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Hypothesis tests currently used in plant pathology are almost
always based on a null hypothesis of equal means. In this frame-
work, the experimenter determines whether or not there is evi-
dence that the means are, in fact, different. This framework makes
sense for many common questions such as whether a new man-
agement technique gives an increase in yield over existing man-
agement techniques. But suppose, for example, that a disease
management technique is so effective that an experimenter is in-
terested in whether its use in the presence of disease achieves the
same yield as in the absence of disease. In this case, a more ap-
propriate null hypothesis would be that mean yields are different.
Examples of questions in plant pathology for which a null hy-
pothesis of equal treatment means is not suitable include
(corresponding phrasing for one-sided questions is in parentheses
as appropriate):

(i) Is an engineered organism equivalent to the original organ-
ism in all relevant characteristics except the intended change?

(ii) Is disease severity the same for a cheaper or safer manage-
ment strategy as for a standard strategy? (Is it at least as low?)

(iii) Does a cultivar with potential for higher yield have the
same level of disease resistance as a proven resistant cultivar? (Is
it at least as high?)

(iv) Is the level of pesticide on a plant surface the same for dif-
ferent application techniques?

(v) Does the yield reach that of pathogen-free or disease-free
plants when

• a biocontrol agent is used?
• a pesticide is applied?
• a resistant cultivar is grown? (Is it at least as high?)

(vi) In general, does a new approach with certain advantages
perform as well as a standard “best” approach? (Does it perform
at least as well?)

For the last question, in the standard hypothesis testing frame-
work, a test would be made to determine whether there is evi-
dence that performance of the new approach is different from per-
formance of the standard. Based on a null hypothesis of equal
means, if there is not evidence for this difference, the experi-
menter may fail to reject the null hypothesis, but cannot, therefore,
conclude that performance is equal. Failure to find evidence for a
difference might result simply because the experiment has low
statistical power (see below). The equivalence null hypothesis
framework offers techniques for testing whether means are func-
tionally equivalent using a null hypothesis of different means
(4,5,7). Equivalence tests are perhaps the second most useful gen-
eral class of hypothesis tests after the standard hypothesis testing
framework. Following is a discussion of the standard hypothesis

framework, the concept of statistical power, how the equivalence
framework differs from the standard framework, an example of an
equivalence test, and a summary of some of the available equiva-
lence test techniques.

Standard hypothesis framework. The standard hypothesis
testing framework is based on the idea that what constitutes
“important news” is evidence of a difference between treatment
means. This is, of course, true for many questions. Traditionally,
greater emphasis has been placed on protecting against type I er-
rors (concluding there is evidence of a difference when a differ-
ence does not exist) than on protecting against type II errors
(concluding there is not evidence of a difference when a differ-
ence does exist) (2). This has been part of a general notion that the
burden of proof should be on researchers to demonstrate that they
have important news if their work is to be published and consid-
ered. There has generally been little concern for whether negative
results are also published and given consideration, which has the
potential to result in the “file drawer” problem (13). In other
words, positive results may be published, while negative results
are filed and a literature-wide bias may result.

When the standard hypothesis framework is used for questions
in which interest lies in whether means are equivalent, the results
are often inconclusive. If the difference between means is rela-
tively large and there is adequate power, there may be evidence to
reject a null hypothesis of equivalent means. If the means are
similar or there is low power, the typical emphasis on protecting
against type I errors may mean that there will not be evidence to
reject the null hypothesis of equivalent means. This does not indi-
cate that the means are equivalent, however. The experiment may
simply have had low power because of a small sample size or high
variation. Thus, an experiment that is too small may be more
likely to result in a lack of evidence for a difference, regardless of
what the means actually are.

Statistical power. Power is the probability that the null hy-
pothesis will be rejected if it is not true, or one minus the prob-
ability of a type II error (3). The power of a test increases as the
sample size increases and as the level of unexplained variability
decreases. For a null hypothesis of equal means, power increases
as the actual difference between means increases. High power also
results in narrower confidence intervals around parameter esti-
mates. Low power may make it difficult to demonstrate a real
difference between treatments, especially if the difference, or ef-
fect size, is small in magnitude. A power analysis can be an im-
portant part of planning an experiment, allowing an experimenter
to pick an appropriate sample size for an estimate of the variance
and the effect size (3).

Equivalence test hypothesis framework. The equivalence test
hypothesis framework employs a null hypothesis of unequal
means. In this context, “important news” is evidence that means
are equivalent. Because two population means will never be truly
identical, the null hypothesis used in practice is that the difference
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between means is greater than some tolerance defined by a re-
searcher prior to experimentation. The tolerance level used could
be based on an arbitrary level of similarity such as allowing for a
5% difference, or it might be based on knowledge of how much
leeway is tolerable in the response being measured. The re-
searcher determines whether there is evidence that the difference
between means is, in fact, less than this tolerance. This framework
puts the burden of evidence on the experimenter to demonstrate
that the means are equivalent within a reasonable tolerance.

The need for establishing such an a priori tolerance may seem
like a shortcoming of this approach, but such a tolerance is, in a
sense, understood in the standard hypothesis framework. If a stan-
dard framework hypothesis test is performed when there is very
high power, a small difference between means may be statistically
significant when a researcher is skeptical of the difference being
biologically significant. However, researchers can often be as-
sured of having high enough variability and, thus, low enough
statistical power, that they are not forced to consider whether a
small difference is biologically important!

It might seem that determining the power of an experiment in
the standard framework would give the same information as an
equivalence test. But such a power analysis gives information on
how small a difference is likely to be statistically significant for a
given sample size and level of variability (3,15). Using the fact
that a small difference would have a large chance of being de-
tected, yet was not detected, is a roundabout approach to deter-
mining that there is evidence for treatments being equivalent. But
power is an issue in equivalence tests as in the standard frame-
work, because adequate power is needed to reject the null hy-
pothesis.

Examples of equivalence tests. Hypothesis tests can be viewed
as a subset of confidence interval construction. If testing whether
there is evidence to reject a standard null hypothesis of equal
means, the researcher could determine whether or not the confi-
dence interval includes zero. If not, then there is evidence to reject
the null hypothesis of equal means at the confidence level used to
construct the interval. For a simple equivalence test, the same
confidence interval can be used; the researcher determines
whether the interval includes the predetermined tolerance (11). If
not, then there is evidence to reject the null hypothesis of unequal
means (means more different than the tolerance.) As an example,
suppose that an experiment is performed to compare a new man-
agement technique with a standard technique for controlling pow-
dery mildew of roses. The experimenter, planning to measure per-
cent infection at the end of the experiment, might determine a
prior that a difference of 5 in percent infection is insignificant
from a practical standpoint. If the mean percent infection of 10 rep-
licates of the new technique is 12 and of the standard technique,
9, the observed difference between means is 3. Using a standard
null hypothesis of equal means, the experimenter would construct
a confidence interval around this estimate and determine whether
it includes zero. Suppose the data are approximately normally dis-
tributed, so that an interval based on a t distribution can be used
(2). If the pooled standard deviation is 6.1, then a 95% confidence
interval around the estimated difference is 3 ± 2.1 × 6.1 × 0.45, or
3 ± 5.8, in which 2.1 is the critical t value for 18 degrees of free-
dom (df) and 0.45 = 1 10 1 10/ /+ . This interval includes zero, so a
null hypothesis of equal means is not rejected. To test the
equivalence null hypothesis of different means, the researcher
determines whether any of the confidence interval lies outside the
predetermined tolerance, –5 to 5. The confidence interval extends
above the upper tolerance of 5, so the equivalence null hypothesis
is not rejected either. For this experiment, a larger sample size or
lower variance would be needed to determine conclusively whether
the mean effects of the techniques are different or equivalent at
the 95% confidence level.

A series of possible outcomes of hypothesis tests are illustrated
in Figure 1. In the first example (Fig. 1A), the confidence interval

includes both zero and the upper tolerance; there is so much vari-
ability that the null hypothesis cannot be rejected in either the
standard hypothesis framework or in the equivalence framework.
Note that if the observed difference falls outside the tolerance, it is
not possible to reject the equivalence framework null hypothesis.
In the second example (Fig. 1B), the confidence interval is nar-
rower and does not include zero; the null hypothesis of equal means
can be rejected in the standard hypothesis framework. Next, sup-
pose the observed difference between means does fall within the
tolerance around zero. For the third example, though the observed
difference is near zero, the confidence interval extends beyond the
tolerance; the equivalence test null hypothesis of means more dif-
ferent than the tolerance is not rejected (Fig. 1C). For the same
observed difference with a narrower confidence region that falls
inside the tolerance (Fig. 1D), the equivalence test null hypothesis
of means more different than the tolerance can be rejected. For
this case, there is evidence that the means are equivalent as de-
fined by the tolerance. For the fifth example (Fig. 1E), the confi-
dence interval is so small that both the standard null hypothesis
and the equivalence test null hypothesis are rejected. For this case,
there is evidence that the means are different, but also that their
difference is less than the tolerance. Such an example might arise
if an experiment has very high power or the tolerance is very
wide.

Since interest in equivalence tests has often focused on com-
parisons of levels of pharmaceutical compounds in blood, or bio-
equivalence tests, the emphasis has been on two-sided tests. But,
for many cases in plant pathology, a one-sided test might be more
appropriate. It is not usually considered problematic if yield is
actually higher than, or disease incidence is actually lower than, a
desirable standard. In either case, the results of standard or
equivalence tests can be reported in greater generality by includ-
ing the P value for the observed difference rather than simply
reporting whether or not the null hypothesis is rejected at a par-
ticular confidence level. Statistical computing packages typically
output P values for standard hypothesis tests. The P value for the

Fig. 1. Examples of hypothesis testing scenarios. Brackets indicate the
equivalence tolerance around zero; the shaded region indicates a confidence
interval around the observed difference in treatment means (D). A, The ob-
served difference falls outside the tolerance; neither the null hypothesis of
equal means nor the null hypothesis of a nontrivial difference in means is
rejected. B, The observed difference falls outside the tolerance; the null hy-
pothesis of equal means is rejected, while the null hypothesis of a nontrivial
difference in means is not. C, The observed difference falls within the toler-
ance; neither null hypothesis is rejected. D, The observed difference falls
within the tolerance; the null hypothesis of equal means is not rejected, while
the null hypothesis of a nontrivial difference in means is rejected. E, The
observed difference falls within the tolerance; both the null hypothesis of
equal means and the null hypothesis of a nontrivial difference in means are
rejected.



374  PHYTOPATHOLOGY

upper tolerance of the equivalence test example given above can
be calculated as follows. The difference between the observed
difference in means, 3, and the upper tolerance, 5, is 2. This dif-
ference is scaled by the standard error: 2/(6.1 × 0.45) = 0.73. For a
t distribution with 18 df, 0.73 is at percentile 0.76, giving a P
value of 1 – 0.76 = 0.24. The percentile can be found using a sta-
tistical program, for example, the function pt in S-plus (StatSci,
Seattle), or from a table of the t distribution (2). The null hypothe-
sis of means more different than 5 would not be rejected at the
95% confidence level, as shown previously, but would be rejected
at the 75% confidence level for a one-sided test. Reporting the ac-
tual P value summarizes results for tests at all confidence levels.

Other types of equivalence tests. Several variations exist on
the simple equivalence test described in the example based on an
assumption of normality (1,8,16). Rather than the absolute differ-
ence between treatment means, it may be the proportion that is of
interest. Erickson and McDonald (7) describe a test using a null
hypothesis in which a treatment mean is equal to a proportion of
the standard mean. Erickson and McDonald (7) also report the
sample size, coefficient of variation, and tolerance combinations
required to yield a desired level of power. Hauschke et al. (9) have
suggested a distribution-free procedure based on use of a non-
parametric Mann-Whitney-Wilcoxon test. A response may be bi-
nomial, such as the presence/absence of disease. Dunnett and Gent
(6) have described equivalence tests for the case of binomial sam-
ples. The general idea of constructing a null hypothesis of dif-
ference greater than some tolerance and determining whether there
is evidence of equivalence can, of course, be adapted to tests for
other parameters, as well as to different distributional assumptions.
Because tests of bioequivalence have become a standard type
requested by the U.S. Food and Drug Administration, these tests
are beginning to be included in statistical packages. For example,
the nonparametric statistics package Testimate (SciTech, Chicago)
includes one- and two-sided equivalence tests. Erickson and
McDonald (7) discuss how a series of comparisons with a stan-
dard might be made with an adjustment for the number of tests
such as a Bonferroni’s correction (12). However, when compari-
sons are based on several levels of a continuous treatment, a re-
gression analysis would be more appropriate (10,14).

As Box et al. stated (2), “Significance testing in general has
been a greatly overworked procedure, and in many cases where
significance statements have been made it would have been better
to provide an interval within which the value of the parameter
would be expected to lie.” By expressing the results of many hy-
pothesis tests simultaneously, an interval estimate may be the
most informative product of an experiment. While a researcher
would still be advised to decide upon an acceptable tolerance prior
to experimentation and report the P value for that tolerance, a con-
fidence interval supplies information to allow readers to test their
own a priori tolerance level when evaluating the research results.

To summarize, when a hypothesis test of whether treatments are
equivalent is desired, equivalence tests offer a more appropriate

framework than the standard null hypothesis. By using a null hy-
pothesis of treatment differences, they place the burden of proof
on the experimenter to demonstrate that the treatments are
equivalent.
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