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Abstract

The huge amount of genomic data now becoming available offers both opportunities and challenges for
epidemiologists. In this ‘‘preview’’ of likely developments as the field of ecological genomics evolves and
merges with epidemiology, we discuss how epidemiology can use new information about genetic sequences
and gene expression to form predictions about epidemic features and outcomes and for understanding host
resistance and pathogen evolution. DNA sequencing is now complete for some hosts and several pathogens.
Microarrays make it possible to measure gene expression simultaneously for thousands of genes. These
tools will contribute to plant disease epidemiology by providing information about which resistance or
pathogenicity genes are present in individuals and populations, what genes other than those directly
involved in resistance and virulence are important in epidemics, the role of the phenotypic status of hosts
and pathogens, and the role of the status of the environmental metagenome. Conversely, models of group
dynamics supplied by population biology and ecology may be used to interpret gene expression within
individual organisms and in populations of organisms. Genomic tools have great potential for improving
understanding of resistance gene evolution and the durability of resistance. For example, DNA sequence
analysis can be used to evaluate whether an arms race model of co-evolution is supported. Finally, new
genomic tools will make it possible to consider the landscape ecology of epidemics in terms of host
resistance both as determined by genotype and as expressed in host phenotypes in response to the biotic and
abiotic environment. Host phenotype mixtures can be modeled and evaluated, with epidemiological pre-
dictions based on phenotypic characteristics such as physiological age and status in terms of induced
systemic resistance or systemic acquired resistance.

Introduction

The field of plant disease epidemiology has incor-
porated new technologies and perspectives on
biology as they have become available, from
computer simulation modeling to automated
environmental sensing. Over the past decade, the
study of DNA within all areas of biology has gone
through a revolution, providing new types and
new quantities of genomic data for epidemiologi-
cal analyses. Given the advent of new technologies
associated with rapid analysis and miniaturization,
informatics, and molecular biology, it is now
possible to expand the scale of studies of both
agricultural and wild species to include entire
genomes. The high-throughput advances associ-

ated with genomics and other ‘‘-omics’’ (e.g. pro-
teomics, metabolomics) have allowed an
unprecedented collaboration among scientists
working at different biological scales and have
fostered a new science, ecological genomics. In this
‘‘preview’’, we discuss how these new approaches
may dovetail with plant disease epidemiology.

Epidemiology has already benefited from
information about the population genetics of
pathogens, as reviewed by Milgroom and Peever
(2003). By simultaneously studying how pathogen
gene frequencies change within and among popu-
lations as a result of both natural selection and
gene flow, and how pathogen populations grow
and spread, it has been possible to track disease
outbreaks (e.g., Zwankhuizen et al., 1998),
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develop predictions about sources of inoculum and
pathogen life cycles (e.g., Cortesi et al., 2000;
Cortesi and Milgroom, 2001), understand the
evolution of virulence (Escriu et al., 2000a, b,
2003), and make predictions about the durability
of resistance in crop genotypes (Escriu et al.,
2000a, b). Ultimately, modeling plant disease epi-
demics and pathogen evolution depends on a
complete understanding of both plant and patho-
gen traits that influence the dynamics between a
pathogen and its host. To completely understand
any trait and its significance in a dynamic interplay
between species requires the simultaneous use of
molecular, cellular, organismal, population and
ecological approaches. Past efforts to combine
epidemiology and population genetics have come
up against an upper limit on the number of eco-
logically important genes that could be surveyed
or lack of information on gene function and sig-
nificance. Yet, host plants, as well as pathogens,
exist in a matrix of hundreds or thousands of other
taxa and their genes. Population changes in
pathogens, reproduction and dispersal will all
depend on the interactions among these organisms
that can influence the dynamics of resistance evo-
lution and direct effects on pathogen populations
(Antonovics, 2003).

The developing synthesis of a functional
genomics approach combined with a population
and ecological perspective promises to lead to new
avenues of research and understanding of plant/
pathogen interactions. Evolutionary and ecologi-
cal functional genomics or EEFG (Feder and
Mitchell-Olds, 2003) has as a goal to understand
ecological and evolutionary processes that main-
tain genotypes and phenotypes. The emphasis so
far has been on wild species, but agricultural sys-
tems offer both an important application and
relatively well-characterized systems for experi-
mentation. The field of ecological genomics will
address new types of questions beyond applica-
tions based on molecular markers. Microarrays
allow synoptic measurements of gene expression in
tens of thousands of genes. Real-time PCR allows
highly accurate quantitative evaluation of gene
expression at many time steps. It will also be
possible to identify hundreds or even thousands of
organisms simultaneously from individual samples
as microarrays are developed with sequences rep-
resentative of desired sets of species, potentially
including non-culturable species. Advances in

sequencing allow analysis of great numbers of
‘‘markers’’ with added information about their
likely role through reference to databases such as
GenBank (Black et al., 2001), thus revealing the
gene content of particular organisms.

Functional genomics, or the use of genomic
technologies (e.g. microarrays) to find genes and
polymorphisms that affect traits of interest and to
characterize the mechanisms underlying those
effects, has been applied effectively in agricultural
contexts and has potential in natural systems.
Functional genomics moves beyond simple
sequence analysis to evaluate the function of par-
ticular DNA sequences through, for example, gene
knockout mutants or gene activation mutations.
These techniques have natural applications for the
study of resistance and virulence, but might also be
usefully applied in the study of other
epidemiological features. By simultaneously scan-
ning thousands of plant genes for changes in
expression in response to variables of interest (e.g.
stress, infection) it has been possible to identify
candidate loci or suites of genes and molecular
mechanisms involved in the phenotypic expression
of key traits of economically important crop spe-
cies (Frick and Schaller, 2002; Jones et al., 2002;
Mysore et al., 2003). A great deal has been learned
about plant defense against disease through the
use of functional genomics and model plant sys-
tems such as Arabidopsis (Wan et al., 2002; Schenk
et al., 2003; Whitham et al., 2003a).

An intriguing area of epidemiology that will
develop with the availability of new tools for
studying gene expression is the study of pheno-
typic resistance and its responses to the biotic and
abiotic environment. Infection with an incompat-
ible pathogen, or a virulent pathogen that causes
cell death, can make a plant more resistant to
subsequent infection by the same or different
pathogens, a phenomenon designated systemic
acquired resistance (SAR; Durrant and Dong,
2004). The SAR response in Arabidopsis confers
resistance to several diseases (Ryals et al., 1996).
Resistance to pathogens can also be influenced by
non-pathogenic organisms; systemic changes in
disease resistance in response to colonization by
rhizosphere-colonizing Pseudomonas bacteria have
been well-documented and are commonly referred
to as induced systemic resistance (ISR; Iavicoli
et al., 2003; Cui et al., 2005). Dissection of the
SAR and ISR signaling systems in Arabidopsis
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indicate they are controlled by different pathways
and signaling molecules with some common com-
ponents. Understanding which genes are expressed
during specific defense responses can provide
indications of what pathways are activated in dif-
ferent biotic environments (Pieterse and van Loon,
1999). Tools are now available to begin studying
these phenomena more widely in epidemiology.

This paper will address the following topics in
ecological genomics. (1) Population genetics and
population genomics can inform epidemiology to
further our understanding of epidemics and to
provide insights for disease management. We will
also consider how studies of gene expression can
potentially add predictive power at finer spatial
and temporal scales than was possible in the past.
(2) Models of populations and communities may
apply to analogous systems of gene expression
within organisms and in populations of organisms
to inform a ‘‘population biology’’ of gene expres-
sion. (3) Genomics can contribute to understand-
ing of resistance gene evolution and durability of
resistance. (4) The landscape ecology of host
populations and communities, in terms of both

genotypic and phenotypic resistance, can now be
studied more thoroughly as it affects epidemics. In
addressing these topics, we will emphasize genes
that influence the relationship between plant host
and pathogen, but the same general concepts
would apply to interactions between plant species,
between plants and insect herbivores, etc.

How population genetics and population genomics

can inform epidemiology

Epidemiology has traditionally used information
about host species, pathogen and vector species,
and environmental variables such as temperature
and precipitation to predict epidemic progress.
These models can be adapted to incorporate much
more detailed information about the genomic
status of the host and pathogen communities
considered in the context of a broadly defined
environment, i.e., defined to include abiotic com-
ponents and potentially the complete community
metagenome of soil (Rondon et al., 2000) or other
systems (Figure 1). Information about the soil

Pathogen genome(s)Pathogen genome(s)

Abiotic environment
(and biotic environment)

Abiotic environment
(and biotic environment)

Host speciesHost species

Pathogen speciesPathogen species

Host genome(s)Host genome(s)
Community metagenome
and abiotic environment
Community metagenome
and abiotic environment

Figure 1. The traditional disease triangle depicts prediction of epidemics based on interactions between pathogen species, host spe-

cies, and the abiotic environment. It is now much easier to obtain information about the complete genotype and current gene

expression of host and pathogen, and there is even the potential to obtain this information for complete communities such as those

in soil, the rhizosphere, and the phyllosphere, as well as endophytic communities. Models about a hierarchy of features of ‘‘geno-

mic status’’ might be experimentally evaluated in this context. For example, ‘‘The host landscape is sufficiently described to predict

epidemic features and outcomes by information about... d ... host community composition (in terms of species).’’ d ... a specific

subset of the host genotype sequence(s).’’ d ... the host genotype sequence(s).’’ d ... a subset of host gene expression.’’ d ... com-

plete profiles of host gene expression (now and/or in the past).’’
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metagenome may contribute to an understanding
of disease suppressive soils that develop over time
as microbial populations respond to the buildup of
pathogen populations. For example, soils sup-
pressive to the wheat take-all pathogen and potato
scab have been described, with fluorescent pseu-
domonads and streptomycetes, respectively, being
the likely causes of suppressiveness (Weller et al.,
2002). Advances in genomics also make it possible
to characterize the genomic status of host plants at
a much finer temporal and spatial scale than in the
past (Table 1). The addition of gene expression as
a response variable or predictor variable in epi-
demiological models has the potential to shift the
scale of inquiry to hours and millimeters. Moni-
toring the expression of genes in specific defense
pathways, or individual genes that reflect the
expression of the pathways, could be used to pre-
dict the outcome of pathogen infection in indi-
vidual plants or plant organs. For most diseases,
progress in determining the efficacy of different
defense responses for controlling specific patho-
gens and how the responses become distributed
throughout the plant must be made before this
information is useful. Then epidemiologists will
need to perform a range of exploratory field
studies to identify the forms of predictors that are
most useful for inclusion in more detailed follow-
up studies. For example, if the early induction of
senescence-related gene pathways were observed to
occur, would this be related to reduced epidemic
potential at a field scale?

Characterizations of populations may include
the composition of both qualitative features pro-
duced by different genotypes and quantitative
features produced by different levels of gene
expression in what may be the same genotype.
Evaluation of qualitative features might be per-
formed using marker or sequence studies, while
evaluation of quantitative features might be
performed using microarrays or real-time PCR.
Studies of gene expression in agriculturally
important host plants have expanded remarkably,
with microarrays now available for several major
crop species. These allow host resistance to be
assessed as an outcome of gene expression. In
addition, the expression of plant genes in response
to non-pathogenic microorganisms may be highly
relevant to epidemiology, as it may provide an
understanding of how plants select for rhizosphere
flora that are antagonistic to pathogens, for
example (Smith and Goodman, 1999). Microarray
analyses can be used to identify sets of coregulated
genes and their common regulatory elements (e.g.,
Maleck et al., 2000; Chen et al., 2002), which may
both reveal different response pathways and allow
selection of smaller sets of indicator genes to
represent particular stress response pathways.
Microarrays developed using genes from one plant
species may also be applied, with some caveats, in
studies of related species; for example Travers
et al. (in preparation) have applied maize micro-
arrays to study gene expression in the related
tallgrass prairie grasses Andropogon gerardii and

Table 1. The temporal and spatial scale of variation in different components of host genomic status

Component of host

genomic status

Temporal scale Spatial scale

In annual monoculture

Species Cropping season Size of field in many

conventional systems

Genotype Cropping season Size of field in many

conventional systems

Gene expression Less than one hour

to cropping season

Part of one individual

to size of field

In unmanaged systems

Species Days to decades One individual to majority

of plant community

Genotype Days to decades (potential

for somatic mutation)

One individual to majority

of species (in clonal species)

Gene expression Less than one hour or until

phenotype expressed (days

for defense reaction, months

for flowering, etc.)

Part of one individual to majority of area
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Sorghastrum nutans, and have identified statisti-
cally significant responses to simulated climate
change in native field populations.

New genetic information can be used to refine
state transition models such as Susceptible-In-
fected (SI) models (e.g., Otten et al., 2003). Rather
than modeling host individuals as simply ‘‘sus-
ceptible and uninfected’’ or ‘‘infected’’, more
details about the state of individuals could be in-
cluded. The first simple modifications might
include broad genotypic resistance and suscepti-
bility. Further refinement could include transi-
tional states of greater or lesser susceptibility
based on physiological age, and probabilities of
exposure to other organisms that would induce
resistance. Matrix-based models of probabilities of
transitions from one state to another could be
applied to predict long-run states such as disease
severity or survival of different genotypes. Such
models could potentially be applied to develop
both epidemiological theory and better disease
management schemes. In the short-run, they could
be used to ask questions about the incremental
benefits of adding information about host pheno-
type to epidemic models. In the long-run, these
models could contribute to a much deeper under-
standing of epidemic dynamics.

The more complete genetic information from
DNA sequencing can be used to study long-
standing questions of population structure, host
specificity, and phylogenetics. Due to the growth
of sequence databases and the reduction in PCR
amplification and sequencing costs, determining
the sequence of a specific gene in a microorganism
is often the most efficient way to determine the
species of the microorganism. Databases now
carry information on a huge number of organisms,
and matching an unknown sequence to the
sequences in a database like GenBank takes only a
few minutes, although one must keep in mind
that not every sequence accession in GenBank is
annotated correctly. Reduced sequencing and
DNA amplification costs make the identification
of components of large microbial populations
feasible. Entire fungal or bacterial communities
can be characterized taxonomically by incorpo-
rating new techniques such as ‘‘shotgun sequenc-
ing’’ of a community’s collective genome and using
genome database searches to identify species and
predict gene function (Venter et al., 2004). At a
finer scale, sequencing specific genes in pathogen

mutants may give insight into cost of virulence
(Vera Cruz et al., 2000; Ponciano et al., 2004).
Sequencing can also be used to evaluate the po-
tential repertoire of resistance genes available, to
the extent that sequence similarity can predict
functional similarity (Bai et al., 2002). Examples
include NBS-LRR genes, the largest class of dis-
ease resistance genes. Plant genome projects have
indicated there are approximately 150 in
Arabidopsis and more than three times this number
in rice. Information about the number of resis-
tance genes available may contribute to resistance
gene deployment strategies. The identification of
sequences associated with resistance genes may
also be applied to related plant species to answer
long-standing questions about the number and
type of resistance genes in natural populations
(Gilbert, 2002). Microbial genome projects are
providing similar estimates of the number and
types of effector proteins in a single organism, such
as the number of gene products transferred into
plant cells by the type III secretion system of
Pseudomonas syringae strain DC3000 (Collmer
et al., 2002; Alfano and Collmer, 2004; Rohmer
et al., 2004; Chang et al., 2005). These are not only
important proteins that make the bacteria suc-
cessful pathogens, but also the targets of
plant disease resistance proteins. These are just a
few examples of how partial and whole genome
sequencing projects can contribute to under-
standing host–pathogen interactions.

Studies of gene expression in pathogens are still
limited, but, where available, are being used to
understand expression of genes during plant colo-
nization, and under various cultural practices. As
more whole genomes are sequenced, microarrays
using various platforms are becoming available for
several pathogens. As examples, arrays exist for the
rice blast fungus and for several bacterial plant
pathogens. Techniques other than microarrays are
also being applied to understand gene expression;
for example, serial analysis of gene expression
(SAGE) has been applied to study gene
expression in response to rice blast infection
(http://www.mgosdb.org/). Microarrays can also
be used in comparative genomics studies of closely
related pathogens using full genome sequences. For
example, the gene content of the human pathogen
Yersinia pestis has been studied as an indicator for
adaptation (Chain et al., 2004). Genomes have
been evaluated to determine what is missing in a
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fastidious, xylem limited species like Xylella
fastidiosa by comparison to other less fastidious
bacteria (Van Sluys et al., 2002). The genomes of
Xanthomonas oryzae pv. oryzae and X. oryzae pv.
oryzicola are being compared for insights into why
the first is systemic in xylem while the second grows
in mesophyll (A. Bogdanove, pers. comm.).

The greater availability of genetic information
will allow plant pathologists to move ‘‘beyond the
inoculation experiment’’ in studies of the genetic
features of host–pathogen interactions. In the past,
painstaking and expensive analyses of genetic
expression in host–pathogen interactions have
generally been applied to studies of pathogens
introduced to hosts either in highly conducive
environments, in the case of rust fungi, for exam-
ple, or directly inoculated into host tissues, in the
case of many bacterial pathogens. In contrast, it
would be extremely interesting and valuable to
have a greater understanding of the genetic basis
for the broad range of other epidemiological fea-
tures that are important in determining popula-
tion-level interactions between host and pathogen.
For example, from the standpoint of the pathogen,
aside from direct effects on virulence or aggres-
siveness, what are the genes most important for
features such as survival in soil or on plant sur-
faces, tolerance for temperature extremes, dis-
persal capability, or other specialized features such
as conversion from production of urediniospores
to production of teliospores in rust fungi? At lar-
ger epidemic scales, the genetic characteristics
most important to dispersal might be those that
affect survival of propagules under challenging
environmental conditions. These characteristics
would help determine whether the long-distance
transport events so important to establishment of
epidemics in new areas occur or not. From the
standpoint of the host, what genes are most
important for predicting epidemics aside from
direct resistance genes, including features such as
the probability of escape through faster or slower
movement through developmental stages, ‘‘leak-
ing’’ of compounds in the phyllosphere or rhizo-
sphere, and architectural features that affect
microclimate? Such information would be useful
both for applied crop plant breeding programs and
for understanding resistance profiles in natural
plant populations.

There is the potential to identify genes predictive
of epidemiological features using ‘‘comparative

genomics’’ to inform ‘‘comparative epidemiol-
ogy’’. For example, Kranz (2002) discusses several
disease parameters influenced by host plant resis-
tance that together predict epidemic rates and
outcomes: disease intensity, incubation period,
latent period, infection efficiency, disease effi-
ciency, infection rate, lesion size, infectious period,
and sporulation intensity. In comparative epide-
miology, the differences in these parameters
between host–pathogen systems can be evaluated
both in terms of their typical values and the fre-
quency distribution of these values in response to
typical forms of resistance. The availability of gene
expression data will also make it possible to study
disease parameters as a function of measures of
gene expression, given a particular genotype
(Figure 2), in the same way that the expression
levels of key genes associated with the initiation of
flowering have been used to predict flowering time
(Welch et al., 2003, 2005).

There is a basic need in epidemiology for
improved diagnostic systems and genomic ad-
vances will greatly expand the tools available. For
example, as models of the risk of invasion by
particular plant pathogens are constructed, their
validation depends on researchers’ ability to
determine precisely the abundance of pathogens in
a range of environmental settings. In their simplest
form, such studies require the ability to detect and
identify particular species of pathogens. Diagnosis
may also be taken to more sophisticated levels
through the ability to detect particular genotypes,
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in particular, those that are capable of causing
disease. Presence of genes for these traits, such as
genes related to pathogenicity, toxin production,
and other epidemiological features, if known,
could be used to more reliably measure genotypes
in a population responsible for disease. A partic-
ularly important application might be the identi-
fication of disease, through evaluation of host or
pathogen, when infection is still at very low levels,
to allow for early management that might, for
example, allow an invasive pathogen to be eradi-
cated before it has become well-established. Fur-
ther refinement for successful diagnosis of gene
expression may allow assessment of features such
as quorum sensing status (van Bodman et al.,
2003). The use of microarrays also opens the
possibility of synoptic rapid-throughput diagnostic
procedures for huge numbers of organisms for the
study of the community characteristics of systems
such as disease-suppressive soils, the phyllosphere,
and endophytic communities. These approaches
could bring great advances in understanding
microbial biodiversity, including the potential
to find new non-culturable putative pathogens
through scans for microbial genes used for taxo-
nomic classification or even genes associated with
pathogenicity. Epidemiologists might also make
good use of a genomic tool that would allow them
to study the past presence of pathogens through
on-going expression in host populations. Such a
measure of pathogen ‘‘footprints’’ could support
studies of long-term epidemics and changes in host
resistance over time. But it appears that an indi-
cator of past infection is not readily available in
plants, or at least researchers have not yet dis-
covered how to recognize it.

How models of populations and communities may

apply to systems of gene expression to inform

a ‘‘population biology’’ of gene expression

A null model for how models of populations and
communities apply to the study of gene expression
might be ‘‘consilience’’; that is, the null model
might be that the same models will apply across
scales, so tests could be developed to determine
where population models do and don’t adequately
explain patterns of gene expression.

Models from population biology can be applied
in the study of gene expression in three general

ways. First, at the smallest scale, genes may be
conceptualized to interact within a cell comparably
to the way that species interact within an
ecosystem (Mauricio, 2005). For example, it may
be useful to apply such models to the interactions
between different defense response pathways.
There is evidence the jasmonate (or ethylene) and
salicylic acid pathways affect somewhat different
pathogens and pests but also interact with each
other (Thomma et al., 1998; Glazebrook et al.,
2003). Depending on the response examined, they
may sometimes be viewed as complementary (van
Wees et al., 2000) and in other cases as in com-
petition (Spoel et al., 2003).

Second, an individual plant may be conceptu-
alized as a population of cells or organs across
which gene expression occurs. It is now possible to
measure gene expression in individual plant cells
(Kerk et al., 2003; Nakazono et al., 2003) so the
spatial pattern of expression through an individual
host can be measured and modeled at whatever
spatial grain is motivated by the experimental
questions. Spatial patterns of defense responses
between cells are relevant both to how effective
defense responses are to pathogen challenge and to
how the host responds to adjacent or subsequent
challenges by the same or other pathogens. Could
models of the dispersal of individuals through
ecological landscapes be usefully adapted to
describe the dispersal of gene products within and
between cells? State transition models could be
applied to individual plants in cases where it
makes sense to treat them as a set of units, such as
different tissues and organs, each of which would
have its own expression status. This could be
addressed using a variation on SI models. Predic-
tions based on these models might include the
predicted infection level as well as the predicted
plant growth rate.

Third, experiments in epidemiology might begin
with models within individuals, predicting infec-
tion levels based on the expression of particular
genes, and then expand on these to predict infec-
tion rates in plant populations based on the gene
expression rates in individuals. A null model for
such a study might be that the mean expression
level of individual hosts is fully predictive of the
level of infection in the population. In contrast to
the null model, it would be interesting to determine
whether the frequency distribution of the expres-
sion rates, and perhaps even their spatial pattern,
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in the different host individuals would substan-
tially improve predictions of epidemic features,
just as different patterns of disease severity across
individuals can result in different overall yields for
the same mean disease severity (Hughes, 1996).
Simulation modeling might be used for initial tests
of the sensitivity of epidemic outcomes to such
patterns of expression. Addressing questions such
as these with an understanding of mechanism will
require considerably greater understanding of the
relationships between gene expression and gene
product physiological function. This third scale is
addressed further in a later section.

The study of gene expression offers a new
method for measuring integrated effects of envi-
ronmental variation (Figure 3). Environmental
variables such as temperature and precipitation
are standard predictors of disease progress in epi-
demiological models (Jeger, 2004), and integrated
forms such as ‘‘growing degree days’’ are already
commonly used to predict growth stage as a model
component. Different types of host responses may
be integrated over different time intervals.
Growth stage, or more specialized responses like
the development of sun and shade leaves, are the
products of the cumulative effects of gene expres-

sion, as affected by environment, over a period of
time. Younger tissues might only experience
‘‘indirect’’ effects from past environmental condi-
tions, perhaps as an analog to maternal and
grandmother effects in individuals. Induced sys-
temic resistance might be an example of short-term
gene expression in response to non-pathogens
while systemic acquired resistance might be an
example of short-term gene expression in response
to pathogens or to chemical stimulants. The timing
of infection and its effects on losses in productivity
can also be evaluated through variations on
time-of-infection models for predicting yield
loss (Madden et al., 2000) that include explicit
descriptions of host gene expression in response to
infection. The schematic model in Figure 3 applies
most directly in agricultural systems in which a
genotype is generally maintained, at least for a
season, through removal of competitors. A more
complicated model might be developed in which
host genotypes can be replaced by other plant
genotypes. The schematic might also be adapted to
take into account the possibility of thresholds such
that long-term changes in phenotype could be
produced by short-term gene expression at critical
time points in development.

A. Environmental conditions over time

Current host
phenotype

Long-term gene expression

Medium-term gene
expression

Short-term
gene
expression

Long-term
phenotypic
characteristics

Medium-term
phenotypic
characteristics

Short-term
phenotypic
characteristics

Host
genotype

B. Pathogen community over time

Figure 3. The current host phenotype, at any spatial scale within a host individual, is a form of integration of the individual’s

environment, including the composition of the pathogen community, acting on the host genotype. Long-term phenotypic character-

istics would include features such as physiological age of leaves or roots, forms of specialization such as the development of sun or

shade leaves, and other characteristics that may influence disease resistance. Short-term characteristics might include features such

as upregulation of pathways contributing to induced resistance. Of course, host gene expression will also influence pathogen popu-

lations and even the abiotic microenvironment.
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How genomics can contribute to understanding

of resistance gene evolution and durability

of resistance

A major goal of agricultural plant pathology is the
development of durable resistance to plant
pathogens in agricultural species. ‘‘Durable resis-
tance’’ has been defined as resistance that is still
effective after it has been deployed over a wide
area, over a long period of time, in a disease-
conducive environment (Johnson, 1981). Without
durable resistance, plant breeders are forced to
continually incorporate new resistance genes in
crop varieties as pathogen populations adapt to
infect older varieties with previously deployed
resistance genes. An understanding of the evolu-
tion of host and pathogen genes affecting host–
pathogen interactions is needed to form strategies
for the durable deployment of resistance in agri-
culture. It has long been thought that under-
standing of the relative importance of the disease
effector proteins from bacterial and fungal
pathogens that are detected by R genes (i.e., the
products of avirulence genes) should provide in-
sight into which R genes might have more durable
effects, but this idea has had limited impact
because of the difficulty of identifying and char-
acterizing these effector protein genes. Compara-
tive genomic approaches for identifying these
genes and functional genomic approaches to ob-
tain ‘knocking-outs’ of their function is making
this increasingly feasible (Leach et al., 2001). Some
resistance genes, like mlo of barley (Buschges
et al., 1997), may confer resistance without inter-
acting with specific pathogen effector proteins.
These genes may provide non-specific resistance by
changing the physiology and gene expression of
the plant before pathogen challenge (Wolter et al.,
1993). Gene expression analysis has indicated
other resistance genes with suspected non-specific
effects may alter expression of defense genes
before pathogen challenge (Bowden and Hulbert,
unpublished). Such analysis should be useful in
identifying genes controlling non-specific and thus
durable resistance and also provide insight into the
possible physiological cost of the resistance.

The isolation and sequence analysis of several
resistance genes has provided insight into the evo-
lution of disease resistance in plants (Hulbert et al.,
2001). Some of the results of these analyses are
consistent with a classical evolutionary arms race

model, while others are not (Hulbert, 1998). High
levels of sequence variation have been observed at
most R gene loci examined. This is consistent with
the arms race model’s prediction that R genes
would evolve rapidly, creating novel alleles with
new specificities in response to pressure imposed by
rapidly evolving pathogen populations. Loci like L
of flax (Ellis et al., 1999), which is structurally
simple but has multiple resistance alleles, exhibit
extremely high levels of polymorphism compared
to most genes. At some R gene loci, the patterns of
nucleotide substitution between alleles or family
members show evidence of the types of diversifying
selection that might be predicted by an arms race
model. While polymorphic nucleotides are usually
synonymous (not affecting the encoded amino
acid) at most loci, the opposite is true of certain
regions of some R gene loci. This is most often true
in regions of R genes thought to code for the ligand
recognition part of the protein, like the leucine-rich
repeat regions (Parniske et al., 1997; Meyers et al.,
2003). Evidence of diversifying selection in other
regions of R genes, like the TIR domain-encoding
regions of the L alleles, has suggested they may also
be involved in recognition (Luck et al., 2000).

One interpretation of an arms race evolutionary
progression is that there should be little variation
at a given R gene locus at one point in time and
that most R gene alleles should be fairly recent in
their evolutionary origin. This would be expected
if new highly effective R genes arose periodically
and replaced the older ‘defeated’ alleles. The
polymorphic nature of many R gene loci indicates
this is apparently not the case for most of them. In
fact the partitioning of polymorphism between
functional alleles and non-functional alleles at the
Rpm1 and Rps5 loci of Arabidopsis indicated that
the classes of alleles have co-existed for a long
period (Bergelson et al., 2001; Tian et al., 2002),
probably the result of some form of balancing
selection. While actual estimates of the age of
specific resistance gene alleles are not available,
this may be an indication that some R gene alleles
are ancient. In contrast, no evidence that resis-
tance alleles are ancient has been obtained by
sequencing the same resistance allele from multiple
germplasm accessions. If resistance alleles are
indeed ancient, it should be possible to identify
versions that have accumulated extensive neutral
sequence polymorphisms. This has not yet been
the case in the limited experiments that have been
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conducted (Caicedo et al., 1999; Jia et al., 2003;
Smith et al., 2004). The low nucleotide diversity
among the functional alleles of these loci is con-
sistent with the idea that they could be recently
evolved, although other explanations are possible.

The sequence evidence collected to date implies
that different R gene loci are evolving in different
manners. For example, some appear to be under
strong diversifying selection while others do not.
The implications of an R genes’ evolutionary his-
tory for the stability of the resistance it confers is
not clear, but the ability to predict durability based
on genomic analysis would be quite useful for crop
improvement strategies. Molecular analyses of
resistance proteins and their corresponding aviru-
lence proteins have indicated that some physically
interact directly (Scofield et al., 1996; Tang et al.,
1996; Jia et al., 2000, Deslandes et al., 2003) while
others detect modifications of other host compo-
nents (Mackey et al., 2003; Axtell and Staskawicz,
2003). It is possible that whether an R gene rec-
ognizes effector (avirulence) genes directly or
protects host targets from modification by effector
proteins affects the type of selection pressure
driving its evolution (Ponciano et al., 2003). This
association, however, is not yet clear due to the
small number of interactions in which this type of
information is known. For R proteins that guard
other host components, it is not clear if the nature
of the host protein being guarded affects the
durability of the R gene, but it might be expected
that some targets are more important to the
pathogens ability to cause disease than others. The
nature of the effector gene, particularly how
essential it is to pathogenicity, has been proposed
by many to affect R gene durability and recent
data indicates this is true (Vera Cruz et al., 2000).

One response to the problem of rapid ‘‘break-
down’’ of resistance in agricultural systems has
been a shift by some plant breeders toward greater
use of minor resistance genes that each contribute
a small amount of resistance and are generally
thought to be more durable (Leung et al., 2003;
Liu et al., 2004). However, these genes, because of
their small effects, are more difficult to study in the
field and even to recognize by the phenotypes of
individual plants. The use of genetic markers has
made the incorporation of minor genes easier, but
the problem remains that, because we do not know
what genes are responsible for quantitative traits,
the association of the markers with the traits is not

absolute. Genomic tools will allow discovery of the
genes responsible for quantitative traits, and may
make it easier to determine whether resistance
governed by quantitative traits is truly more
durable; whether the effects of QTL are actually
less pathotype specific, or whether an apparently
more durable effect may be mediated by a weaker
selection on individual pathogen genes. To the
extent that function can be inferred from sequence,
the response of pathogens to particular minor
genes may be better predicted as this information
becomes available. It will be particularly useful if
comparative genomics would allow predictions of
the interactions between minor resistance genes
and their responses to abiotic and biotic environ-
ments. Functional genomics may also contribute
to the identification of new minor resistance genes.
QTL analysis or the identification of quantitative
trait loci provides a powerful tool for assessing the
fitness consequences for genes including resistance
genes. For example, Newcombe and Bradshaw
(1996) used it to identify genes of large effect that
changed the resistance of poplar to pathogenic
Septoria populicola with community level effects.

The study of pathogen and host co-evolution in
natural plant populations is also important for
understanding what role pathogens may have
played in structuring plant communities. In studies
demonstrating the importance of genetic variation
in host plant species within a larger community
that includes pathogens, hybridization of host
plants (e.g. willows, sagebrush, oaks) has led to
fundamental changes in the species composition of
the entire community (reviewed in Whitham et al.,
1999). This ‘‘extended phenotype’’ effect would be
reflected in the context of epidemiology by the
dying out of some pathogens and replacement with
others (Whitham et al., 2003b). Agricultural sys-
tems and unmanaged systems offer an interesting
contrast, because the selection pressures in un-
managed systems are ‘‘direct’’ while selection
pressures in agricultural systems are mediated by
human decision-making.

The landscape ecological genomics of host

populations and communities, in terms of both

genotypic and phenotypic resistance

Once meteorological measurements could be col-
lected using automated systems, epidemiologists
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were faced with the question of what temporal
scale of resolution was needed for understanding
epidemic progress. Information about variation in
temperature at the scale of minutes is not generally
needed for predicting epidemic features. But whe-
ther predictions are improved by resolving differ-
ences in temperature at the scale of days or weeks
will vary from one host–pathogen system to
another, based on characteristics such as pathogen
generation time, and requires attention for the
construction of good models. Information about
variation in meteorological features across space is
still not so readily collected at very fine scales,
though the increasing availability of ‘‘smart dust’’
and other tiny wireless sensor networks may change
that (e.g., http://webs.cs.berkeley.edu/). The same
question of appropriate scale of variation to
include for modeling will arise for the new spatial
maps of meteorological features. Similarly, the
potentially huge amount of information about gene
expression will require research to determine what
scale of variation is important to include in pre-
diction of epidemics for particular host–pathogen
systems. The cost of microarray analyses limits the
number of samples in time and space for now, but
as costs become less limiting, epidemiological re-
search will focus more on determining optimal
scales of variation in expression data to include in
predictive models.

Plant disease epidemiology has developed models
of disease foci and how these foci expand in time
and space (Zadoks and Vandenbosch, 1994;
Waggoner and Aylor, 2000), including studies of
the spatial pattern of disease used to draw infer-
ence about modes of dispersal and to devise opti-
mal sampling strategies. Landscape ecology also
offers methods for studying spatial features with
models for describing the relationships between
organisms in landscapes and for describing the
connectivity of features (With, 2002). In agricul-
tural systems, the spatial pattern of host genotypic
resistance is sometimes manipulated through the
construction of intercropping systems and/or use
of mixed genotypes within a crop species (Garrett
and Mundt, 1999; Zhu et al., 2000; Mundt, 2002).
And, of course, most unmanaged systems include
a mixture of plant species that, with few exceptions
(e.g., Phytophthora cinnamomi), do not tend to
share the same pathogen species. Mixtures of
susceptible and other genotypes make models of
disease spread through space somewhat more

complicated. Some models have assumed that
epidemic ‘‘waves’’ move out from an initial point
with constant velocity to simplify the modeling of
the system, while other researchers predict that
epidemic waves accelerate (Scherm, 1996; Cowger
et al., 2005).

A genomics approach applied to epidemiology
could explore multiple spatial and temporal scales
as well as levels of detail in genomic status, per-
haps employing cellular automata models (e.g.,
Kleczkowski et al., 1997; Figure 4). Within a host
individual, the local phenotype might be at the
scale of a leaf or of a cell. Local gene expression
might be at the point of infection; for example,
within compared to beyond a green island of host
tissue formed around an infection by a rust fungus.
Regional gene expression within an individual
might be expression in tissues adjacent to infec-
tion. Within a host individual and its immediate
environment, a wide range of pathogens may be
present, specializing on different host tissues.
Competition between particular pathogens may
play out differently depending on the time of
infection and the type of plant tissue (Adee et al.,
1990; Al-Naimi et al., 2005). The question for
epidemiologists will be what spatial and temporal
resolution is needed for predicting epidemics with
the new and upcoming abundance of data, as op-
posed to averaging over host and pathogen indi-
viduals’ genomic status across space and time.

In host populations, ‘‘expression foci’’ in which
host individuals share altered gene expression
patterns may form around inoculum sources, with
properties related to those of disease foci. Gene
expression changes in hosts in response to expo-
sure to pathogens and other microbes may range
from increased resistance through SAR or ISR to
increased susceptibility because of weakened tissue
integrity. The effect of exposure to pathogens that
do not infect has the potential to be substantial, at
least temporarily; Calonnec et al. (1996) estimated
that the infection efficiency of Puccinia striiformis
was reduced by 44% when plants were previously
exposed to an ‘‘inducer race’’ of the pathogen. At
increasing distances from a primary inoculum
source, exposure to inoculum may have occurred
at more recent time points, potentially resulting in
waves of different expression patterns surrounding
the initial source areas. Spatial patterns of abiotic
features, such as differences in topography that
produce cooler or wetter local conditions, may
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also produce expression foci relevant to epidemics.
Studies of gene expression in landscapes may
develop distinctions analogous to the distinction
between a dispersal gradient and a disease gradi-
ent. Disease gradients may differ markedly from
dispersal gradients if the success rates per unit of
inoculum are low, particularly if the reproductive
rates of the pathogen are density dependent
(Garrett and Bowden, 2002). There may be similar
effects for gene expression, such that thresholds of
exposure to pathogen inoculum, for example, must
be exceeded before substantial gene expression
results. At much smaller spatial scales, gene
expression in bacterial populations may give in-
sights into quorum sensing and its implications for
density dependent reproduction (van Bodman
et al., 2003).

Epidemiologists have developed the terms
autoinfection and alloinfection to describe infec-
tion of a target host individual by inoculum pro-
duced on the same target host individual vs.
infection by inoculum produced on other host
individuals, respectively (Robinson, 1976). The
rate of autoinfection can be an important predic-
tor for epidemics of non-systemic disease in mixed
genotype host populations. If some host genotypes
are susceptible and others are not, the reduction in

epidemic rates on susceptible genotypes that would
be predicted by the presence of other genotypes
will be reduced if autoinfection rates are high;
more inoculum will land on susceptible host indi-
viduals rather than being lost through dispersal to
non-hosts (Garrett and Mundt, 1999; Mundt,
2002). It may prove useful to develop analogous
concepts for gene expression, so that ‘‘autoinduc-
tion’’ of gene expression would occur when mi-
crobes associated with a particular plant
individual disperse to other organs within that
individual to induce SAR, ISR, or other reactions.
By comparison, ‘‘alloinduction’’ would occur
when microbes are dispersed to a different plant
individual to induce these reactions. Higher rates
of alloinduction compared to autoinduction would
tend to result in higher mean levels of SAR or ISR
in populations, and the rate of alloinduction
would be a function of host size and the dispersal
properties of the relevant microbe populations.

Feedback between host and pathogen would
occur as pathogens disperse, infect or elicit other
responses in plants, and then disperse further
through a landscape of phenotypic resistance that
has potentially been altered in response to previ-
ous dispersal. Good models of such a sys-
tem would require the ability to predict plant

Genotype

Host individual

Local phenotype

Local gene expression

“Organ-wide” gene expression

“Plant-wide” gene expression

Host
landscape
Host
landscape

Pathogen
landscape

Environmental
landscape

Figure 4. Each host individual is potentially influenced by the landscape of hosts, pathogens, and other biotic and abiotic environ-

mental features. Within a host individual, these influences may play out through ‘‘plant-wide’’, ‘‘organ-wide’’, or more local gene

expression, depending on the scale of variation of each feature in the landscape and how it acts upon the host individual. ‘‘Plant-

wide’’ gene expression might include responses to factors such as drought and disease that alters water relations within the host.

‘‘Organ-wide’’ gene expression might include responses to factors such as stem or petiole lesions. Local gene expression might in-

clude responses such as localized forms of induced resistance. Models related to spatial scale and scale of genetic detail that could

be experimentally evaluated as predictors of epidemic features include the following, presented in a hierarchy of increasing com-

plexity. ‘‘The host landscape is sufficiently described to predict epidemic features and outcomes by information about... d ... the

abundance of host species’’ d ... the abundance of host genotypes’’ d ... the abundance and spatial pattern of host species’’ d ...

the abundance and spatial pattern of host genotypes’’ d ... the mean level of gene expression among host individuals’’ d ... the

spatial pattern of gene expression among host individuals’’ d ... the spatial pattern of gene expression within host individuals.’’
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phenotypic resistance levels in response to the
biotic and abiotic environment, pathogen pheno-
types in response to ‘‘non-host’’ environmental
features, plant phenotypic responses to exposure
to pathogens, etc. (Figure 1). Of course, one
challenge is simply to be able to describe the cur-
rent level of phenotypic resistance of a host indi-
vidual. Adding the spatial pattern of host
genotypes provides additional modeling chal-
lenges. The level of aggregation of susceptible
hosts will produce a particular ‘‘genotype unit
area’’ (Mundt and Leonard, 1986), or area occu-
pied by a single host genotype, and help to deter-
mine the extent to which microbial populations are
spread between host species/genotypes or tend to
be dispersed within host species/genotypes. This
pattern of host genotypes will also influence the
pattern of expression in response to microbes
associated with a particular host genotype. The
combination of host genotype spatial patterns and
the spatial pattern of the biotic and abiotic envi-
ronment will result in a host ‘‘phenotype mixture’’.
Just as the effects of genotype diversity vary for
different host–pathogen systems (Lannou et al.,
1994; Mundt et al., 1995; Ngugi et al., 2001;
Mitchell et al., 2002; Cox et al., 2004), the com-
plex communities of plants and microbes involved
in induced resistance may experience different
patterns of spatial effects on induction. Models of
epidemics in genotype mixtures will be useful in
this context, but new models will also be needed.

Conclusion

Epidemiology will benefit from new genomic
technologies in several ways. New diagnostic
techniques will make the development of a ‘‘com-
munity epidemiology’’ more practical, through
providing the ability to characterize thousands of
microorganisms simultaneously as well as identi-
fying particular genes and alleles. New techniques
will make it easier to extend genetic analyses of
pathogens beyond virulence genes, by facilitating
the study of the population structure and evolution
of genes important for other important features
such as the ability to survive in non-conducive
environments. Functional genomic analysis of
pathogen virulence genes and host resistance and
defense response genes will enable better
predictions of the durability of resistance. New

genomic tools will also allow great advances in the
study of phenotypic resistance. It will finally be
possible to thoroughly evaluate the many ideas put
forward about age-related resistance and the effects
of the biotic and abiotic environment on pheno-
typic resistance. Conversely, epidemiology pro-
vides the context for understanding the role and
significance of pathogen genes and plant genes re-
lated to pathogen reproduction and also provides
models for evaluating landscapes of plant pheno-
types.
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