3	Intercept	Strain	9702	0
4	Intercept	SS Delay	7870	-1832
5	Intercept, SS Delay	Strain x SS Delay	7597	-2105

Model Fits and Interpretation

Comparison with ANOVA

ANOVA

- SS Delay, <u>F(2,32)</u> = 57.1, <u>p</u> < .001, η_p^2 = 0.78
- Strain, <u>F(1,16)</u> = 2.4, <u>p</u> = .14, η_p^2 = 0.13
- Strain x SS Delay, <u>F</u>(2,32) = 6.2, <u>p</u> = .01, η_p^2 = 0.28

MIXED MODEL

- SS Delay, <u>†</u>(8609) = 36.5, <u>p</u> < .001, b = 0.32</p>
- Strain, $\underline{t}(8609) = -1.4$, $\underline{p} = 0.15$, $\underline{b} = -0.58$
- Strain x SS Delay, <u>t</u>(8609) = -13.3, <u>p</u> < .001, b = -0.12</p>

We also learned new things...

For magnitude:

- Individuals differed in their self-control/impulsive bias, but did not differ in their sensitivity to magnitude
- Strains differed in sensitivity, not bias
- For delay:
 - Individuals differed in their bias and sensitivity to delay
 - Strains differed in **sensitivity**, not **bias**
- Bias and sensitivity are at least partially separate psychological constructs
- Suggests some different mechanisms for individual differences versus strain effects

How does this fix our problem?

- Problem 1: Poor fitting and c
 - Non-systematic individuals car for in random effects
 - And, has the added bonus of same model framework as grc
- Problem 2: Bias versus sensiti
 - Can parse out overall differen
 - And, can do so for both group

How to move forward?

- There is a clear place for theory-based models in our field
 - Provide important insight into underlying processes (e.g., preference reversals)
 - Motivate new research
 - Provide an organizational framework for understanding patterns in data
 - But, they should not be our only approach
 - There are powerful modern statistical techniques that provide a better avenue for statistical modeling of the data
 - And, with random effects you can deal with non-systematic more elegantly than just eliminating individuals
 - These techniques can be used in conjunction with theory-based models to gain a complete picture of the data

Acknowledgements and Questions

Andrew Marshall Jen Peterson

Hill

Catherine Aaron

Smith

Mike Young

Funding: RO1-MH085739

QUESTIONS?

RTD LAB: k-state.edu/psych/research/kirkpatrick/rtdlab

Theory-free modeling

- Collapsed choices over the last 5 sessions using log odds ratio = log (#LL/#SS)
- 2 x 3 ANOVA
 - Between variable of Stain (WIS vs. LEW)
 - Within variable of LL Magnitude
 - LL Magnitude, p < .001, $\eta_p^2 = 0.87$
 - LL Magnitude x Strain interaction, p = .022, η_p^2 = 0.21
 - Strain, p = .077, $\eta_p^2 = 0.18$
 - Interaction due to strain effect at 3 pellets
- Also tested the Mean and Slope, but these did not differ significantly
- Also analyzed individual differences patterns

Garcia & Kirkpatrick (2013)

Original Analysis/Results

- Collapsed choices over the last 5 sessions using log odds ratio
- 2 x 3 ANOVA
 - Between variable of Stain (WIS vs. LEW)
 - Within variable of SS Delay
 - SS Delay, p < .001, $\eta_p^2 = 0.78$
 - SS Delay x Strain, p = .01, $\eta_p^2 = 0.28$
 - Strain, p = .14, $\eta_p^2 = 0.13$
 - Interaction due to Strain differences at 15 and 20 s delays
- Also tested the Meanand Slope, but these did not differ significantly
- Also analyzed individual differences patterns

Garcia & Kirkpatrick (2013)

- Q: Why did the mixed effects model give a more robust result?
- A: Better Treatment of Variables
- ANOVA treats repeated measures as categorical
 - SS Delay = 10, 15, 20 all viewed as different (but related) categories
 - Magnitude and delay are continuous variables
 - Mistreatment of variables leads to loss of power
- Adding random effects increased our sensitivity to detect the strain effects

Hyperbolic discounting: Problem 1

A = amount; this is assumed to be veridical

- No allowance for poor reward discrimination
- No allowance for bias individuals do not always choose the larger amount
- D = delay; this is assumed to be veridical
 - No allowance for poor time discrimination, or for bias
 - Although, k values do affect the impact of delays on behavior

$$V = A / (1+kD)$$

Rats with poor temporal or poor reward discrimination abilities are more impulsive

Marshall & Kirkpatrick (in press)

Marshall, Smith & Kirkpatrick (2014)

Strain differences in impulsive choice

LEW strain more likely to show biases to choose SS (SS responders) Deficits are predominantly localized to the delay task

So, what about problem 1?

- The current models ignore important psychophysical processes that play a key role in choice behavior (Problem 1)
 - Temporal discrimination (Marshall, Smith, & Kirkpatrick; McClure et al., 2014; van den Broek, Bradshaw, & Szabadi, 1992)
 - Timing accuracy (McGuire & Kable, 2013; Whitman & Paulos, 2008; Baumann & Odum, 2012)
 - Reward discrimination (Marshall & Kirkpatrick, in press)
 - Reward contrast and reward-timing interactions (Smith, Peterson, and Kirkpatrick, in press)

Hyperbolic discounting: Positive Aspects

- Provides an accurate fit to most discounting curves
- K-values do have some predictive value
 - Individual differences in k-values are stable over time
 - Individuals with higher k-values are more likely to abuse drugs, relapse following treatment, gamble, etc.
- The hyperbolic curve predicts preference reversals, which do generally seem to happen