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ABSTRACT 

Rosenberg, M. S., Garrett, K. A., Su, Z., and Bowden, R. L. 2004. Meta-
analysis in plant pathology: Synthesizing research results. Phytopathol-
ogy 94:1013-1017. 

Meta-analysis is a set of statistical procedures for synthesizing research 
results from a number of different studies. An estimate of a statistical 
effect, such as the difference in disease severity for plants with or without 
a management treatment, is collected from each study along with a meas-
ure of the variance of the estimate of the effect. Combining results from 
different studies will generally result in increased statistical power so that 

it is easier to detect small effects. Combining results from different studies 
may also make it possible to compare the size of the effect as a function 
of other predictor variables such as geographic region or pathogen 
species. We present a review of the basic methodology for meta-analysis. 
We also present an example of meta-analysis of the relationship between 
disease severity and yield loss for foliar wheat diseases, based on data 
collected from a decade of fungicide and nematicide test results. 

Additional keyword: plant productivity. 

 
Research falls into two broad categories: primary research, in 

which an investigator examines a particular phenomenon, and re-
search synthesis, in which an investigator reviews and summar-
izes primary research. In its broadest sense, meta-analysis refers 
to any quantitative review of the primary literature (13). For the 
most part, however, meta-analysis refers to a specific set of 
statistical procedures that are used to summarize primary studies 
by estimating measures of overall effect, consistency and homo-
geneity among the studies, and whether the effect differs signifi-
cantly from a null expectation. As with any research, meta-analy-
sis contains a wide variety of steps from planning to data collec-
tion to analysis to interpretation. We will give a brief overview 
and example; for more information on all aspects of meta-
analysis, we recommend Hedges and Olkin (17), Cooper and 
Hedges (11), Normand (23), Rosenberg et al. (28), and Arthur et 
al. (2), as well as Hunt (19) for a historical perspective and 
overview. 

The analytical part of a meta-analysis consists of two main 
parts: estimation of effect size from individual studies and esti-
mation of summary statistics. An effect is a statistical estimate of 
the degree to which a phenomenon is present in a study (10). For 
a specific phenomenon there may be many ways of measuring 
effect. For example, the effect of a biological control or fungicide 
compared with no treatment on the amount of disease could be 
measured as the difference in disease severity between plants 
treated and untreated, or the difference in disease incidence, or 
the ratio of disease severity, or the ratio of disease incidence. 
Each of these is a valid way of measuring effect and their mag-
nitude is known as the effect size. In a meta-analysis, one chooses 

a single effect measure and estimates it for all studies; this allows 
us to compare and combine the results of these studies directly. 

Effect size can be estimated in any number of ways; specific 
choice of a measure often depends on both the specific questions 
being asked and the nature of the data. Most meta-analyses use 
one of a number of common measures of effect size, but it is 
possible, and sometimes preferable, to use an ad-hoc measure 
(25,26). We will describe briefly the most common effect meas-
ures below; for a broader overview see Rosenberg et al. (28). 

In plant pathology, there are a number of questions that can be 
addressed using meta-analysis. Likely goals for meta-analysis 
include estimates of the effects of management techniques on dis-
ease abundance, the effects of disease abundance on plant charac-
teristics such as yield, and the effects of type of resistance and 
form of resistance deployment on durability of resistance. Sum-
maries of the reported host range of pathogens (available online 
from the USDA-ARS Systematic Botany and Mycology Labora-
tory website and the Virus Identification Data Exchange Project) 
also offer an opportunity for analyzing how host or pathogen 
characteristics affect host range and types; for example, Mitchell 
and Power (20) found that the number of reported pathogen 
species was lower for introduced compared to native host plant 
species, consistent with the hypothesis that invasive plant species 
experience some release from pathogen pressure. In addition to 
the potential for drawing data from journals such as Phytopathol-
ogy and Plant Disease, the annual series Fungicide and Nemati-
cide Tests (FNT) and Biological and Cultural Tests (BCT) offer 
an abundance of data. These publications include data relevant to 
questions about the efficacy of pesticides in terms of different 
timings, rates, and adjuvants, about biological and cultural controls, 
and about the relationship between disease severity and yield. 
FNT and BCT also offer the advantage that results that are not 
statistically significant are more likely not to be excluded from 
publication. Bias in the acceptance of studies reporting different 
levels of statistical significance is a concern; for example, in a 
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study of ecological meta-analyses, Murtaugh (21) found a rela-
tionship between effect size and the scientific citation rating of 
the journal in which the result was published. Other challenges 
for meta-analyses of data in plant pathology include the fact that 
multiple diseases are often present on the same experimental 
plants, inconsistent reporting of the sampling variation, and the 
inconsistent use of standard cultivars that would allow for easier 
comparisons across years and regions. But meta-analysis may be 
an important tool for more formally synthesizing data from FNT 
experiments for evaluation of fungicide or nematicide registration. 

Another potential application of meta-analysis in plant pathol-
ogy is in the analysis of accumulated data sets within one or a few 
research programs. Smiley and Patterson (31) and Olkin and 
Shaw (24) give examples of studies in which a small number of 
experiments were not sufficient to provide statistical support for 
an observed trend. Smiley and Patterson (31) found that com-
bining several estimates of the effect of wheat seed treatments 
provided adequate statistical power to demonstrate an effect of 
the treatments on yield. Olkin and Shaw (24) considered bio-
logical and chemical control of spider mites in strawberries. All 
10 biocontrol studies that they included in their meta-analysis 
reported beneficial effects that were not, however, statistically 
significant. The meta-analysis also showed an effect of biological 
control and the increased statistical power gave a statistically sig-
nificant result. Another agricultural meta-analysis considered 
gains in agricultural productivity; Grandillo et al. (14) examined 
the genetic improvement of processing tomatoes over 20 years in 
terms of yield and total soluble solids content. Inclusion of com-
mon check varieties in the experiments allowed them to account 
for environmental factors. Garrett et al. (K. A. Garrett, L. N. 
Zúñiga, E. Roncal, G. A. Forbes, C. C. Mundt, Z. Su, and R. J. 
Nelson, unpublished data) analyzed results from several studies 
of the effects of cultivar mixtures on potato late blight. Com-
bining the results allowed consideration of how the effect varied 
as a function of the degree of seasonality of the different locations 
studied. 

Additionally, there have been a number of relevant ecological 
meta-analyses in recent years. Borowicz (6) found that inocu-
lation with arbuscular mycorrhizal fungi generally had a large 
negative effect on growth of pathogens. Hawkes and Sullivan (15) 
concluded that overcompensation in plants in response to herbi-
vory was more likely in high resource environments for monocots 
and in low resource environments for dicots. Searles et al. (30) 
found that plant morphological characteristics and photosynthetic 
processes showed little response in studies of simulated strato-
spheric ozone depletion. 

Meta-analysis methods. A first step in meta-analysis is deter-
mination of the effect to be analyzed over studies. The simplest 
measure of effect is the correlation coefficient, r. It is perhaps the 
measure used most widely for effect size, particularly in the social 
sciences. One advantage of r is that it has fewer data requirements 
and is easier to calculate than many alternate measures. Also, it is 
possible to transform a variety of statistics (including normal 
variates, t scores, and χ2) into correlation coefficients (28,29). 
Because r does not have desirable statistical properties, it is first 
transformed using Fisher’s z transformation (29): 
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The z transform will result in a value ranging from positive to 
negative infinity, with a value of zero indicating no effect; further-
more, the variance for z is estimated simply as 
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where n is the number of studies.  
Another common measure is the standardized mean difference. 

There are many variations on this effect measure (28), but the one 

most often used with the best statistical properties is known  
as Hedges’ d. Given means ),,( CE XX  standard deviations (sE, sC), 
and sample sizes (NE, NC) for an experiment and control group, re-
spectively, the standardized mean difference can be calculated as 
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where S is a measure of the pooled variance, 
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and J is a correction for small sample sizes, 
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As sample sizes increase, J approaches 1 asymptotically. The 
variance for d is estimated by 
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There are many other potential measures of effect size. A com-
mon form of data, particularly in the medical literature, is the two 
by two contingency table. Data of this sort lends itself to meas-
ures of effect size such as odds ratios and relative rates (23,28). 
Ad-hoc measures can be advantageous, because they may fit the 
specific question being addressed and allow one to model a 
process (25,26). However, they can be much more difficult to deal 
with, particularly since it is necessary to estimate the variance of 
the metric. 

When performing a meta-analysis, it may be difficult to deter-
mine the appropriate measure of variance to include for some 
studies. Ideally the original data might be available for analysis, 
but this will not generally be the case. In publications like those 
in FNT, the mean squared error (MSE) or least significant differ-
ence (LSD) is sometimes included and these can be used to calcu-
late estimates of variability. If the MSE is reported, then the 
reciprocal of the square root of the MSE would be used as the 
weight in the meta-analysis; if the LSD is reported, then the MSE 
could be computed from the LSD. For example, in a randomized 
complete block design, bta MSE2LSD 2/= , where b is the num-
ber of blocks and tα/2 follows the t distribution with significance 
level α and degrees of freedom equal to (b – 1)(k – 1). Here, k is 
the number of treatments in the study. 

Since the LSD is calculated over all treatments, it may not be 
an adequate measure of variation for all meta-analysis purposes. 
When the responses to some treatments are much greater than 
others, the variance will often also be greater for these treatments 
compared with that of others. In such a case, it would be most 
useful if the standard error for each treatment mean were 
reported. 

Once an effect size is estimated for each study, the next step is 
to summarize these results from the individual studies to gain an 
understanding of the overall effect. In the following, Ei indicates 
the effect size for the ith study, regardless of which effect measure 
is used, and vi indicates its variance. In meta-analysis, studies are 
weighted differentially depending on their accuracy. The simplest 
and least controversial method of estimating their accuracy is 
variance; studies with low variance are given high weight and 
those with high variance are given low weight. Specifically, the 
weight for the ith study is the inverse of its variance, 

1
i

i
w v=  

(7) 

The grand measure of effect is simply a weighted average of the 
individual effect sizes, 
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This is the average effect for all studies. Confidence intervals can 
be created to test whether the mean differs from the hypothesis of 
no effect using standard distributions or bootstrapping (1). To test 
whether the sample effect sizes are themselves homogeneous (from 
a single population), one uses Q statistics, a form of weighted 
sums-of-squares. The total heterogeneity in a sample (17) is 

( )2T i iQ w E E= −∑  (10) 

QT can be tested against a χ2 distribution with n – 1 degrees of 
freedom. This tests whether the effect sizes for all of the studies 
are equal; a significant result indicates that the variance is greater 
than expected due to sampling error (12). Simple calculation of 
E  assumes that all of the studies come from a single homo-
geneous sample. Often variation in the effect size may be explain-
able by additional variables. The simplest ways to evaluate this 
follow the framework of analysis of variance (ANOVA) and 
linear regression. 

Under an ANOVA-like structure, one subdivides the studies 
into a number of categories and wishes to know whether these 
groups (i) differ in their respective mean effect size, and (ii) show 
significant heterogeneity of effect among groups relative to with-
in groups. Mean effect sizes (and their variances) for each group 

)( jE  and the grand mean for all groups )(E  are determined simply 
as weighted averages as above. Heterogeneity within an indi-
vidual group j is calculated as above, 

( )jW ij ij jQ w E E= −∑  (11) 

where Eij is the effect size of the ith study in the jth group. This is 
tested against a χ2 with nj – 1 degrees of freedom, where nj is the 
number of studies in the jth group. The total heterogeneity 
statistic (QT) can be divided into heterogeneity within (QW) and 
among groups (QB), 

T B WQ Q Q= +  (12) 

where 
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and 
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These have n – m and m – 1 degrees of freedom, respectively, 
where m is the number of groups. A significant QB indicates that a 
significant portion of the observed heterogeneity can be explained 
by subdividing the studies into the categories. 

Instead of dividing the studies into set groups, one may wish to 
test whether the effect sizes of individual studies are dependent 
on another (independent) variable, i.e., linear regression. In meta-
analysis, linear regression uses the standard model to explain the 
dependent variable, 

0 1i iE b b X ε= + +  (15) 

where b0 and b1 are the intercept and slope and X is the inde-
pendent variable. The slope and intercept are determined using 
weighted linear regression: 
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Standard errors for b0 and b1 can be found in Hedges and Olkin 
(17) and Rosenberg et al. (28) and can be used to test whether 
they differ from zero. As above, QT can be divided into hetero-
geneity due to the model, QM, and error heterogeneity, QE 
(equivalent to QB and QW, respectively). In this case, 
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and QE is determined most easily as QE = QT – QM. QM and QE are 
also tested against a χ2 with 1 and n – 2 degrees of freedom, 
respectively. A significant QM indicates that a substantial amount 
of the observed heterogeneity is explained by the regression 
model. A significant QE indicates that there is substantial un-
explained variation. 

More complicated statistical models (e.g., ANCOVA or two-
way ANOVA) are possible in meta-analysis; see Rosenberg et al. 
(28) for details. 

The above calculations are all based on a fixed-effects meta-
analysis model. A fixed-effects model assumes that there is a 
single true effect in all studies (or for each group of studies) and 
that any observed variation is due to sampling error (16). An 
alternate model, the random-effects model (27), assumes that 
there is an average effect with a certain degree of variation around 
this mean; observed heterogeneity is due to this variation and is 
not simply sampling error. To incorporate a random-effects model 
in a meta-analysis, one must simply recalculate the individual 
study weights. Recall that in a fixed-effects model meta-analysis, 
the weight of each study is simply the inverse of its variance. For 
a random-effects model, 
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The weight of each study is equal to the inverse of the study’s 
variance plus an estimate of the pooled variance. The formula for 
pooled variance varies depending on the type of statistical model 
being tested. When calculating a simple grand mean, the pooled 
variance is 
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where QT is the total heterogeneity determined from a fixed-
effects model meta-analysis. Similarly, when dividing the studies 
into fixed categories, 
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Formulas for the pooled variance in regression models and other 
complicated statistical models can be found in Rosenberg et al. 
(28). Once the new weights are determined for a random-effects 
model, all calculations proceed exactly as for the fixed-effects 
model. It should be noted that the error heterogeneity (QE) will 
never be significant in a random-effects model since the purpose 
of the model is to explain this error as due to the nature of the 
studies and not to sampling. 

There have been a number of software packages produced for 
meta-analysis, ranging from commercial software to freeware, in-
cluding one by an author of this paper, MetaWin (28). Analyses 
can also be performed within statistical packages such as SAS 
(SAS Institute, Cary, NC) (2). Unfortunately, we know of no 
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recent comparative reviews of the available software and older 
published reviews too often refer to out-dated software no longer 
available. To those interested, we would suggest performing a 
thorough web search to find information on the current avail-
ability of meta-analytic software. 

Meta-analysis of the relationship between foliar disease se-
verity and yield loss. We performed a meta-analysis of the rela-
tionship between foliar disease severity and yield loss in wheat. 
The goal of the analysis was to estimate this relationship for a 
number of wheat diseases and compare the estimates between 
diseases and, as the data set allowed, between geographic re- 
gions. For this analysis, we used volumes 45 to 54 (1990 to  
1999) of FNT. There were a total of 175 reports on wheat yield 
loss in this 10-year period, 25 of which dealt with a single foliar 
disease. To make results more directly comparable from one 
study to another, we used the following criteria for inclusion in 
our meta-analysis. (i) At least one treatment had disease severity 
near zero for use in estimation of the relative yield loss. (ii) 
Disease severity was measured as the percentage of diseased area 
of the flag leaf. (iii) Yield was reported as volume per cropping 
area or sufficient information was given to calculate volume per 
area. (iv) Disease severity was estimated at the soft dough stage. 
Only five studies in the 10-year period met all four of these 
criteria: two studies of leaf rust (7,8) and three studies of tan spot 
(3–5). 

Typical studies in FNT report yield and a measure of disease 
severity or pathogen abundance for each of several fungicide or 
nematicide treatments. Each treatment is generally replicated, but 
only the means are reported. Measures of variation associated 
with the results for each treatment are not usually reported, al-
though an overall LSD and/or standard deviation may be re-
ported. Because the studies in FNT do not generally analyze the 
relationship between disease severity and yield directly, we esti-
mated this relationship for each of the studies using the reported 
data. Within each of the four studies included in our meta-analy-
sis, the GLM (general linear models) procedure in SAS (SAS 
Institute) was used to fit the simple linear regression model Y = β0 
+ β1X + ε to the mean values reported, where X is the percent 
disease severity and Y is the yield. The response of yield to 
disease severity has been modeled to take into account the asymp-
totic nature of the relationship (9), but over the range of disease 

severity in our study, a linear approximation appeared reasonable. 
(Hughes [18] has described the potential for bias when calcu-
lating yield responses based on mean responses. If the response of 
yield to disease severity is not a straight line, using the mean 
severity and mean loss to estimate the relationship between yield 
and severity will produce a bias. This might be taken into account 
in a more elaborate analysis.) 

The relative yield loss percentage of Z was obtained for each 
study as follows. First, the intercept of the regression line for each 
study was determined using the above regression model. The 
intercept β0 was taken as the estimate of the yield potential in the 
absence of disease. Then Z was set equal to the yield potential β0 
minus the yield for a given disease severity and then divided by 
the yield potential, Z = (β0 – Y)/β0. The yield loss values (Z) were 
fit in a second linear regression to estimate the relationship be-
tween relative yield loss and percentage of disease severity with 
the intercept set at 0. The slope from this second regression analy-
sis and the associated standard error were used in the meta-
analysis. 

For the meta-analysis, the slope estimates from each of the four 
studies were included in a weighted least squares regression 
analysis where the weights were the reciprocals of the standard 
error of the slope estimates. This analysis provides an overall esti-
mate of yield loss for foliar wheat pathogens. We also compared 
the slope for the two diseases in our data set, leaf rust and tan 
spot, though the level of statistical power for such a comparison 
was low since there were such a small number of replicates for 
each disease. 

The weighted overall slope estimate based on the five studies 
was 0.309 (Fig. 1), with standard error 0.055 and 95% confidence 
interval (0.20, 0.36). For each percent increase in disease severity 
on the flag leaves of wheat at the soft dough stage, the estimated 
relative yield loss increased by 0.309%. Q statistics were used to 
test whether the slopes for all the studies were equal. In this low-
power study, the null hypothesis of equality was not rejected:  
QT = 1.92 (P = 0.59). Tan spot and leaf rust were also compared 
using Q statistics and the difference between the diseases was not 
statistically significant (QB = 0.15, QW = 1.76, 3QB/QW = 0.26, P = 
0.65). 

This meta-analysis is limited by the small number of data sets 
that were finally included in the analysis, but it serves an illustra-
tive purpose. Our criteria could have been relaxed to allow studies 
that included another disease, but only at very low levels. We also 
could have considered allowing evaluations of disease severity 
over more than just the flag leaf or at different growth stages, or 
even using different systems such as the stepwise scale often used 
for powdery mildew, although this would have made the com-
parisons less direct. Of course, our collection of data sets might 
have been expanded if we had asked a question more directly re-
lated to the goals of FNT; for example, we might have compared 
the effect of different fungicide formulations or timings on dis-
ease severity and yield. 

Our final data collection could also have been expanded if 
more information were typically included in FNT studies. It may 
be helpful for researchers who publish in FNT, or any forum, to 
consider how easily their studies could be incorporated into larger 
future studies. Standardized rating systems make synthesis more 
straightforward, even if only within a particular host–pathogen 
system. Clearly, reporting the variance associated with estimates 
and sample sizes will allow results to be included in weighted 
analyses. For online publications, it would be desirable to make 
the complete data set available, perhaps after an appropriate em-
bargo period so that the authors can perform any other desired 
analyses. The accumulated data sets would be a valuable re-
source, as illustrated by the Global Population Dynamics Data-
base maintained by the U.K. Centre for Population Biology and 
the U.S. National Center for Ecological Analysis and Synthesis 
(22). 

Fig. 1. A meta-analysis of the relative yield loss percentage as a function of
the percent wheat flag leaf infected at the soft dough stage. The relative yield
loss percentage was the percent lost compared with the yield for nearly dis-
ease-free controls in each study. Each point represents the average response
for a particular fungicide treatment as reported in a publication, and the hori-
zontal value is the maximum percent disease severity observed in that study.
Estimates for leaf rust were based on two publications: LR1 (7) and LR2 (8).
Estimates for tan spot were based on three publications: TS1 (3), TS2 (4), and
TS3 (5). 
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