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a b s t r a c t

If climate change scenarios include higher variance in weather variables, this can have important effects
on pest and disease risk beyond changes in mean weather conditions. We developed a theoretical model
of yield loss to diseases and pests as a function of weather, and used this model to evaluate the effects of
variance in conduciveness to loss and the effects of the color of time series of weather conduciveness to
loss. There were two qualitatively different results for changes in system variance. If median conditions
are conducive to loss, increasing system variance decreases mean yield loss. On the other hand, if median
conditions are intermediate or poor for disease or pest development, such that conditions are conducive
to yield loss no more than half the time, increasing system variance increases mean yield loss. Time
nvironmental variability
nvironmental time series
lobal warming

series for weather conduciveness that are darker pink (have higher levels of temporal autocorrelation)
produce intermediate levels of yield loss less commonly. A linked model of decision-making based on
either past or current information about yield loss also shows changes in the performance of decision
rules as a function of system variance. Understanding patterns of variance can improve scenario analysis
for climate change and help make adaptation strategies such as decision support systems and insurance
programs more effective.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Understanding and managing the effects of agricultural pests
nd diseases are major challenges. As a world-wide average, the
otential crop yield loss to animal pests and pathogens has been
stimated at 18% and 16%, respectively (Oerke, 2006). In livestock,
otal losses to trypanosomosis alone are estimated at US$1.3–5 bil-
ion (McDermott and Coleman, 2001). Thus, effective management
f pests and pathogens is key for making efficient use of natural
esources, maintaining income and assets for farmers by reduc-
ng losses, and keeping food prices affordable enough to maintain
ood security. The best form of management is often use of dis-

ase and pest resistant varieties or breeds, where development
f a new crop variety typically requires a decade and develop-
ent of new livestock breeds is much slower; benefits of research

∗ Corresponding author.
E-mail address: kgarrett@ksu.edu (K.A. Garrett).

168-1923/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.agrformet.2012.04.018
may take 40 years to be realized (Alston et al., 2009; Pardey et al.,
2006). Where inadequate or no sources of resistance have been
found in established crop germplasm, other forms of crop protec-
tion are needed to keep pests under control. The development and
implementation of new integrated pest management (IPM) strate-
gies are time consuming and the resulting time lag in response
to pest and disease problems is one motivation for understanding
how climate change will influence pest and disease risk. Several
biological features of pests and diseases increase the challenges of
predicting the effects of climate change, including the potential for
more frequent weather extremes to have particularly strong effects
(Coakley, 1979; Rosenzweig et al., 2001).

1.1. Changes in variability and the color of weather time series

Climatic variability and climate extremes have direct effects on

crop yield (Challinor et al., 2007; Orlandini et al., 2008; Porter and
Semenov, 2005; Trnka et al., 2011; Wheeler et al., 2000). They
also have an effect on diseases and pests beyond the effect of
changes in mean weather variables (Chaves et al., 2012; Coakley,

dx.doi.org/10.1016/j.agrformet.2012.04.018
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
mailto:kgarrett@ksu.edu
dx.doi.org/10.1016/j.agrformet.2012.04.018
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979; Kriss et al., 2012; Rohr and Raffel, 2010; Scherm and van
ruggen, 1994; Scherm and Yang, 1995). More common occurrence
f climate extremes, or potentially new extremes, can also cause a
ange of problems (Rosenzweig et al., 2001). If extremes become
ore common, new models may be necessary, if the observed

rend of climate change is completely different from climatolog-
cal averages. ‘Non-analog climates’ are climatic conditions that do
ot presently exit (Fitzpatrick and Hargrove, 2009). In this context,

orecasting future distributions of diseases and pests from current
nown species climate relationships is highly problematic. This is
ecause the observed distribution of diseases and pests alone pro-
ides no clear information about how the species might respond
nder completely novel environmental conditions (Fitzpatrick and
argrove, 2009). Thus, model outputs based on extrapolations may

ead to substantial errors in managing disease and pest invasions
nd climate change impacts.

Because of the spatial and temporal correlation imposed by
ests and diseases, the effects of climate extremes can extend
ell beyond the season in which they occur; for example, the

noculum load remaining at the end of a season often strongly
ffects the inoculum load at the beginning of the next sea-
on. For pests or pathogens whose range expansion is limited
y conditions for initial establishment, extreme conditions can
ake new leaps possible. Long distance transport is an impor-

ant factor in the introduction of new pests and pathogens, and
n the annual migrations that many pests or pathogens such as
ust fungi make each year to reinvade areas where they cannot
verwinter (Li et al., 2010). Extreme storm events that spread
athogens more rapidly will have long-lasting effects. Extremely
avorable conditions may also ‘unleash’ new pests/diseases that
ormally only have minor effects, in addition to making typical
ests/diseases more problematic. From managers’ perspectives,
here is a qualitative difference in adjusting to greater pressure of
known pest or disease compared to preparing to manage a new
est/disease.

El Niño events, which are similar but likely even more extreme
han expected mean temperature changes under climate change,
ave had a great impact on the abundance and severity of pests
nd disease in South America. For example, during the 1997 El Niño
henomenon in Peru, mean temperature on the Peruvian coast

ncreased by about 5 ◦C above the annual average. While infestation
f potato by the leafminer fly (Liriomyza huidobrensis) decreased,
he abundance and infestation severity of all other pests (e.g., the
ud midge, Prodiplosis longifila; potato tuber moth, Phthorimaea
perculella; white fly, Bemisia tabaci) increased in all agricultural
nd horticultural crops. The farmers’ only adaptive strategy to cope
as applying high doses of pesticide every 2–3 days (Cisneros and
ujica, 1999). It can be expected that climate change consequences

nd farmers’ future needs for adaptation in other parts of the trop-
cs will be quite similar to such effects observed during El Niño
Kroschel et al., 2010).

Pathogen responses to environment often provide good exam-
les of the importance of climatic extremes and weather, rather
han climate per se. Anthrax and Foot and Mouth Disease (FMD)
oth have a near-worldwide distribution, but episodes of climate
ariation may prompt sudden emergence or spread. The causative
acteria of Anthrax, Bacillus anthracis, form spores that may remain

nfective for 10–20 years (Baylis and Githeko, 2006). Heavy rainfall
tirs up the spores, and a proceeding drought event often triggers
isease outbreaks (Parker et al., 2002). FMD in dry regions of Africa
preads almost entirely by direct contact (Sutmoller et al., 2003),
ut can travel several kilometers given cool and humid conditions;

ind-borne spread is an essential component in epidemiologic
odels where such conditions exist (Garner et al., 2006; Rubel and

uchs, 2005; Sørensen et al., 2000). The economically important
iral disease Peste des Petits Ruminants (PPR) appears to be most
Meteorology 170 (2013) 216–227 217

prevalent immediately prior to seasonal peaks of rainfall (Wosu
et al., 1992) which may reflect optimal conditions for viral survival
(Baylis and Githeko, 2006).

The color of an environmental time series refers to how strongly
correlated a variable is in time, and whether the correlation is posi-
tive or negative. White noise has no correlation in time, such that an
environmental variable would have no correlation from one time to
another. Blue noise has a negative correlation from one time to the
next and so will tend to have high frequency oscillations. Increas-
ing positive correlations between time points yield pink, red, and
brown noise, with a tendency to have lower frequency oscillations
(examples in Fig. 1). Some degree of positive correlation is often
realistic for many variables such as temperature, depending on
the resolution and extent considered (Rohani et al., 2004; Vasseur
and Yodzis, 2004). Positive correlation will also tend to be more
common for epidemic and other population processes, even in a
constant environment, especially in the absence of complicating
factors such as induced resistance. The color of an environmen-
tal time series and associated population time series may logically
be related (García-Carreras and Reuman, 2011; Ruokolainen et al.,
2009; Wilmers et al., 2007). García-Carreras and Reuman (2011)
concluded that climate variables have become relatively bluer
over the past century (on an annual basis), such that higher fre-
quency oscillations may also be observed for populations affected
by weather.

1.2. Early warning systems/decision support systems

The potential for within-season decision-making by farmers has
been a driver for the development of many models of pest and
disease risk. Early warning systems (EWS) or decision support sys-
tems (DSS) are used to advise farmers when the risk is high or low
for a particular pest or disease vector at a specific period of the
year. Weather variables are an important part of most EWS and
DSS (Table 1). When information about risk is available to farmers
(particularly when made available through participatory means,
combining analytical and experiential learning (Marx et al., 2007)),
they can decide on appropriate actions to be taken, such as making
an insecticide application or not, deciding what type of chemical
to use, and determining when to spray. Hence, EWS data are used
as a tool to judge the relative risk that farmers may experience in
the near future and when that risk is likely to occur. Early detection
tools in this context can be subdivided in distinct groups depend-
ing on the information used for developing the EWS. Within-season
forecasting models can also be rescaled for application at greater
spatial extents, such as in climate change scenario analysis (Sparks
et al., 2011).

The expected increase in climate variability in many regions can
increase the need for early warning systems to support agricultural
decision makers (Dury et al., 2011; Giorgi et al., 2004; Haylock
and Goodess, 2004; Meinke and Stone, 2005; Rosenzweig et al.,
2001; Rowell, 2005; Seneviratne et al., 2006). Larger differences
among consecutive years, as well as among different weeks of the
same year, can make decision-making more difficult and can reduce
the value of previous experience. The use of models can support
warning systems, especially when they are based on mechanis-
tic approaches describing the physiological relationships between
pest/disease and host. Models tend to be of the greatest utility when
conditions are neither consistently conducive nor consistently non-
conducive to pests and disease. As a result, decision makers who

do not have access to robust and reliable model output are likely
to experience more difficulty under higher variability. Higher vari-
ability in environmental conditions may also make it less likely
that farmers adopt resistant varieties if consistent benefits cannot
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Fig. 1. Examples of the time series generated by the yield loss model. When a = 0, the Zt series is white noise. When a = 0.5 or a = 0.9, the Zt series is lighter pink and darker
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ink noise. As a increases, the greater level of temporal autocorrelation produces a s
o yield loss from pests or diseases’ (from Eq. (1)) has 0 as a minimum value. The re
he examples shown here are for m = 0 and �2 = 1 in the no-yield-recovery model.

e readily observed (Garrett et al., 2011) as for drought tolerance
Lybbert and Bell, 2010).

.3. Decision-making for pest and disease management

When models of productivity, and productivity losses to dis-
ases or pests, are applied in future scenario analyses, another
mportant source of uncertainty is how well people will manage
iseases and pests. Higher pest and disease risk imposes greater
emands on all people involved in agricultural production, from
lant breeders, entomologists and plant pathologists to extension
gents and farmers. The demands will be higher on farmers in
ystems where support from research and extension is not read-
ly available. The question remains whether effective management

ill be widely implemented, and whether management can be for-
ulated so that it does not substantially reduce profitability or
educe other ecosystem services. Behavioral models of decision-
aking at the farm level for the context of fragile environments

re not yet well developed (Hertel and Rosch, 2010). Moreover,
he spatial and temporal correlation resulting from potential pest
er series Zt . In the no-yield-recovery model, the Rt series of ‘weather conduciveness
g cumulative yield loss series (from Eq. (2)) also tend to be smoother for higher a.

and disease spread means that decisions made by some parties will
influence pest and disease problems experienced by other parties.

The study of risk assessment, perceptions, communication,
and management, developed in response to challenges presented
by increasingly technologically-oriented societies (Covello, 1983;
Kates and Kasperson, 1983; Slovic, 1987), has provided insight
into how people make decisions under risk and uncertainty. Risk
perception rather than actual risk is relevant to decision-making
(Gent et al., 2011; McRoberts et al., 2011; Slovic and Weber, 2002).
Farmers base their crop and livestock decisions on local knowl-
edge systems, resulting from years of observations, experiences,
and experiments (Bharara and Seeland, 1994; Gilles and Valdivia,
2009; Marx et al., 2007). In Argentina, farmers faced with uncer-
tainty and risk in a La Niña event were able to handle at most
one adaptation decision (Hansen et al., 2004). The degree of dread,
fearfulness or gut feeling of angst, in response to hazards such as

pests and diseases is an important factor. Andean farmers in three
regions of the Andes experiencing climate variability and change
had different responses to their sense of dread to hazards, even
within communities. This was a function of the resources they had
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Table 1
General effects of weather/climate on livestock and crop productivity (in the absence of pests and disease), disease impacts, and arthropod pest impacts.

Livestock Crop Pathogen Arthropod

Weather variables
Temperature Will affect water

requirements and health
due to heat stress

Affects assimilation rate
and phenological phases

Important for determining
the rate of infection or
development processes

Broadly important for
development, survival and
reproduction

Precipitation Indirect through
importance for growth of
pastures

Important for growth Proxy for surface wetness
and responsible for spore
spread in the environment

Affects population
dynamics and is key for
development of
mosquitoes, midges

Photoperiod Indirect through
importance for growth of
pastures

Important for vegetative
and generative crop
development

Affects development of
some pathogens

Affects insect development

Solar radiation Affects plant growth and
phenotype

Affects survival of
pathogens, particularly
wind-dispersed spores

Influences survivorship
and egg reproduction and
herbivory in plant insect
interactions

Surface wetness Will affect foot health from
non-communicable
diseases

Key for many foliar
diseases (high resolution
often used)

Relative humidity Will affect water
requirements

Important for
evapotranspiration

Proxy for surface wetness Important for survival and
activity of ticks and insects
especially parasitoids

Soil moisture Broadly important Key for many soil-borne
plant diseases

Important for insects
pupating in soil; may affect
tick response to air
humidity

Speed of response to
weather shifts and
extremes

Managers’ change to better
adapted breeds may be
very slow

Change to resistant
varieties or species be slow

Rapidly take advantage of
conducive extremes

Rapidly take advantage of
conducive extremes

Resolution for decision support models
Spatial Typically farm-scale, with

potential for scaling up
From field to regional and
global scale

From field to regional and
global scale

From field to regional and
global scale

Temporal Medium- to long-term Daily or monthly Hourly or daily Daily or weekly

Autocorrelation
Spatial Low Low Potentially high Potentially high
Temporal Higher for long-lived

animals
Higher for perennials Potentially high Potentially high

Model longevity/portability/generality (without need for changes in parameters)
Spatial Medium Medium Low (affected by the hourly

temporal resolution)
Lower
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Temporal Longer Longer
Typical farmer
knowledge level

High High

r could access and of the geographical location (Valdivia et al.,
010). It is possible to quantify and predict risk perception in terms
f the amount of dread a risk produces, and the amount of knowl-
dge about risks (Hinman et al., 1993; Marks, 2001; Slovic, 1987)
nd how culture shapes risk perceptions (Gobel, 2002; Johnson and
ovello, 1987). People assess risks using rules based systems and
ssociation/experiential based systems (Marx et al., 2007; Slovic
nd Weber, 2002). When the results of these are in conflict, people
end to rely on the associational since past experiences are often

ore memorable and dominant (Slovic et al., 2002). This is specially
he case when the dread of an event is high.

Marx et al. (2007) discuss how decision makers use different
ypes of information. There is a tendency to weight recent experi-
nce, such as the last five years. If rare events have not occurred
ecently, they are given less weight, while people may overreact
o recent rare events. This response may be adaptive if the sys-
em is changing in a directed manner. People tend to respond to
ivid events rather than to statistical information. The ‘availabil-
ty heuristic’ makes people tend to assume that the future will be
imilar to what they have experienced so far.

.4. Objectives
Scherm and van Bruggen (1994) have previously shown how
ncreasing amplitude in a weather variable such as temperature,
ompared to a constant temperature, can result in a substantially
Potentially extremely short Shorter
Lower Moderate

different pathogen growth response. Models of human diseases
have also evaluated the effect of weather variability (Chaves et al.,
2008; Dobson, 2009; Pascual et al., 2008a,b). Here we design a
generic model of disease/pest responses to weather variability to
address related fundamental questions about the role of variabil-
ity and extremes in disease/pest management scenarios. It is not
designed to be a realistic model for any given system, but we have
tried to incorporate many of the most important features of a range
of systems, both animal and plant (Borer et al., 2012; Wilkinson
et al., 2011), to produce general results. We use the model to pro-
vide insights into the following questions and generate hypotheses
about these relationships.

A) How are losses to diseases/pests affected by changing variabil-
ity in weather conduciveness, and by changing the color of noise
associated with weather conduciveness?

(B) How does a decision-maker’s choice of current versus past
information affect losses and profit in these different types of
environments?
These weather scenarios can inform the construction of ensem-
ble models, where predictions from several models are pooled, by
providing different types of variation, and illustrating the effects of
variation on disease/pest impacts.
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. A model of the effects of climate variation

.1. Effects of climate variation on yield loss to diseases and pests

.1.1. How are losses to diseases/pests affected by changing
ariability in weather conduciveness, and by changing the color of
oise associated with weather conduciveness?

Weather conduciveness to diseases/pests is a function of a num-
er of weather variables (Table 1). This models starts at the point
here the set of relevant weather variables has already been con-

erted to a single measure of conduciveness. In this weather model,
he time series model for ‘general weather conduciveness to a dis-
ase/pest’ Rt corresponds to

t = mt + Zt, (1)

here mt captures the trend associated with weather conducive-
ess. A constant mean weather conduciveness is captured by
etting mt to a constant. Alternately, linear or polynomial trends can
e used to reflect expected weather conduciveness as a function of
ime t. If mt takes a higher positive value, conducive conditions such
hat Rt > 0 become more common; if mt is a lower negative num-
er, conducive conditions become rarer. Zt is the stationary residual
hat can be modeled as an autoregressive or moving average pro-
ess to capture the correlation between weather conduciveness at
ifferent times. For example, a first order autoregressive model for
t corresponds to Zt = aZt−1 + (1 − a)Wt, where |a| < 1and Wt is nor-
ally distributed mean zero white noise with variance �2. Zt is a

olored noise series when a is nonzero and white noise when a is
ero (Fig. 1).

The time series for weather conduciveness is converted to a time
eries of cumulative yield loss (Yt) due to the disease/pest, using a
ogistic growth model. The logistic model incorporates an increase
n growth rate over time, until the yield loss begins to approach the

aximum possible.

Y0 = 1

Yt =

⎧⎨
⎩

0 if Yt−1 < 0

Yt−1 + RtYt−1

(
1 − Yt−1

100

)
if 0 ≤ Yt−1 ≤ 100

100 if Yt−1 > 100

(2)

here 1 is the starting yield loss condition, 100 is the maximum
oss, and the weather conduciveness variable functions as a rate
arameter. In the context of livestock, this model would be rel-
vant where ‘cumulative yield loss’ indicates the proportion of a
erd that is infected with a disease burden above a certain thresh-
ld. The burden could be due, for example, either to pathogens,
uch as trypanosomes, or to internal parasites, such as helminths.
ust as the weather conduciveness variable subsumes a number of
rocesses, so too does the cumulative yield loss variable: the many
rocesses that lead to pathogen/pest reproduction and the effects
f that reproduction on host productivity. Note that the cumulative
ield loss can become smaller over time if conditions do not support
est/pathogen development, which would be realistic for scenarios
here hosts can recover and compensate for earlier losses. For sys-

ems where recovery from yield loss is not realistic, we also include
no-yield-recovery model variation where values of Rt < 0 are set to
(Fig. 1).

It is clear from Eq. (2) that the yield loss is also a stochastic
rocess as it depends on the weather conduciveness at each time

nstant. By analyzing the statistical behavior of the Yt process, we
an obtain insights into how the mean and the variance of weather
onduciveness impact the expected yield loss and its variance.

ecause of the recursive relationship in (2), analytical derivation
f the distribution of Yt becomes intractable as t increases. How-
ver, the mean and variance of Yt can be derived analytically for
mall values of t with the algebraic complexity of this derivation
t Meteorology 170 (2013) 216–227

growing with t. From these derivations (along with an inspection
of Eq. (2)), we observe an expected behavior – i.e., increasing the
mean and variability of the weather conduciveness increases the
mean and variability of the yield loss process. However, the exact
relationship between the means and the variances is not trivial. In
fact, it is easy to show that the mean of the yield loss process at
time t (t > 1) actually depends both on the mean and the variance
of the weather conduciveness process! Furthermore, thanks to the
recursive relationship in Eq. (2), we observe that the variance of
the yield loss process keeps growing with time t. That is, the vari-
ability of the weather conduciveness creates larger variability in
the model predicted yield loss for higher values of t. Since analyt-
ical derivations of the distribution as well as means and variance
get prohibitively complex with increasing t, we used Monte Carlo
simulations to characterize the mean and variance of Yt.

We evaluated the effects of varying �2, the variance of the Wt,
across values from near 0 to 9 crossed with the effects of vary-
ing m, the mean of Rt, from −2 to 2 for 10 time steps in 1000
simulations at each combination of values using the R program-
ming environment (R Development Core Team, 2011). R script
generating the analyses in the figures in this paper is available
at http://hdl.handle.net/2097/13786. We also crossed the different
values for �2 and m with a range of values for the coefficient a to
compare the effects of a white noise (a = 0), light pink (a = 0.5), and a
darker pink (a = 0.9) series. The values of Wt were generated using
the normal random number generator rnorm in R. The first term
of the series was assigned a normal random variable with mean
m and variance �2, and the first 100 values of Zt were discarded
before the Rt were generated. The length of the potentially con-
ducive season, in terms of the number of generations, may change
because the actual number of days increases or because the gener-
ation time changes as a function of changing climate. We interpret
the length of the season and the potential yield loss broadly, not
necessarily in terms of yield in a single field/herd, but for a location
as a whole, where for example there might be multiple overlapping
generations of annual crop hosts in different nearby fields.

2.2. Effects of climate variation on farmer decision-making

2.2.1. How does a decision-maker’s choice of current versus past
information affect losses and profit in these different types of
environments?

In the above analyses, yield losses are presented without explicit
consideration of management to reduce effects. Here we incorpo-
rate the effects of decision-making by managers in a model that
compares the results for different types of information managers
might choose to use. Suppose a manager must decide whether or
not to impose a type of management (such as crop tillage, biocon-
trol application, or pesticide application) in the middle of a season,
in the context of a 10-generation model. The management has a
cost to the manager equivalent to 20% of the yield. Its benefit is to
reduce Rt to 0 for three time steps.

In this model, the manager can draw on two types of infor-
mation. First, the final yield loss from three previous years is one
form; the decision rule associated with those three years is ‘If final
yield loss exceeded 20% in two or more of the three previous years,
then management should be applied this year.’ (For simplicity,
we assume that the management treatment was not applied mid-
season during those three years. Thus, interpreting high yield loss
is complicated by lack of information about whether use of man-
agement would have been a good choice to reduce yield loss, or
whether conduciveness was so high that management would have

been wasted.) Second, the current midseason (t = 5 out of 10) yield
loss (Y5) is observed; the decision rule associated with the current
yield loss is ‘If current yield loss is greater than or equal to 5% but
less than 80%, then management should be applied this year.’ Note

http://hdl.handle.net/2097/13786
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hat these management rules are not optimized for the available
nformation, and the optimal rules could change with the under-
ying model parameter values. But we use these rules to examine
he effects of different levels of weather variation on the relative
uccess of these rules.

The success of a management decision was evaluated by
omparing (a) the end of season yield loss (Y10) without the man-
gement, to (b) the end of season yield loss with the management,
nd whether the benefit of management was greater than the cost
f management. If the management decision resulted in a great
nough reduction in yield loss, then it was a correct decision from
he standpoint of optimizing profit (though not necessarily from
broader ecosystem services standpoint (Cheatham et al., 2009)).
e emphasize that the decision rules are the same for all scenarios,

nd thus have not been optimized for each scenario, but serve to
llustrate general properties of the scenarios.

We compared the success of the current versus past informa-
ion for management decision models in 1000 simulated sets of

our seasons per parameter combination, where the final season
as evaluated both with and without the management treat-
ent. We evaluated this for parameter combinations described

bove.
-recovery’ model for 10 time steps (generations). When a = 0, there is no temporal
r conduciveness to disease development is low.

3. Model results

3.1. The effects of variance and the color of time series on yield
loss to diseases and pests

The variance of the Wt and the color of the Zt, determined by
a, both influence yield loss (Fig. 2, generated using the R function
smoothScatter). When the mean rate of yield loss, mt, is −2 or
0, higher variance results in higher yield loss. Figure 2 presents
the ‘no-yield-recovery’ model, where the mean −2 and the mean 0
case are somewhat more similar, because values of the rate Rt < 0 are
replaced by 0 so that the cumulative yield loss is monotonic increas-
ing. When the mean rate is 2, increasing variance in Wt decreases
yield loss.

When a is 0, Zt is a white noise process. As a becomes larger, Zt

becomes a light pink and then darker pink series. For darker pink
series, the ‘less typical’ yield loss results may become less com-
mon compared to the white noise series when the mean mt is high

(Fig. 2). For mt = 2 after 10 time steps the yield loss tends to be near
100% for a white noise series, and for darker pink series the yield
loss is rarely near zero when the variance is low. For lower values
of the mean mt, moving from white noise to pink noise results in
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Fig. 3. Proportion incorrect decisions based on two different decision rules about use of mid-season management. When a = 0, there is no temporal correlation, and temporal
correlation increases with increasing a. When m is low, mean weather conduciveness to disease development is low. Circles indicate performance of decision-making based
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n current information through the fifth of ten generations; squares indicate perfo
ymbols indicate false negative decisions, such that management was not applied w
hat management was applied when it decreased profit.

ero yield loss becoming more common, even for higher variance
Fig. 2).

.2. The effects of variance and the color of time series on farmer
ecision-making

For the lower mean conduciveness, such that disease or pest
onducive conditions are relatively rare, increasing the system
ariance increases the rate of incorrect decisions after ten time
teps (Fig. 3). False negative decisions, such that management is
ot applied when it would have been profitable, become more
ommon with increasing variance, but then can decline again for
hite noise. False positive decisions, such that management is

pplied and results in a reduction in profit, become more common
ith increasing variance, though the rate of increase declines with

igher variance. For system mean = 0, the likelihood of false posi-
ive reactions becomes higher for the rules based on the past. For
ystem mean mt = 2, conditions are typically conducive enough that
or low variance the rules are not optimized and typically result in
ce of decision-making based on past information from three previous years. Filled
t would have increased profit. Open symbols indicate false positive decisions, such

false positive responses that are not enough to reduce yield loss
adequately. As variance increases, the performance of both types
of decision rules improves as scenarios where they can provide
benefits become more common. One important advantage of the
decision rule based on current conditions is that it includes scouting
to determine whether yield loss is already so high by the middle of
the season that use of management is a lost cause. Darker pink noise
decreases the effect of variance for the lower mean conduciveness
cases. For the higher mean conduciveness case, darker pink noise
reduces the effect of variance on the rate of false positive decisions
for the rule based on current or past information.

4. Discussion

4.1. General results and variations on the model
Climate variability may have important effects on yield losses,
independent of changes in mean conditions. This simple model
shows how changing variance in weather conduciveness to yield
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Table 2
The effects of changes in the probability distribution of weather conduciveness to pests, disease, and impacts.

Change in trait of
weather conduciveness
to pests and disease

Impact for pests and diseases Impact for decision makers

Mean Increasing mean weather conduciveness leads to higher
mean potential yield losses

Increasing mean weather conduciveness may make a crop
or breed uneconomic to produce

Variance Increasing variance in weather conduciveness leads to
higher mean potential yield losses if mean is low, and
leads to lower mean potential yield losses if mean is high

Increasing variance in weather conduciveness increases
the importance of good models (good decision rules) for
decision makers
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Color of noise Darker pink, red, or brown noise results in lo
conducive or non-conducive conditions

oss due to disease or pests (a function of multiple weather vari-
bles (Table 1)) can change the mean yield loss. If conditions are
ighly conducive to diseases/pests, increasing variance leads to a
ecrease in mean yield loss. For the highly conducive conditions,

ncreasing variance also leads to more successful use of decision
ules, in that decision rules can prove useful under higher variance
hile they rarely do under the consistently highly conducive con-
itions. Increasing variance for scenarios of low conduciveness to
isease/pests leads to increases in the mean yield loss and poorer
erformance of decision rules. Additional forms of variation could
lso be explored, such as weather conduciveness with a distri-
ution other than normal, where other distributions could have
arying higher statistical moments such as skewness (a measure
f asymmetry) and kurtosis (a measure of distribution ‘flatness’, or
eaviness of distribution tails) (Chaves et al., 2012) (Table 2).

The decision scenario presented in the paper is meant to serve
s an example of how one may use a generic model and extract
seful information from it. The model in its current form is used to
apture a natural phenomenon such as weather conduciveness and
ts direct impact on yield loss. Based on the model for the physical
ystem, one can design an information, command and control sys-
em that serves as the decision maker. If we want to capture the
ffect of the decision process on the physical system, it is possi-
le to update either Rt or Yt with an additional “control” term Ut.
he control term can be designed to capture the impact of com-
lex decision processes. Zt models a part of weather conduciveness
hat is not captured by the trend component. In practice, the exact

odel for Zt will be dependent on the epidemic of interest. Our goal
n this model was to present a generic framework and while simu-
ations are presented for an autoregressive model with one time lag
AR(1)) for Zt, the model could readily be modified to evaluate more
eneral autoregressive and/or moving average models (ARMA(p,q))
r even non-stationary time series models for Zt.

The general framework presented here can be modified to oper-
te on multiple spatial and temporal scales. For example, the
ime index in the weather conduciveness time series Rt could
ndicate days, months, seasons or even years, where an oscillat-
ng component could represent seasonality in conduciveness and
he changing probability of successful overwintering or oversum-

ering. We did not explore the effects of neighboring locations
n yield loss at a particular location. This could be evaluated
sing more mechanistic network models of pathogen or pest
ovement through space (Moslonka-Lefebvre et al., 2011), and

otentially network models for the movement of opinion that mod-
fies decision-making (Garrett, 2012). Alternatively, a relatively
impler two- or three-dimensional autoregressive model for yield
oss might be used, where one dimension could be time. An impor-
ant trait of pests and pathogens is the spatial correlation that
hey produce through their spread. Spatial autocorrelation can also

nfluence patterns of yield loss, another influence to make loss sim-
lar across space and to buffer changes in loss over time (Margosian
t al., 2009). In cases where there is increased variation in cli-
ate variables and associated increased variation in pathogen or
trings of Management decision-making can be more successful
when conditions are more consistent

pest populations, local extinction may also become more com-
mon (García-Carreras and Reuman, 2011; Ruokolainen et al., 2009;
Wilmers et al., 2007), so that future disease loss at any given loca-
tion will depend on the spatial structure of conditions suitable to
reintroduce pathogens or pests. Similarly, decision-making may
also be correlated in space, as farmers compare results for purposes
of decision-making, or where a single farmer has responsibility for
a number of different fields. Drawing on the results of multiple
processes can result in more informed decisions, but conformist
social learning can cause group losses in variable environments
(Whitehead and Richerson, 2009).

EWS and DSS are needed when a system is variable: if a pathogen
or pest is always a problem, or never a problem, there is no need
for predictions. The number of cases with yield loss between the
bounds 0 and 100 (in the absence of management) increases as
the variance increases in the yield loss model (Fig. 2). Good EWS
and DSS will be particularly important if the variance in weather
conduciveness increases as part of climate change. While it is desir-
able to minimize both false positives and negatives, in practice
one comes at the cost of the other. So, typically, decision rules
are designed such that one of the two metrics is minimized while
constraining the other to be less than some reasonable acceptable
level. This is the basis of Neyman Pearson decision rules where false
negatives are minimized subject to a constraint on false positives
(Poor, 1994). For example, in the case of EWS, one may decide on
the relative level of importance for the two metrics. Based on that,
the decision rule thresholds can be adjusted to meet the expected
EWS performance. Under the illustrative decision rules evaluated
here, false negative decisions are less frequent than false positive
decisions, and the false positive decisions show a strong response
to system variance. It would also be possible to incorporate other
aspects of decision-making making in this modeling framework,
such as optimization for a particular level of variance or response to
dread, to evaluate the effects of changing variance on performance.

4.2. Addressing pest and disease problems under changing
climate variability

Scenarios where weather variance increases will often make
good DSS and EWS more important. It would be very useful to
have forecasts across a season and beyond, but there are limits
to the quality of such long range forecasts. Useful links may be
made between epidemic disease emergence (such as Rift Valley
Fever) and specific climate events (such as heavy rainfall). Advance
forecasts of ENSO events have been used to provide early warn-
ing of epidemics. EWS, once established, can be used to (1) direct
sentinel surveillance programs, (2) make efficient use of pesticide
stores, and (3) target vaccination programs (e.g. Ephemeral Fever
in cattle). Farmers with more commercial opportunities may be in a

position to invest and use forecasts (Hansen et al., 2004) while oth-
ers (Patt et al., 2005) find that information that includes alternative
strategies also allows vulnerable farmers to adjust. Many manage-
ment techniques depend on reducing the local level of inoculum,
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hile temporal and spatial correlation in both weather conducive-
ess and pathogen population size will cause local inoculum levels
o be strongly influenced by regional levels. These management
echniques, such as the use of variety mixtures, may be less use-
ul during El Niño years compared to La Niña years, for example, if
egional inoculums loads become saturated (Garrett et al., 2009).
anagement strategies, themselves, may need to be altered to

djust to new scenarios. Global agricultural research is needed to
upport such adaptation of pest and pathogen management to cli-
ate change (Chakraborty and Newton, 2011; Juroszek and von

iedemann, 2011; Luck et al., 2011; Pautasso et al., 2010; Savary
t al., 2011; Shaw and Osborne, 2011).

Understanding the behavioral characteristics of farmers is cru-
ial if appropriate management practices are to be developed to
anage pests and diseases (Mumford and Norton, 1984). Mumford

nd Norton call for obtaining information early on about farmers’
erceptions, the constraints they face and their objectives, espe-
ially for the development of pest control research and extension.
n interdisciplinary research program on adaptation to change in

he Altiplano (Valdivia et al., 2010) hypothesized that if results of
raditional and expert forecasts were in conflict, farmers would use
he traditional assessment model (Slovic et al., 2002). In this assess-

ent, dread of pests and disease was high, as were concerns with
he changing climate in the northern region. While local percep-
ions of the climate trends were similar to observed trends in the
ast fifty years (Seth et al., 2010), there were also key differences.
erceptions of decreases in rainfall were actually related to faster
vapotranspiration due to increased temperatures as well as shifts
n the timing of rainfall, and not reduction in total rainfall. Farmers
n fragile environments where there is spatial and temporal vari-
bility, such as mountainous regions, may have little confidence
n forecast information generated outside of their community or
eighborhood (Gilles and Valdivia, 2009).

Insurance introduces another realm of decision-making, for
hose considering purchase and for those public or private groups
onsidering how to offer insurance (Hazell and Hess, 2010). Tradi-
ional crop insurance programs have been functioning in developed
ountries for decades, and the potential has been studied in devel-
ping countries. Recently pilot programs have been tested to
etermine when and how these may be feasible (Norton et al.,
011; Osgood and Warren, 2007; Smith and Watts, 2009). Several
tudies point to institutional constraints in the implementation of
rograms in developing countries (Hazell, 1992), and the search
or alternative approaches to make insurance viable (Skees et al.,
999). The key is to prevent farmers’ loss of assets due to drought or
ther weather-related risks in Africa, Asia, and the Andes, if ENSO
vents occur, for example. If farmers do not lose their assets they
ill be able to invest and recover from the shock, and with insur-

nce incorporate more costly and higher yielding technologies.
raditional index insurance insures against drought, for example
Osgood and Warren, 2007), though new programs are also explor-
ng index insurance for disease and pests (e.g., Norton et al., 2011;
ichards et al., 2006). Approaches are being pilot tested in Malawi
here the microlending projects actually support the ability to lend
uring shock events so farmers don’t lose their assets. This is an on-
oing area of research that could develop alternatives that would
educe dread. A limiting factor for weather-based index insurance
s the need for very good estimates of the relationship between

eather variables and loss, where consideration of autocorrelation
ay be necessary in some cases. A model such as the one presented

ere may be useful for exploring payout scenarios in weather-based
nsurance schemes for loss to disease and pests.
The utility of EWS also depends upon two basic facilities: (1)
he infrastructure required to disseminate the warning and (2) the
apability to take appropriate preventive action. In the case of live-
tock disease, veterinary support and other extension services may
t Meteorology 170 (2013) 216–227

be required, and some degree of planning in advance of a dis-
ease outbreak warning is necessary in order to identify the most
economically expedient response, which is likely to vary between
localities. Prior assessments must balance the cost of vaccination
and/or treatment against the value of livestock both in an economic
and intrinsic sense so that immediate decisions can be made.

4.3. Biological adaptation

Models designed to predict the future distribution and/or preva-
lence of pests and pathogens do so primarily by simulating current
physiological and phenological behavior in relation to climate, then
applying these simulation models to new climate scenarios. This
approach has a significant limitation (beyond that of extrapolating
empirical relationships past unidentified thresholds, after which
the relationship changes), which is that it assumes that the pheno-
type of the target organism remains constant. In reality, responses
to environmental change are likely to take the form not only of
demographic and distribution changes that track the altered dis-
tribution of optimal conditions, but also of adaptation to new
conditions. Such phenotypic responses have been reported in var-
ious taxa (e.g. (van Heerwaarden and Hoffmann, 2007; Yom-Tov
et al., 2006), but it is often unclear whether observed changes
are due to phenotypic plasticity or microevolution (i.e. adapta-
tion). Phenotypic plasticity is the term given to the phenomenon
of different phenotypes (physical, physiological or behavioral)
expressed by different individuals that share the same genotype,
whereas microevolution denotes adaptive shifts in the distribution
of genotypes within populations (Visser, 2008). Apparently adap-
tive microevolution has been observed in Drosophila spp. (Etges
and Levitan, 2008; Umina et al., 2005), and phenotypic plasticity is
well-documented in tsetse flies (Glossina spp.), which are vectors
of trypanosomiasis (Terblanche et al., 2006). Rates of microevolu-
tion and degrees of plasticity, respectively, will dictate the ability
of these two mechanisms to allow species to respond to climate
change, and some mismatches between phenotype and environ-
ment have already been observed (Memmott et al., 2007). For
soilborne disease, adaptation of soil microbes to new climate sce-
narios has the potential to modify risk both directly and by changing
environmental traits such as soil organic matter (Sierra et al.,
2010). Variability and autocorrelation in weather conduciveness to
disease and pest reproduction modifies the form of selection pres-
sure. More realistic simulation models should, where possible, take
into account known degrees of phenotypic plasticity and rates of
microevolution when producing forecasts for future climatic sce-
narios.

4.4. General conclusions

This model illustrates how mean yield losses can change even
when mean conduciveness to loss does not. The roles of variance
and the color of weather time series, and probably other statisti-
cal features such as skewness and kurtosis (Chaves et al., 2012),
also need to be considered for formulating strategies in response
to climate change (Table 2), by farmers and other decision makers.
While farmers and agricultural scientists are the decision makers
most commonly considered in the context of pest and disease risk
modeling, there are a number of other stakeholders who need to
anticipate pest and disease impacts. Understanding likely effects
of climate change on agricultural productivity can benefit corpora-
tions in terms of their decisions about where to invest. In the public
sector, universities and other institutions need to prioritize their

investments in agricultural research, teaching and extension. Sce-
nario analysis can also identify potential problems that will lead
to larger scale issues, such as human migration and unregulated
movement of animals and plant materials. Development agencies
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nd institutions also need to make decisions about prioritization of
evelopment investments to support adaptation strategies. Scales
atter when addressing the human dimensions of adaptation in

he context of socio-ecological systems (Ostrom, 2007, 2009). Small
older farmer adaptation takes place in a larger context, not only of
limate and ecology, but social systems (Valdivia et al., 2010). Deci-
ions made at the local scale (field, farm household) are shaped by
he institutions (markets, policies, research and extension, private
nd public) at larger scales of governance (Valdivia et al., 2010).

We modeled two simple types of observations farmers might
se for decision-making. Farmers do access and incorporate a
roader range of new knowledge in their decisions (Bebbington,
991; Valdivia et al., 2010). Use of information often depends on the
egree of trust between the decision maker and the risk messenger
Krimsky and Plough, 1988; Slovic, 1993). Two-way participatory
ommunications can enhance trust (Wilkins, 2001) and contextu-
lize the message (Marx et al., 2007). Two-way processes such as
articipatory research support the inclusion of new knowledge to
nable action that is adaptive (Hayward et al., 2004; Howden et al.,
007; Valdivia et al., 2010). These processes are especially critical
hen the level of uncertainty about future events will increase, and
hen markets do not function well (information is limited, inputs

re not available at all or on a timely basis, or are too expensive, and
nstitutions are unreliable) and rural households lack safety nets.
rocesses that support understanding of the nature of variability in
eather and pest risk, and that strengthen rural community capac-

ties for this purpose, are critical to building resilience at the local
nd at the macro levels.

Variability in future climate scenarios offers challenges for pol-
cy makers. A more parsimonious approach than attempting to
raw a single conclusion about future scenarios will be to present
he full range of envisaged outcomes and allow policy to be drafted
n the form of a response to a set of possible scenarios instead of
single prediction (Stirling, 2010). A practical strategy would then
e a general preparedness for all likely eventualities, or at least
hedged compromise in which most potential outcomes could

e managed and none would be disastrous. This general ethos is
est served by stochastic models wherein parameter values are not
xed, but chosen from an appropriate probability distribution. And
ather than treating each time point as an independent draw, taking
nto account autocorrelation may be important in understanding
isk and how to adapt decision-making.
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