

Moderating sub-optimal choices in delay discounting tasks in rats

Kimberly Kirkpatrick and Carrie Bailey

Kansas State University

Invited talk delivered at the American Psychological Association San Francisco, CA August 10, 2018

Every day decisions: 35,000

15-20 bites per day

Choice: Measurement

- Offer rats choices between smaller-sooner (SS) and larger-later (LL) rewards (based on Green & Estle, 2003)
 - SS lever = 1 pellet in 10 s
 - LL lever = 2 pellets in 30 s
 - ITI = 60 s
- Can manipulate delay to and/or magnitude of reward
- Choices of SS indicate sub-optimal "impulsive" choice as they should earn fewer rewards

"Self-controlled"

Individual differences in delay discounting

- Delay discounting appears to be a stable trait variable
 - Test-retest correlations for humans in the .6-.7 range over periods from 1 week to 1 year; comparable to other trait variables (e.g., Jimura et al., 2011; Johnson, Bickel, & Baker, 2007; Kirby, 2009; Matusiewicz et al., 2013; Ohmura et al., 2006)
 - Test-retest correlations in the .6-.7 range for rats over periods of 1 to 5 months (Peterson, Hill, & Kirkpatrick, 2015)
- Individual differences in delay discounting are related to:
 - Substance abuse (e.g., Bickel & Marsch, 2001; Carroll et al., 2009; deWit, 2008)
 - Pathological gambling (e.g., Alessi & Petry, 2003; MacKillop et al., 2011; Reynolds et al., 2006)
 - Obesity (e.g., Davis et al., 2010)
 - ADHD (e.g., Barkley et al., 2001; Solanto et al., 2001; Sonuga-Barke, 2002)
- Delay discounting is a trans-disease process (e.g., Bickel & Mueller, 2009)

Origins of Individual Differences: Timing Processes

- Adolescents with ADHD:
 - Exhibit poorer temporal discrimination abilities (Barkley et al. 2001; Smith et al. 2002)
 - Display steeper impulsive choice functions than controls (e.g., Barkley et al. 2001; Scheres et al. 2010; Wilson et al. 2011)
- More impulsive humans:
 - Overestimate interval durations (Baumann & Odum, 2012)
 - Demonstrate poorer temporal discrimination abilities (Van den Broek, Bradshaw, & Szabadi, 1987)
- More impulsive rats:
 - Demonstrate poorer temporal discrimination abilities and weaker delay tolerance (Marshall et al., 2014; McClure et al., 2014)

Altering individual differences: Time-based interventions

Exposure to delays reduces impulsive choice in rats

(Madden et al. 2011, Stein, Johnson, et al. 2013, Stein et al. 2015) **and humans** (Eisenberger and Adornetto 1986)

- Gradually increasing the delay to the LL reward maintained preference for the LL outcome in:
 - Adults with development disabilities (Dixon et al. 1998)
 - Children with ADHD (Binder, Dixon, and Ghezzi 2000; Neef, Bicard, and Endo 2001)
 - Adults with moderate to severe intellectual disabilities (Dixon, Rehfeldt, and Randich 2003)

Time-based interventions: Questions

Is mere delay exposure sufficient? Or, does the nature of the delay exposure matter?

Time-based intervention: Interval schedules

Smith, Marshall, & Kirkpatrick (2015)

FI and VI Interventions: Choice

Both FI and VI interventions significantly increased LL choices

Smith, Marshall, & Kirkpatrick (2015)

- How long do the interventions last? (longevity)
- Do the interventions only promote delay processes within the choice procedure? (generalizability)
 - Or does the intervention affect choice overall?

FI reduced sensitivity to SS delay (delay discounting rate)

VI no longer showed any intervention effect

Generalizability of Intervention Effects

Generalizability of intervention effects

FI increased LL choices FI reduced sensitivity to LL delay

Generalizability of intervention effects

FI increased LL choices FI reduced sensitivity to LL magnitude

Fl Intervention: Questions

Does the FI intervention actually increase food earning?

Or, does the FI just increase LL choices?

Choice and Food Earning

- Offered 48 free choices per session, plus interspersed forced choice trials
- Rats have 2 hr to complete a session at which point the session terminates
 - Rats did not always complete all trials
- This means that increased LL choices may not mean more food earning
 - FI could improve efficiency so that the rats earn the same amount of food per session but in fewer trials

Choice and Food Earning: Hypothetical Examples

- Rat 1 makes 40 LL choices and completes 40 trials
 - 100% LL, 80 pellets

- Rat 2 makes 40 LL choices and completes 48 trials
 - 83.33% LL, 88 pellets

Measurements of Food Earning

- Percent of possible food earned on choice trials
 - 48 free choice, so maximum food is 96 pellets
- Total trials completed
- Food earning efficiency
 - Percent LL choices

Food Earning

FI earned more food at all SS delays

Generalizability of Intervention Effects

Food Earning – LL Delay Task

There were no intervention effects on trials completed or food earning Bailey et al. (2018)

Food Earning – LL Magnitude Task

FI group completed more trials at the smaller LL magnitudes FI group earned more food at the smaller LL magnitudes

Food Earning Summary

- Rats showed signs of possible delay intolerance (delay tasks) and satiety (magnitude task) in their food earning patterns
- The intervention combatted these effects in the SS delay and LL magnitude tasks
 - The intervention may have increased persistence and efficiency in food earning
- The intervention did not promote food earning in the LL delay task, even though LL choices were increased
 - The LL delay task ($15 \rightarrow 30 \rightarrow 45$) made the LL less attractive across phases
 - The SS delay (5→10→20) and LL magnitude (2→3→4) tasks made the LL more attractive across phases
 - Possible anchor effect of the preferred LL

-ime-based interventions: Questions

Are the interventions merely inducing selfcontrol (or perhaps delay tolerance)?

Or, are there effects on timing processes?

Time-based intervention: Interval schedules

Smith, Marshall, & Kirkpatrick (2015)

FI and VI Interventions: Timing

Smith, Marshall, & Kirkpatrick (2015)

Overall summary

Increased LL choices and increased food earning (mostly) Decreased sensitivity to delay (discounting rate)

- Identify and target specific mechanisms within the timing system
- Global versus local maximizing
- Develop human translational applications Implement interventions to alter pathways to disease

Acknowledgments

Andrew Marshall

ll Peterson

Aaron Smith

CassiCatherineFriday (Binkley)Steele (Hill)SarahCarrieStuebingBailey