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Hypothesis tests currently used in plant pathology are amost
aways based on a null hypothesis of equal means. In this frame-
work, the experimenter determines whether or not there is evi-
dence that the means are, in fact, different. This framework makes
sense for many common questions such as whether a new man-
agement technique gives an increase in yield over existing man-
agement techniques. But suppose, for example, that a disease
management technique is so effective that an experimenter is in-
terested in whether its use in the presence of disease achieves the
same yield as in the absence of disease. In this case, a more ap-
propriate null hypothesis would be that mean yields are different.
Examples of questions in plant pathology for which a null hy-
pothesis of equal treatment means is not suitable include
(corresponding phrasing for one-sided questions is in parentheses
as appropriate):

(i) Is an engineered organism equivalent to the origina organ-
ismin al relevant characteristics except the intended change?

(ii) Is disease severity the same for a cheaper or safer manage-
ment strategy as for astandard strategy? (Isit at least aslow?)

(iii) Does a cultivar with potential for higher yield have the
same level of disease resistance as a proven resistant cultivar? (Is
it at least as high?)

(iv) Isthe level of pesticide on a plant surface the same for dif-
ferent application techniques?

(v) Does the yield reach that of pathogen-free or disease-free
plants when

« a biocontrol agent is used?
* a pesticide is applied?
« a resistant cultivar is grown? (Is it at least as high?)

framework, the concept of statistical power, how the equivalence

framework differs from the standard framework, an example of an

equivalence test, and a summary of some of the available equiva-
lence test techniques.

Standard hypothesis framework. The standard hypothesis
testing framework is based on the idea that what constitutes
“important news” is evidence of a difference between treatment
means. This is, of course, true for many questions. Traditionally,
greater emphasis has been placed on protecting against type | er-
rors (concluding there is evidence of a difference when a differ-
ence does not exist) than on protecting against type Il errors
(concluding there is not evidence of a difference when a differ-
ence does exist) (2). This has been part of a general notion that the
burden of proof should be on researchers to demonstrate that they
have important news if their work is to be published and consid-
ered. There has generally been little concern for whether negative
results are also published and given consideration, which has the
potential to result in the “file drawer” problem (13). In other
words, positive results may be published, while negative results
are filed and a literature-wide bias may result.

When the standard hypothesis framework is used for questions
in which interest lies in whether means are equivalent, the results
are often inconclusive. If the difference between means is rela-
tively large and there is adequate power, there may be evidence to
reject a null hypothesis of equivalent means. If the means are
similar or there is low power, the typical emphasis on protecting
against type | errors may mean that there will not be evidence to
reject the null hypothesis of equivalent means. This does not indi-
cate that the means are equivalent, however. The experiment may

(vi) In general, does a new approach with certain advantagesmply have had low power because of a small sample size or high
perform as well as a standard “best” approach? (Does it performariation. Thus, an experiment that is too small may be more

at least as well?)

likely to result in a lack of evidence for a difference, regardless of

For the last question, in the standard hypothesis testing framesat the means actually are.
work, a test would be made to determine whether there is evi- Statistical power. Power is the probability that the null hy-
dence that performance of the new approach is different from pepothesis will be rejected if it is not true, or one minus the prob-
formance of the standard. Based on a null hypothesis of equability of a type Il error (3). The power of a test increases as the

means, if there is not evidence for this difference, the expersample size increases and as the level of unexplained variability
menter may fail to reject the null hypothesis, but cannot, thereforelecreases. For a null hypothesis of equal means, power increases
conclude that performance is equal. Failure to find evidence for as the actual difference between means increases. High power also
difference might result simply because the experiment has lovesults in narrower confidence intervals around parameter esti-
statistical power (see below). The equivalence null hypothesimates. Low power may make it difficult to demonstrate a real
framework offers techniques for testing whether means are fundlifference between treatments, especially if the difference, or ef-
tionally equivalent using a null hypothesis of different meandect size, is small in magnitude. A power analysis can be an im-
(4,5,7). Equivalence tests are perhaps the second most useful gpartant part of planning an experiment, allowing an experimenter
eral class of hypothesis tests after the standard hypothesis testiogpick an appropriate sample size for an estimate of the variance
framework. Following is a discussion of the standard hypothesiand the effect size (3).

Equivalence test hypothesis framework. The equivalence test
hypothesis framework employs a null hypothesis of unequal
means. In this context, “important news” is evidence that means
are equivalent. Because two population means will never be truly
identical, the null hypothesis used in practice is that the difference
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between means is greater than some tolerance defined by a re- includes both zero and the upper tolerance; there is so much vari-
searcher prior to experimentation. The tolerance level used could ability that the null hypothesis cannot be rejected in either the
be based on an arbitrary level of similarity such as dlowing fora  standard hypothesis framework or in the equivalence framework.
5% difference, or it might be based on knowledge of how much Note that if the observed difference falls outside the tolerance, it is
leeway is tolerable in the response being measured. The re- not possible to reject the equivalence framework null hypothesis.
searcher determines whether there is evidence that the difference In the second example (Fig. 1B), the confidence interval is nar-
between meansis, in fact, less than this tolerance. This framework rower and does not include zero; the null hypothesis of equal means
puts the burden of evidence on the experimenter to demonstrate  can be rejected in the standard hypothesis framework. Next, sup-
that the means are equivalent within a reasonable tolerance. pose the observed difference between means does fall within the
The need for establishing such an a priori tolerance may seem tolerance around zero. For the third example, though the observed
like a shortcoming of this approach, but such atolerance is, ina  difference is near zero, the confidence interval extends beyond the
sense, understood in the standard hypothesis framework. If a stan- tolerance; the equivalence test null hypothesis of means more dif-
dard framework hypothesis test is performed when there is very ferent than the tolerance is not rejected (Fig. 1C). For the same
high power, asmall difference between means may be statistically observed difference with a narrower confidence region that falls
significant when a researcher is skeptical of the difference being inside the tolerance (Fig. 1D), the equivalence test null hypothesis
biologicaly significant. However, researchers can often be as- of means more different than the tolerance can be rejected. For
sured of having high enough variability and, thus, low enough this case, there is evidence that the means are equivalent as de-
statistical power, that they are not forced to consider whether a  fined by the tolerance. For the fifth example (Fig. 1E), the confi-
small differenceis biologically important! dence interval is so small that both the standard null hypothesis
It might seem that determining the power of an experiment in and the equivalence test null hypothesis are rejected. For this case,
the standard framework would give the same information as an there is evidence that the means are different, but also that their
equivalence test. But such a power analysis gives information on difference is less than the tolerance. Such an example might arise
how small a difference is likely to be statistically significant for a  if an experiment has very high power or the tolerance is very
given sample size and level of variability (3,15). Using the fact wide.
that a small difference would have a large chance of being de- Since interest in equivalence tests has often focused on com-
tected, yet was not detected, is a roundabout approach to deter- parisons of levels of pharmaceutical compounds in blood, or bio-
mining that there is evidence for treatments being equivalent. But equivalence tests, the emphasis has been on two-sided tests. But,
power is an issue in equivalence tests as in the standard frame- for many cases in plant pathology, a one-sided test might be more
work, because adequate power is needed to reject the null hy- appropriate. It is not usually considered problematic if yield is
pothesis. actually higher than, or disease incidence is actually lower than, a
Examples of equivalence tests. Hypothesis tests can be viewed desirable standard. In either case, the results of standard or
as a subset of confidence interval construction. If testing whether equivalence tests can be reported in greater generality by includ-
there is evidence to reject a standard null hypothesis of equal ing the P value for the observed difference rather than simply
means, the researcher could determine whether or not the confi- reporting whether or not the null hypothesis is rejected at a par-
dence interval includes zero. If not, then thereis evidencetorgiect  ticular confidence level. Statistical computing packages typically
the null hypothesis of equal means at the confidence level usedto  outputP values for standard hypothesis tests. Phalue for the
construct the interval. For a simple equivalence test, the same
confidence interval can be used; the researcher determines

whether the interval includes the predetermined tolerance (11). If A [

not, then there is evidence to rgject the null hypothesis of unequal L

means (means more different than the tolerance.) As an example,

suppose that an experiment is performed to compare a new man- B

agement technique with a standard technique for controlling pow- [ l

dery mildew of roses. The experimenter, planning to measure per- L 0

cent infection at the end of the experiment, might determine a

prior that a difference of 5 in percent infection is insignificant C

from apractical standpoint. If the mean percent infection of 10 rep- [ i
licates of the new technique is 12 and of the standard technique, 0D

9, the observed difference between means is 3. Using a standard

null hypothesis of equal means, the experimenter would construct D ,

a confidence interval around this estimate and determine whether [ ]
it includes zero. Suppose the data are approximately normally dis- 0D
tributed, so that an interval based on at distribution can be used

(2). If the pooled standard deviation is 6.1, then a 95% confidence E r i 1
interval around the estimated differenceis3+ 2.1 x 6.1 x 0.45, or L 0D

3+ 5.8, in which 2.1 is the criticalvalue for 18 degrees of free-
dom (df) and 0.45 =/7i0 + 710 . This interval includes zero, so a Fig. 1. Examples of hypothesis testing scenarios. Brackets indicate the
null hypothesis of equal means is not rejected. To test theguivalence tolerance around zero; the shaded region indicates a confidence
equivalence null hypothesis of different means, the research#fierval around the observed difference in treatment means (D). A, The ob-
determines whether any of the confidence interval lies outside t yrved difference falls outside the tolerance; neither the null hypothesis of

- . . ual means nor the null hypothesis of a nontrivial difference in means is
predetermined tolerance, -5 to 5. The confidence interval extenggected. B, The observed difference falls outside the tolerance; the null hy-
above the upper tolerance of 5, so the equivalence null hypothesighesis of equal means is rejected, while the null hypothesis of a nontrivial
is not rejected either. For this experiment, a larger sample size diference in means is not. C, The observed difference falls within the toler-

lower variance would be needed to determine conclusively wheth@fce; neither null hypothesis is rejected. D, The observed difference falls
the mean effects of the techniques are different or equivalent atth'”theto'erame' the null hypothesis of equal meensis not rejected, while
e null hypothesis of a nontrivial difference in means is rejected. E, The

the 95% confldencg level. . . observed difference falls within the tolerance; both the null hypothesis of
~ Aseries of possible outcomes of hypothesis tests are illustrat@gua means and the null hypothesis of a nontrivial difference in means are
in Figure 1. In the first example (Fig. 1A), the confidence intervalejected.
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upper tolerance of the equivalence test example given above can framework than the standard null hypothesis. By using a null hy-
be calculated as follows. The difference between the observed pothesis of treatment differences, they place the burden of proof
difference in means, 3, and the upper tolerance, 5, is 2. This dif- on the experimenter to demonstrate that the treatments are
ference is scaled by the standard error: 2/(6.1 x 0.45) = 0.73. Foeguivalent.
t distribution with 18 df, 0.73 is at percentile 0.76, givin® a
value of 1 — 0.76 = 0.24. The percentile can be found using a sta- ACKNOWLEDGMENTS
tistical program, for example, the function pt in S-plus (StatSci,
Seattle), or from a table of thelistribution (2). The null hypothe-  Thiswork was supported, in part, by the UDSA STEEP Program. This
sis of means more different than 5 would not be rejected at tH& Oregon State University Extension and Experiment Station Communi-
95% confidence level, as shown previously, but would be rejectegtions Series paper 11101. | thank G. Forbes, D. Gross, K. Johnson, C.
at the 75% confidence level for a one-sided test. Reporting the a¢{ndt. M. Powelson, F. Ramsey, and two anonymous reviewers for
tual P value summarizes results for tests at all confidence levels. tcg rl?ment_sthat mproved this manuscript and P. Dixon for introducing me
- . . ioequivalence tests.
Other types of equivalence tests. Several variations exist on
the simple equivalence test described in the example based on an
assumption of normality (1,8,16). Rather than the absolute differ-
ence between treatment means, it may be the proportion that is af Anderson, S., and Hauck, W. W. 1983. A new procedure for testing
interest. Erickson and McDonald (7) describe a test using a null equivalence in comparative bioavailability and other clinical trials.
hypothesis in which a treatment mean is equal to a proportion of Commun. Stat. Theory Methods 12:2663-2692. o
the standard mean. Erickson and McDonald (7) also report thé BOox. G. E. P, Hunter, W. G., and Hunter, J. S. 1978. Statistics for Ex-

| . fficient of iati d tol binati perimenters, An Introduction to Design, Data Analysis, and Model
sample size, coericient or variation, ana tolerance combinations Building. John Wiley & Sons, New York.

required to yield a desired level of power. Hauschke et al. (9) haves cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences.
suggested a distribution-free procedure based on use of a non- LEA Press, Hillsdale, NJ.

parametric Mann-Whitney-Wilcoxon test. A response may be bi-4. Dixon, P M. Assessing effect and no effect with equivalence tests. In:
nomial, such as the presence/absence of disease. Dunnett and GenRisk Assessment: Logic and Measurement. M. C. Newman and C. L.

(6) have described equivalence tests for the case of binomial sam- gtir)‘()é?]”'Ped'\j' A;‘nrépggror;?eﬁ A\Anlr‘g'g‘ibg&'\i"s'ﬁé; ‘?gj; for field experi-

ples. The general idea of constructing a null hypothesm of dif-™ - ters Pages 439-450 in: Wildlife and Population Modeling: Inte-
ference greater than some tolerance and determining whether there grated Studies of Agroecosystems. R. J. Kendall and T. E. Lacher, eds.
is evidence of equivalence can, of course, be adapted to tests for CRC Press, Boca Raton, FL.
other parameters, as well as to different distributional assumptions. Dunnett, C. W., and Gent, M. 1977. Significance testing to establish
Because tests of bioequivalence have become a standard typefgr“r'nvijfegcf zb‘ig’;:’)?:g té‘?gtr':“sntrtiis‘g’ghsze‘é'g'z reference to data in the
requeSt.ed .by the US Food .and Dfug. Administration, these teSt% Erickson, W. P., and McDonald, L. L. 1995. Tests for bioequivalence of
are beginning to be included in statistical packages. For example, ¢ontrol media and test media in studies of toxicity. Environ. Toxicol.
the nonparametric statistics package Testimate (SciTech, Chicago) chem. 14:1247-1256.
includes one- and two-sided equivalence tests. Erickson an@. Hauck, W. W., and Anderson, S. 1984. A new statistical procedure for
McDonald (7) discuss how a series of comparisons with a stan- t;hsting eqtliivaleréqe i}f: tWO-%;Ogg gfmparative bioavailability studies. J.
dard might be made with an adjustment for the number of test armacokinet. Biopharm. 12:83-91. o
o . . 9. Hauschke, D., Steinijans, V. W., and Diletti, E. 1990. A distribtfiea

such as a Bonferroni's correction (12). HOV\{ever, when compari- procedure for the statistical analysis of bioequivalence studies. Int. J.
sons are based on several levels of a continuous treatment, & re-cjin, pharmacol. Ther. Toxicol. 30(suppl. 1):S37-S43.
gression analysis would be more appropriate (10,14). 10. Madden, L. V., Knoke, J. K., and Louie, R. 1982. Considerations for the

As Box et al. stated (2), “Significance testing in general has use of multiple comparison procedures in phytopathological investiga-
been a greatly overworked procedure, and in many cases where tions. Phytopathology 72:1015-1017. _ _ _
significance statements have been made it would have been bettér Metzler, C. M. 1974. Bioavailability—A problem in equivalence. Bio-

to provide an interval within which the value of the parameter, metrics 30:309-317. ;
p p 12. Milliken, G. A., and Johnson, D. E. 1984. Analysis of Messy Data. \ol.

would be expected to lie.” By expressing the results of many hy- 1. pesigned Experiments. Van Nostrand Reinhold, New York.
pothesis tests simultaneously, an interval estimate may be the. Rosenthal, R. 1979. The file drawer’ problem and tolerance for null
most informative product of an experiment. While a researcher results. Psychol. Bull. 86:638-641.
would still be advised to decide upon an acceptable tolerance pridf- tﬁ)wnarl)lrc())vgég\lljreHs; 1%%1;;2?‘{%9&3”Eelgn?”gi;’fé'g?ésl‘gsgglmea” separa-
I expermentalon e epor klu ot eTNce, 3 SOy, o - e .3 195, Do, oyt pterns
e ’ Estimating power strengthens statistical inference. Am. Nat. 122:618-

own a priori tolerance level when evaluating the research results. 625.

To summarize, when a hypothesis test of whether treatments are. Westlake, W. J. 1976. Symmetrical confidence intervals for bioequiva-
equivalent is desired, equivalence tests offer a more appropriate lence trials. Biometrics 32:741-744.
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