Using Remote Sensing to Detect Land Degradation in Agricultural Lands: A Case Study in Manhattan, KS

Alesha Bergner1, Joel Guess1, Nathan Harrell2, Shelby Richard3, Christopher Warner4

Department of Biological and Agricultural Engineering1, Department of Regional and Community Planning2, Department of Agronomy3, Department of Horticulture and Natural Resources4
Kansas State University

Introduction

Agricultural land degradation is a significant global issue in the 21st century, characterized by the loss of soil productivity due to diminished soil fertility and biodiversity (Maximiliano et al., 2019). A major contributing factor to land degradation is soil erosion, which is dependent upon factors like the slope of the land, soil characteristics, precipitation intensity, and amount of vegetative cover (Montgomery, 2007). Remote sensing techniques can be used to accurately identify land degradation over large spatial areas, to aid in remediation efforts.

Objectives:
- Determine if remote sensing can be used to detect land degradation
- Explore how this data can be used to inform management/restoration practices

Materials and Methods

Study Area:
The study site, shown in Figure 1 below, is located at the KSU Agronomy North Farm. The field is about 60 acres and is currently being used to grow sorghum.

Datasets:
- Sentinel-2 Data: Via Google Earth Engine and Copernicus Open Access Hub
- DEM Data: Provided by the Ciampitti Lab.

Field Survey: A field survey was conducted in mid-September. Three distinct areas were identified: an eroded area with a high slope (Figure 2), a more moderately sloped, healthy area (Figure 4), and a transitional area (Figure 3). Soil data (SOM, pH), management data (N, P, K), and vegetation data (plant biomass) was collected for each site.

Methodology:
- Vegetative Indices: NDVI, SAVI – processed in Google Earth Engine and ArcGIS
- Terrain Indices: TWI – processed in QGIS
- Management Practices and Restoration Assessment: literature review

Vegetative Indices Time Series:
The NDVI (Figure 5) and SAVI (Figure 6) time series plots are shown below. The sorghum planting date is on day 168; Figure 7 below shows the corresponding sorghum growth stages. The healthy and transition areas show very similar time series results, while the eroded area has significantly lower NDVI and SAVI values for the majority of the growing season. The NDVI plot is very similar in shape to the SAVI plot, which shows that interference due to soil reflection is not a significant concern with this study site.

Remote Sensing Results

Slope & TWI:
In Figure 8 below, the map on the right is the slope map, which shows the higher grade slopes as a darker color. The TWI map on the left shows the higher accumulation of water as a lighter color.

Field Data Results

Soil Lab Testing Results:
The results of the lab testing are shown in Table 1 below. The eroded area has lower SOM and K levels, contributing to lower sorghum biomass overall. The healthy and transition areas show very comparable nutrient values, with slightly higher nutrient values in the healthy area.

Table 1: Results of the Soil Lab Tests

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Soil Data</th>
<th>Soil Nutrients</th>
<th>Sorghum Biomass (per 1.625 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eroded</td>
<td>7.0</td>
<td>2.5</td>
<td>1.11</td>
</tr>
<tr>
<td>Transition</td>
<td>6.5</td>
<td>3.2</td>
<td>0.61</td>
</tr>
<tr>
<td>Healthy</td>
<td>6.2</td>
<td>3.5</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Conclusion and Recommendations

Remote sensing is an effective way to identify agricultural land degradation over large spatial areas.
- Data gathered via satellite imagery can be processed using vegetation and/or terrain indices to identify trends in land degradation and locate areas of high risk.
- The field results show that remote sensing can be a good alternative to field testing in areas where testing is impractical or unavailable.

Recommendations:
- Recommendations for management/restoration of degraded cropland includes:
 - Cover Crops: To protect the soil surface and improve water infiltration
 - Plant growth promoting rhizobacteria: To increase stress-tolerance
 - Prairie Strips: To promote biodiversity, protect the soil, and improve infiltration

Reference

Acknowledgements

Dr. Ignacio A. Ciampitti, Professor, Farming Systems
Ms. Kathleen S. Reardon, Multicultural Fellow
Mr. Christopher Brown, Research Assistant in the Crop, Soil, and Environmental Sciences Department
Mr. Druan Morano, Agroecology North Farm Manager