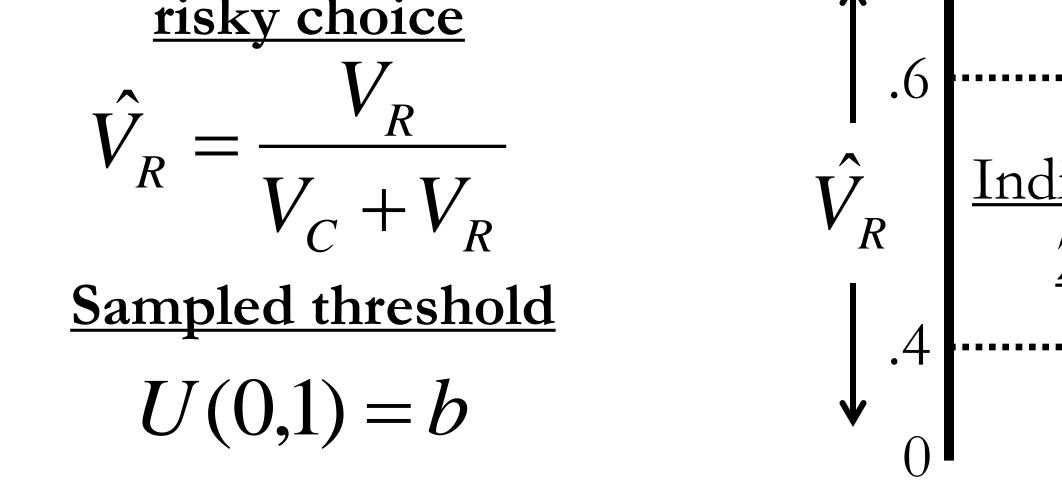
Modeling sequential choices in a risky choice task Andrew T. Marshall* & Kimberly Kirkpatrick

INTRODUCTION


- Sequential behaviors such as gambling and fo choices that are typically studied in probabilis
- The previous outcome of a choice can affect
- The weight that a previous outcome has on the decay exponentially or hyperbolically as a fund
- Here, simple models for valuation and decision simulated to elucidate the psychological proce behavior.

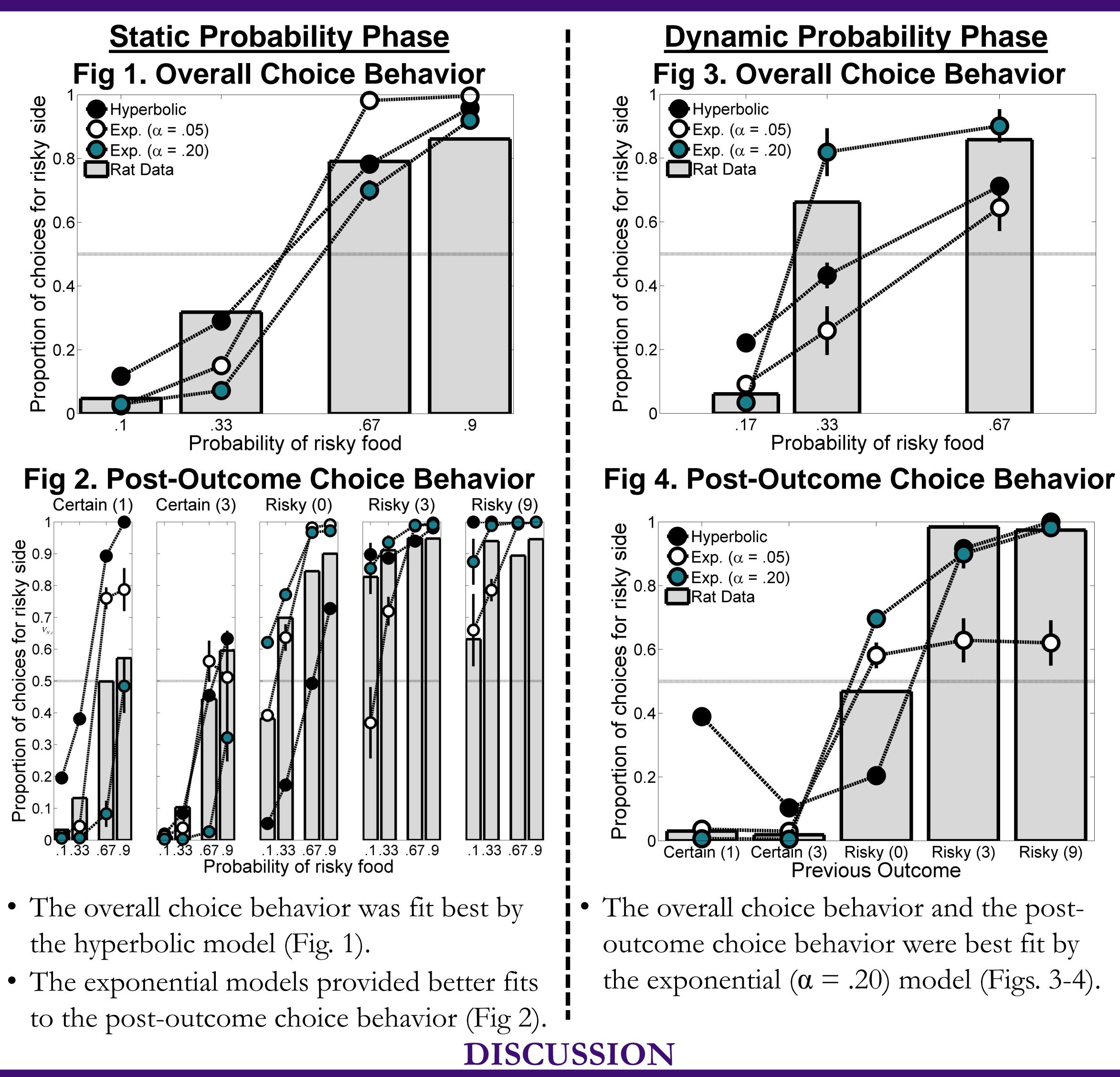
METHOD – EXPT. 1: DATA COLLECTION

- 24 male Sprague-Dawley rats chose between a certain and a risky outcome
 - Certain outcome: Food always delivered (1 or 3 pellets)
 - Risky outcome: Food probabilistically delivered (3 or 9 pellets)
- P(risky food) was constant across an experimental session (static probability training) or changed across the session (dynamic probability training).
 - Static probability of risky food: p(risky food) = .1, .33, .67, and .9
 - Dynamic probability of risky food:
 - Session onset: p(risky food) = .33
 - Following an unrewarded risky choice: p(risky food) = .17
 - Following a rewarded risky choice: p(risky food) = .67

METHOD – EXPT. 2: MODEL SIMULATIONS

VALUATION MECHANISMS Hyperbolic Rule /t - (n-1)t - (n - 1) $\int (R_{N,i}/T_{N,i})$ $(1/T_{N,i})$ $V_{N,t} =$ • $V_{N,t}$: value of choice N at trial t • $R_{N,i}$: magnitude of reward *i* of choice N that occurred $T_{N,i}$ s in the past **DECISION MECH** Compute relative value of risky choice

oraging rarely involve the isolated
stic choice procedures.
t the subsequent choice behavior. ¹
the subjective value of a choice ma
nction of time. ^{2,3}
on-making mechanisms were
cesses of sequential risky-choice


Exponential Rule

 $V_{N,t} = V_{N,t-1} + \alpha (R_{N,t} - V_{N,t-1})$

• $V_{N,t}$: value of choice N at trial t • $R_{N,t}$: magnitude of most recent reward of choice N

• **α**: decay rate parameter (.05 and .20)

HANISM
Lake choice based on V_R and b
Risky Choice
$\frac{\hat{V}_R > b, \text{Risky Choice}}{2000} \hat{V}_R < b, \text{Certain Choice}$
Certain Choice

Kansas State University

RESULTS

• The rats and simulated models showed sensitivity to the probability of risky food delivery. • The hyperbolic model³ provided a better fit to the choice behavior across a series of choices. • The exponential models² provided better fits to the choice behavior at a more local level. • Future models of choice behavior should include both time-based (hyperbolic) and trialbased (exponential) components to account for sequential risky-choice behavior. REFERENCES

*Email: atmarsh@k-state.edu

^{1.} McCoy, A. N., & Platt, M. L. (2005). Risk-sensitive neurons in macaque posterior cingulate cortex. Nature Neuroscience, 8, 1220-1227. 2. Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proceedings of the National Academy of Sciences, 108, 15647-15654.

^{3.} Devenport, L., Hill, T., Wilson, M., & Ogden, E. (1997). Tracking and averaging in variable environments: a transition rule. Journal of Experimental Psychology: Animal Behavior Processes, 23, 450-460.