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Abstract

Much research has shown that experts possess superior memory in their domain of expertise. 

This memory benefit has been proposed to be the result of various encoding mechanisms, 

such as chunking and differentiation. Another potential encoding mechanism that is associated 

with memory is event segmentation, which is the process by which people parse continuous 

information into meaningful, discrete units. Previous research has found evidence that 

segmentation, to some extent, is affected by top-down processing. To date, few studies 

have investigated the influence of expertise on segmentation, and questions about expertise, 

segmentation ability, and their impact on memory remain. The goal of the current study was 

to investigate the influence of expertise on segmentation and memory ability for two different 

domains: basketball and Overwatch. Participants with high and low knowledge for basketball and 

with low knowledge for Overwatch viewed and segmented videos at coarse and fine grains, then 

completed memory tests. Differences in segmentation ability and memory were present between 

experts and control novices, specifically for the basketball videos; however, experts’ segmentation 

only predicted memory for activities for which knowledge was lacking. Overall, this research 

suggests that experts’ superior memory is not due to their segmentation ability and contributes to a 

growing body of literature showing evidence supporting conceptual effects on segmentation.
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Decades of work on domain knowledge (semantic knowledge for a particular field) have 

shown that experts possess superior memory for information in their expert field. This 

memory benefit has been explained by various encoding mechanisms, including chunking 

(Chase & Simon, 1973), differentiation, and unitization (Herzmann & Curran, 2011). 

Recently, another encoding mechanism has been shown to influence memory for event 

information: event segmentation (Bailey et al., 2013; Flores, Bailey, Eisenberg, & Zacks, 

2017; Newberry & Bailey, 2019; Sargent et al., 2013; Zacks, Speer, Vettel, & Jacoby, 2006).

Event segmentation is an encoding mechanism in which people parse continuous event 

information into meaningful, discrete units (e.g., Zacks, Speer, Swallow, Braver, & 

Reynolds, 2007). How people segment an event influences how they perceive, comprehend, 

and remember events (for review, see Radvansky & Zacks, 2014). This process may be 

influenced by both perceptual and conceptual factors, which suggests prior knowledge may 

affect how someone perceives and segments an event, which in turn may influence memory. 

While some studies suggest that domain knowledge influences segmentation (e.g., experts 

identify fewer boundaries: Bläsing, 2015; experts agree more on coarse boundaries: Levine, 

Hirsh-Pasek, Pace, & Michnick Golinkoff, 2017; Zacks & Tversky, 2003), several questions 

remain: To what extent do people agree on how activities are segmented within and outside 

of their knowledge domain? Do high-domain-knowledge individuals organize events at 

encoding differently from low-domain-knowledge individuals? If so, does this explain the 

observed memory benefit?

Thus, the current study investigated the influence of domain knowledge on segmentation 

and memory of basketball and Overwatch games. These activities were chosen for their 

popularity as well as for testing the generalizability of knowledge effects on segmentation 

across different activities. To begin, theories of event cognition, event segmentation 

theory and the event horizon model, are discussed, followed by the relationship between 

segmentation and knowledge. Afterwards, the literature on expertise is described and 

integrated with event segmentation, and general predictions about the current study are 

presented.

Event segmentation theory

According to event segmentation theory (EST; Kurby & Zacks, 2008; Zacks et al., 2007), 

events are experienced continuously, but perception of those events is not. Rather, people use 

perceptual (e.g., motion, body position; Newtson, Enquist, & Bois, 1977; Zacks, 2004) and 

conceptual (e.g., knowledge, goals; Levine et al., 2017; Radvansky & Zacks, 2014; Zacks, 

2004) information to construct mental representations of ongoing activity, such that the 

current event representation is held in working memory until a change is perceived, at which 

point a new representation is constructed to reflect the new event (e.g., Zacks et al., 2007). 

This updating process is thought to occur when there is a mismatch between expectation and 

reality (Rescorla & Wagner, 1972) that is driven by prediction failures (Zacks et al., 2007), a 

lack of coherence (Gernsbacher, 1991), or changes in context (Clewett & Davachi, 2017).

EST posits that people generate predictions for upcoming actions, and the accuracy of 

these predictions is monitored. For example, after a basketball player makes a shot, it is 
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likely that a player from the opposite team will inbound the ball and dribble it to the other 

end of the court. However, when the player with the ball reaches the opposite end of the 

court, the event becomes less predictable. Will the player pass the ball or take a shot? The 

points in time when predictions fail, or when people perceive a change and update their 

event representation, are called event boundaries. Research suggests that within an event, 

predictability is high, but across event boundaries, predictability is low (e.g., Reynolds, 

Zacks, & Braver, 2007; Zacks, Kurby, Eisenberg, & Haroutunian, 2011). Interestingly, 

people reliably parse events at consistent boundaries (e.g., Bower, Black, & Turner, 1979; 

Hard, Tversky, & Lang, 2006b; Newtson, 1973; Speer, Swallow, & Zacks, 2003; Zacks, 

Tversky, & Iyer, 2001a), even up to 1 year later (test—retest; Speer et al., 2003).

Research using a unitization paradigm, in which people denote boundaries while watching 

events unfold, suggests that events are hierarchically structured (e.g., Newtson, 1973; 

Sargent et al., 2013; Zacks, Tversky, et al., 2001a) such that larger, coarse-grain events are 

made up of smaller, fine-grain events (Tversky, Zacks, & Martin, 2008; Zacks & Swallow, 

2007; Zacks, Tversky, et al., 2001a). For instance, a college basketball game may consist 

of the first half and the second half. However, the first half could be further divided into 

smaller subevents, such as a series of plays executed by each team. Previous work has found 

individual differences in the extent to which people perceive alignment between fine and 

coarse-grain events (e.g., Hard, Lozano, & Tversky, 2006a; Kurby & Zacks, 2011; Sargent 

et al., 2013; Zacks et al., 2001b), and evidence suggests that hierarchical encoding may be 

important for memory (Kurby & Zacks, 2011).

Importantly, the event horizon model (Radvansky, 2012), which subsumes event 

segmentation theory (e.g., Radvansky & Zacks, 2014, 2017), explains that event boundaries 

reduce retroactive interference by separating information into separate event models, which 

leads to better overall memory for the activity. Indeed, evidence suggests that the extent to 

which people demonstrate normative segmentation (i.e., the degree to which they agree on 

locations of event boundaries and have better hierarchical alignment) predicts how well they 

later remember the activity (Bailey et al., 2013; Flores et al., 2017; Kurby & Zacks, 2011; 

McGatlin, Newberry, & Bailey, 2018; Newberry & Bailey, 2019; Sargent et al., 2013; Zacks 

et al., 2006).

What influences segmentation behavior?

Two types of factors presumably influence segmentation: perceptual and conceptual (e.g., 

Zacks, 2004; Zacks et al., 2007). Much of the research on segmentation has focused on 

the influence of perceptual cues. For example, perceived event boundaries tend to align 

with changes in body position (Newtson et al., 1977), spatial location (Magliano, Miller, 

& Zwaan, 2001), object motion (Zacks et al., 2001b), and perceptual change (Hard et al., 

2006b). For example, perceptual change in basketball may involve changes occurring around 

the ball (e.g., passes, shots; Huff et al., 2017). Further, regions of the brain that process 

motion (e.g., extrastriate motion complex) show increased activity at event boundaries 

(Speer et al., 2003; Zacks et al. 2001b), suggesting that motion is a strong predictor of event 

boundary perception.
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In contrast, research investigating effects of conceptual factors on segmentation is mixed: 

Some studies suggest that conceptual factors have no influence on segmentation (e.g., Hard 

et al., 2006b; Huff et al., 2017; Zacks, Kumar, Abrams, & Metha, 2009), whereas others 

suggest that they do (context: Loschky, Larson, Magliano, & Smith, 2015; Newberry & 

Bailey, 2019; familiarity: McGatlin et al., 2018; Smith, Newberry & Bailey, 2020; Zacks & 

Tversky, 2003; perspective: Newberry & Bailey, 2019; schema and scripts: Bartlett, 1932; 

McGatlin et al., 2018; Schank & Abelson, 1977; goals: Baldwin, Baird, Saylor & Clark; 

2001; Wilder, 1978a, 1978b; Zacks, 2004). For example. Wilder (1978a, 1978b) showed that 

participants segmented more often when an actor’s goals were unclear as compared with 

when the activity was goal-directed and predictable, indicating that goals affect how people 

perceive an activity. Similarly, Zacks (2004) found that movement predicted segmentation 

less when events were goal-directed as opposed to random. Though altogether these results 

suggest that when goal-related knowledge is present, people rely less on perceptual cues 

while perceiving an event, the effects have been moderate to small.

A stronger manipulation: Expertise

Recent research on knowledge and segmentation has moved toward using a stronger 

manipulation of prior knowledge: expertise (e.g., Bläsing, 2015; Levine et al., 2017). The 

use of expertise to evaluate knowledge effects on segmentation fits well with EST and 

the event horizon model because ample evidence suggests that having prior knowledge 

about an activity improves prediction when viewing similar activities (e.g., Ambrosini et 

al., 2013; Kanakogi & Itakura, 2011; Möller, Zimmer, & Aschersleben, 2015; Sommerville, 

Woodward, & Needham, 2005), and research has shown that people with prior knowledge or 

experience for an activity also have better memory for that activity (e.g., basketball: Allard, 

Graham, & Parsalu, 1980; dance: Allard & Starkes, 1991; chess: Chase & Simon, 1973; 

baseball: Chiesi, Spilich, & Voss, 1979; bridge: Engle & Bukstel, 1978; maps: Gilhooly, 

Wood, Kinnear, & Green, 1988; music: Meinz & Salthouse, 1998). Given that prediction 

is posited to be the mechanism upon which segmentation operates (e.g., Zacks, Braver, et 

al., 2001b; Zacks, Kurby, et al., 2011) and event boundary identification is important for 

memory (e.g., Radvansky & Zacks, 2014), this would suggest that segmentation behavior 

and memory may differ when one has prior knowledge or experience with an activity 

compared with no knowledge or experience.

Such a presumption has been supported in the expertise literature focusing on other 

mechanisms involved in perceptual learning (Goldstone, 1998): differentiation (ability to 

separate initially fused categories) and unitization (ability to integrate individual parts into 

functional wholes). Evidence suggests that experts better judge when to engage in each 

process (Herzmann & Curran, 2011). When encoding dynamic activity, experts may be 

better at identifying conceptual units of information and distinguishing between fine details 

for events within their domain (e.g., Piras, Lobietti, & Squatrito, 2010). For example, a 

basketball expert may be able to identify the steps involved in a pick and roll (i.e., better 

differentiation) whereas a novice might perceive these steps as one action or not at all, 

or the basketball expert may perceive that same pick and roll as part of a larger play, 

whereas the novice may perceive it as its own event (i.e., better unitization). If experts 

identify meaningful event boundaries based on a shared knowledgebase that improves their 
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prediction accuracy, one might expect experts to show more normative segmentation ability, 

in terms of higher agreement on event boundary locations and/or better alignment of coarse 

and fine boundaries.1

Two studies have investigated effects of expertise on segmentation behavior. In the dance 

domain. Bläsing (2015) investigated effects of expertise and movement-specific familiarity 

on the segmentation of a dance phrase. Dancers and nondancers watched and segmented 

videos of a dancer completing a choreographed phrase. Bläsing (2015) found that dancers 

segmented less often compared with nondancers, suggesting that expertise reduces the 

number of perceived boundaries for events within one’s area of expertise. In another 

experiment. Bläsing evaluated the causal role of knowledge on segmentation by having 

intermediate dancers segment a dance phrase, then learn and practice the motor movements, 

and segment the phrase again. Like the first experiment, increased familiarity and motor 

experience with the dance phrase caused dancers to segment less often. Similarly, Levine 

et al. (2017) found that figure skating experts identified more similar coarse-grain events 

compared with novices when segmenting an Olympic figure skating routine. These studies 

have provided initial evidence that expertise influences segmentation behavior; however, 

some limitations remain. One limitation is that these studies only evaluated segmentation 

at one grain size. They either provided no specific grain size instruction (Bläsing, 2015) or 

they only instructed participants to segment at the coarse-grain level (Levine et al., 2017). 

By including both coarse and fine-grained segmentation in one study, we can evaluate the 

hierarchical alignment of small events into larger events, and whether domain knowledge 

increases this alignment. Critically, neither study investigated experts’ segmentation ability 

in a domain outside their expertise. Furthermore, neither study measured memory, so effects 

of domain knowledge and segmentation on memory have not yet been evaluated.

Given that normative segmentation is associated with better memory for events (Bailey et 

al., 2013; Flores et al., 2017; Zacks et al., 2006), it is possible that the superior memory of 

experts may be due to more normative segmentation of the activity within their knowledge 

domain. If segmentation is a process that is enhanced by accumulation of prior knowledge 

and experience, one might expect the memory benefit to only be present for the more 

knowledgeable activity. However, prior work has shown that people use prior knowledge to 

fill in the gaps at retrieval (e.g., Hasher & Griffin, 1978). Thus, knowledge could override 

effects of segmentation on memory and some evidence suggests that segmentation and 

knowledge affect memory independently (Sargent et al., 2013). If this is true, one might 

expect segmentation to predict memory only for the novice activity, as novices would not 

have knowledge to rely on at retrieval, other than the event representations they built while 

encoding the activity for the first time.

Thus, the current study expanded upon Bläsing (2015) and Levine et al. (2017) by 

investigating segmentation behavior and its relationship to memory performance in people 

with high and low knowledge (for simplicity, we heretofore refer to them as “experts” 

and “control novices,” respectively), across two different domains: basketball (sport) and 

1Segmentation frequency and agreement are different. Someone may segment less often, but still identify several boundaries identified 
by the group, and thus have high agreement.
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Overwatch (video game). Basketball is a limited-contact, team sport that involves players 

working together to achieve a common goal (i.e., shooting the ball through the hoop to 

earn points). Overwatch, though also team-based, is a multiplayer first-person shooter video 

game developed by Blizzard Entertainment, Inc.©. Basketball and Overwatch were chosen 

as the activities in this study for two reasons. First, the inclusion of two activities makes the 

current study unique in that experts were tested on activities both within and outside their 

field of expertise. Second, basketball and Overwatch are different from dance and figure 

skating (e.g., Ericsson & Smith, 1991), which allows the research questions to be extended 

from single-actor to team-based activities.

Hypotheses

If expertise influences segmentation behavior, then experts should segment less often at 

the coarse grain (segmentation frequency; Bläsing 2015) and agree more on boundary 

locations (segmentation agreement; Levine et al., 2017) for activities within their expert 

field. Alternatively, experts may segment more often, particularly at the fine grain, if 

they engage in perceptual processes such as differentiation to better distinguish between 

finer subevents (Piras et al., 2010). We also hypothesized that experts would show greater 

alignment of coarse and fine boundaries for activities within their expert area (hierarchical 
alignment). However, if perceptual cues have stronger influence on segmentation than do 

conceptual factors (Hard et al., 2006b; Huff et al., 2017; Zacks, Speer, & Reynolds, 2009), 

then experts and control novices may demonstrate similar segmentation behavior because 

perceptual cues (motion) are readily available to both groups. Further, we hypothesized that 

experts would show better memory performance for activities within their field of expertise, 

based on the significant body of expertise research (for review, see Ericsson & Smith, 1991; 

Furley & Wood, 2016).

Prior work suggests that normative segmentation is associated with better memory for events 

(e.g., Bailey et al., 2013). Thus, we hypothesized that segmentation ability would predict 

memory performance, regardless of activity or domain knowledge, such that those with 

better segmentation agreement and/or hierarchical alignment would have better memory. 

However, we also predicted that the relationship between segmentation and memory would 

be stronger in the expert activity if domain knowledge improves memory by enhancing 

segmentation. Alternatively, some work suggests that general knowledge may influence 

memory independently of segmentation (Sargent et al., 2013), such that people may rely 

on knowledge (e.g., schemas, scripts, expectations), when it is available, to help them 

remember the activity, as opposed to how they encode (segment) that particular instance of 

that activity. In this case, knowledge may override the relationship between segmentation 

and memory, such that experts who segment well and those who segment poorly remember 

similar amounts of information.

The current study

The purpose of this experiment was to investigate the relationship between domain 

knowledge, segmentation ability, and memory for events within and outside of one’s 

knowledge area. Previous work has observed effects of expertise on the segmentation 
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of dance phrases (Bläsing, 2015) and a figure skating routine (Levine et al., 2017); 

however, these studies only evaluated experts’ segmentation behavior for events within 

their field of expertise. Additionally, the hierarchical alignment of different segmentation 

grains and its effects on memory have yet to be evaluated in this context. In the current 

experiment, basketball and Overwatch experts and control novices viewed and segmented 

videos of basketball and Overwatch. Due to recruitment issues, only a very small sample of 

Overwatch experts participated in the study (see Method section). The current experiment 

ultimately focused on a within-subjects comparison of basketball experts’ segmentation and 

memory for basketball (area of expertise) and for Overwatch (area outside of expertise) 

videos as well as a between-subjects comparison of segmentation and memory for basketball 

activities between basketball experts and control novices.

Method

Participants

A total of 165 participants (see Table 1) were recruited from Kansas State University 

(KSU). Participants were recruited from psychology courses and from other organizations 

across campus. To increase recruitment of Overwatch experts, the study was advertised 

through the KSU eSports Club, which promotes professional competition and spectatorship 

for Overwatch videogame players and fans. Recruitment yielded 35 basketball experts 

(Overwatch novices), 12 Overwatch experts (three of which were basketball novices, nine 

of which had “intermediate” or expert basketball scores), 61 control novices (novices in 

both activities), two uncategorized, and 55 “intermediate” individuals who scored above the 

novice, but below the expert thresholds in both areas (see Knowledge Surveys, below).

Predictions for the current experiment were based on an “expert” versus “control novice” 

comparison. Only individuals who met the criteria for expert or control novice were 

included in the main analyses. Participants who scored in the “intermediate” range for either 

activity were only included in the exploratory analyses where knowledge was treated as a 

continuous variable (see Supplemental Materials). Unfortunately, recruitment of Overwatch 

experts proved difficult, even after targeting Overwatch players from eSports for several 

months. Therefore, due to the low sample size, the main analyses of the current experiment 

also exclude this group (though they are included in the exploratory analyses in the 

Supplemental Materials). Additionally, eight participants’ data (two basketball experts, two 

control novices, two intermediates, and two uncategorized) were lost due to technological 

issues. Participants were compensated with course credit or entered into a gift card raffle, 

depending on from where they were recruited.

Because participants were not randomly assigned to groups, all participants completed 

a series of cognitive measures (processing speed, vocabulary, semantic knowledge, and 

working memory; see Supplemental Materials for a full description) to assess individual 

differences that may have otherwise explained possible segmentation and memory effects. 

Bayes factors were used to test for evidence of the null hypothesis (i.e., no difference 

between groups; see Table 2). Bayes factors of less than 1 suggested substantial evidence for 

the null (e.g., Wetzels & Wagenmakers, 2012), suggesting no differences between groups on 

these cognitive abilities.
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Materials

Knowledge survey 

Knowledge surveys were used to identify experts and novices in basketball and Overwatch. 

The basketball portion of the survey was a modified version of Feller, Schwan, Wiemer, 

and Magliano (2018; adapted from French & Thomas, 1987), such that it was reduced to 

23 questions to match the Overwatch survey, which was developed for use in the current 

study. Both the basketball and Overwatch surveys included 23 questions each about general 

information regarding each activity, as well as seven self-report familiarity and expertise 

questions. All questions had five answer options, with the fifth option (e) always stating “I 

don’t know.” Experts were identified with scores ranging from 17 to 23, while novices were 

identified with scores ranging from 0 to 7 (based on percentage cutoffs from previous work 

using knowledge surveys; Rawson & van Overschelde, 2008). Both surveys are included in 

the Appendix.

Videos

Five videos were used in this experiment (one practice; four experimental). The practice 

video depicted a man using Legos to build a ship (155 s). Two of the experimental videos 

were college basketball games; specifically, Memphis vs. UCLA (153 s; three cuts) and 

Montana vs. Weber State (130 s; nine cuts; Feller et al., 2018). The other two experimental 

videos were Overwatch tournament matches; specifically, Houston vs. Boston (144 s; 11 

cuts) and London vs. Florida (135 s; seven cuts). All of the experimental videos were shorter 

clips of continuous game play (maintaining action continuity) taken from longer videos to 

minimize the influence of cuts on perception, though research suggests that most cuts go 

unrecognized and do not influence segmentation (Magliano & Zacks, 2011; T. J. Smith & 

Henderson, 2008). Additionally, evidence from the event cognition literature suggests that 

viewpoint changes also do not influence the events that are perceived (Swallow, Kemp, 

& Simsek, 2018). The Overwatch videos were chosen because they were professionally 

recorded games played by Overwatch experts. Participants viewed all of the experimental 

videos twice (once per segmentation grain).

Unitization task

The unitization task (Newtson, 1973) was used as an overt measure of participants’ 

perception of event boundaries in the videos. While watching the videos, participants were 

asked to press the space bar each time “one meaningful unit of activity ends and another 

begins.” Participants were instructed to identify larger (coarse) or smaller (fine) units of 

meaningful activity by pressing the space bar (e.g., Sargent et al., 2013). Participants were 

shaped on this task using a practice video (see Zacks et al., 2009). The shaping procedure 

required participants to identify at least 3 larger (coarser) units or 6 smaller (finer) units 

in order to move on to the experimental trials. If this threshold was not met, participants 

received feedback stating that other people typically identify more units; however, they were 

not given explicit examples of how the activities in the video could be segmented. After 

receiving this message, participants repeated the shaping procedure until they passed the 

threshold.
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Event memory measures

Recognition

Recognition memory was assessed using a two-alternative forced-choice test. There were 

20 trials per video, each containing one target and one distractor image, simultaneously 

presented side-by-side. Target images always came from the videos that participants 

watched, and distractor images always came from portions of the same video that 

participants did not see. Presentation order of the image pairs was the same for each 

participant. Participants received 1 point for each correctly identified image (up to 20 total 

points). Participants’ scores were reported as proportion correct.

Order memory 2

Order memory was assessed using a two-alternative forced-choice test, based on the measure 

used by Dubrow and Davachi (2014). For each video, participants were presented with eight 

image pairs on the computer. All the images came from the videos participants watched. 

A prompt appeared on screen stating “more recent?”, and participants were instructed to 

choose the image depicting the more recent action.

Design and procedure

Expertise was a between-subjects variable. Participants (NBasketballExperts = 33, 

(NcontrolNovices = 59) Were grouped based on their scores from the knowledge survey 

about basketball and Overwatch (novice ≤ 7; expert ≥ 17; see Table 3; see Supplemental 

Materials for analyses that include expertise as a continuous variable, including participants 

with intermediate knowledge). To be clear, everyone in the basketball expert group 

were also novices in Overwatch, separate from those in the control group, who were 

identified as control novices in both activities. Activity (basketball & Overwatch) was 

treated as within subjects, such that all participants viewed and segmented videos of 

both activities. Participants segmented each video twice: once per grain (coarse vs. fine). 

Video and distractor task were counterbalanced across participants. Segmentation grain was 

counterbalanced, such that participants segmented all the videos at one grain, then after 

completing the last block of tasks for the last video, they segmented all the videos again (in 

the same order of presentation) at the other grain.

All participants entered the lab in small groups of three or four and were seated at a 

computer. They first signed an informed consent form and then completed the knowledge 

survey. After, they were given a demographics form and instructed not to fill it out until 

the experimental program on the computer told them to do so. Each participant was then 

presented with the practice video, which shaped each participant’s segmentation behavior 

to whichever segmentation grain order each participant was assigned (i.e., at least three 

button presses for coarse grain; at least six for fine grain). After completing the shaping 

procedure, the experimental trials began. The experimental trials consisted of four blocks. 

In each block, the experimental video was presented, and participants were instructed to 

2Cronbach’s alpha = .22 indicating that the internal consistency of the order memory task was extremely poor. For these reasons, the 
memory analyses only include recognition data.
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“press the space bar any time they felt a meaningful unit of activity ended and a new one 

began.” After each video, participants completed a distractor task (i.e., one of the individual 

differences measures listed above), and then moved on to the recognition and order memory 

tasks. Memory task order was not counterbalanced because the viewing of target images 

in the order memory task could have aided participants on the recognition task. After the 

order memory task for the last video of the last block, participants were shown the practice 

video again and trained on the segmentation task for the alternative grain. Participants then 

resegmented each video at this new grain in the same order in which the videos were 

originally presented. At the end of the experiment, participants completed the working 

memory task. Finally, they were debriefed, thanked, and compensated for their time.

Results

Data preparation

Recruitment issues focused the analyses of the current experiment to basketball experts 

(N = 33) and control novices (N = 59; see Participants section, above). Individuals with 

intermediate knowledge scores and Overwatch experts were included in supplemental 

exploratory analyses treating knowledge as a continuous variable (see Supplemental 

Materials). Otherwise, no outliers were identified.

Approach

The main analyses were conducted using generalized multilevel modeling techniques. These 

techniques accounted for nonnormal error distributions (e.g., Poisson for count data, logistic 

for binomial) of the dependent measures, and error variance associated with random effects. 

Additionally, experimental version (based on activity order and grain order) was not a 

significant predictor (all ps > .09). We first evaluated encoding processes (segmentation 

frequency, agreement, and hierarchical alignment) and then evaluated retrieval processes 

(recognition). Then, we assessed the extent to which encoding predicted retrieval. Note that 

we also ran analyses on the full data set (N = 157) with knowledge treated as a continuous 

predictor and replicated the general pattern of results (see Supplemental Materials).

Does domain knowledge affect event encoding?

Unitization—Two measures of unitization were used to assess how well people identified 

and agreed on the locations of boundaries.

Segmentation frequency—Segmentation frequency was scored as the total number of 

button presses (i.e., total number of perceived event boundaries) per video. Bläsing (2015) 

found that experts identified fewer event boundaries compared with novices; therefore, we 

predicted a within-subjects difference such that basketball experts would segment less often, 

regardless of grain, during basketball videos, compared with Overwatch videos. We also 

expected to find a between-subjects difference such that basketball experts would segment 

less often compared with the control novices, for the basketball videos. Finally, we expected 

participants to segment less often at the coarse grain compared with the fine grain, regardless 

of expert knowledge and activity.
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To investigate these hypotheses, a generalized Poisson multilevel model was used to predict 

segmentation frequency from the full factorial of the fixed effects of group, activity, 

and segmentation grain, and the random effects of participant and video (see Fig. 1). A 

significant main effect of grain was present (z = −49.63, p < .001) such that participants 

identified fewer coarse boundaries (M = 19.51, SE = 1.80, 95% CI [15.94, 23.10]) than 

fine boundaries (M = 39.59, SE = 2.76, 95% CI [34.11, 45.07]), regardless of knowledge 

or activity. The main effects of group and activity were not significant, indicating that 

there were no baseline differences in the number of perceived events between groups 

or between activities; however, these fixed effects did interact with grain. A significant 

two-way interaction between group and grain was present (z = −11.11, p < .001) such that 

control novices identified fewer fine boundaries (M = 34.95, SE = 3.22, 95% CI [28.50, 

41.39]), compared with basketball experts (M = 47.60, SE = 4.82, 95% CI [37.78, 57.42]), 

regardless of activity, but no group differences were present at the coarse grain.

These results were qualified by a significant three-way interaction between group, activity, 

and segmentation grain (z = −3.17, p = .002), such that participants identified significantly 

more fine boundaries than coarse boundaries for the basketball videos, compared with 

Overwatch, and this difference was greater for basketball experts (basketball coarse: M = 

19.95, SE = 2.42, 95% CI [15.03, 24.88]; basketball fine: M = 53.20, SE = 5.55, 95% 

CI [41.89, 64.51]; Overwatch coarse: M = 17.61, SE = 2.23, 95% CI [13.07, 22.14]; 

Overwatch fine: M = 42.00, SE = 5.73, 95% CI [30.34, 53.66]), compared with control 

novices (basketball coarse: M = 23.09, SE = 3.56, 95% CI [15.95, 30.23]; basketball fine: M 
= 37.43, SE = 3.07, 95% CI [31.28, 43.58]; Overwatch coarse: M = 17.55, SE = 2.50, 95% 

CI [12.55, 22.56]; Overwatch fine: M = 32.17, SE = 4.00, 95% CI [24.15, 40.20]). No other 

effects were present (all ps > .05).

These results did not support the hypothesis that experts would segment less often compared 

with control novices, particularly for activities in their field of expertise. Instead, results 

suggest that experts and control novices identified a similar number of coarse boundaries, 

regardless of activity, and that experts identified more fine boundaries for activities within 

their field of expertise. This result fits with previous work showing that experts are better 

able to differentiate between fine details for events within their domain (e.g., Piras et al., 

2010).

Segmentation agreement—Segmentation agreement refers to how well people agree 

with others on the locations of perceived event boundaries. Higher segmentation agreement 

corresponds to more normative segmentation. To calculate agreement, each participant’s 

segmentation data was smoothed by fitting a Gaussian kernel density function around each 

event boundary (button press), for each video. Each frame of each video received a value 

ranging from 0 to 1, indicating the probability or likelihood that the frame was an event 

boundary. A bandwidth of 25 (i.e., 25 frames per second) was used to correspond to 

1-second time bins, such that frames closer to where the participant identified an event 

boundary received a larger value, compared with frames farther away. Next, the probability 

associated with each frame or button press was averaged across participants to create 

normative event boundaries. Finally, each participant’s segmentation probability at each 

frame was correlated with the normative boundaries.3 Based on Levine et al. (2017), we 

Newberry et al. Page 11

Mem Cognit. Author manuscript; available in PMC 2021 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predicted a significant between-subjects effect such that basketball experts’ segmentation 

agreement would be higher than control novices for basketball videos, regardless of grain. 

However, we also expected to observe a within-subjects effect such that basketball experts’ 

segmentation agreement would be higher for basketball videos compared with Overwatch 

videos, regardless of grain.

To evaluate these hypotheses, a generalized linear multilevel model was used to predict 

segmentation agreement from the full factorial of the fixed effects of group, activity, 

and segmentation grain, and the random effects of participant and video (see Fig. 2). A 

significant main effect of grain was present (t = −4.05, p < .001) such that agreement of 

fine boundaries (M = .32, SE = .15, 95% CI [.28, .34]) was higher than agreement of coarse 

boundaries (M = .26, SE = .01, 95% CI [.24, .28]). However, this effect was qualified by a 

significant three-way interaction between group, activity, and grain (t = 2.29, p = .02). All 

participants showed higher agreement for the basketball videos (M = .35, SE = .01, 95% 

CI [.32, .38]) compared with the Overwatch videos (M = .22, SE = .01, 95% CI [.20, .24]), 

but experts (M = .36, SE = .02, 95% CI [.30, .41]) showed a significantly higher agreement 

compared with the control novices (M = .29, SE = .02, 95% CI [.25, .32]), only at the coarse 

grain. The within-subjects effect (d = .96) was larger than the between-subjects effect (d = 

.42). No other effects were significant (all ps > .05).

These results partially support our hypothesis in that experts showed better segmentation 

agreement, compared with control novices, for activities within their expert domain, but 

only at the coarse grain. However, recall that experts did not identify significantly more 

coarse boundaries than control novices (see Fig. 1). Altogether, this suggests that experts’ 

better coarse segmentation agreement was not due to identifying more coarse boundaries, 

but rather identifying more similar coarse boundaries likely due to their shared knowledge 

for basketball.

Hierarchical alignment—Hierarchical alignment is the extent to which each identified 

coarse boundary temporally corresponds with an identified fine boundary (Kurby & Zacks, 

2011; Sargent et al., 2013; Zacks et al., 2001a). It is a measure of segmentation organization, 

or the degree to which each participant’s coarse events comprise groups of related fine 

events (Sargent et al., 2013). One way of measuring hierarchical alignment is by calculating 

enclosure, which refers to the degree to which groups of related fine events are contained 

within coarse events (Hard, Recchia, & Tversky, 2011; Sargent et al., 2013). Coarse 

boundaries were scored based on whether they followed or preceded the closest fine 

boundary, for each video. Each participant’s enclosure score was then the proportion of 

coarse boundaries that followed (rather than preceded) the closest fine boundary, accounting 

for expected enclosure due to chance. Higher values indicate better alignment. We predicted 

a between-subjects effect such that basketball experts, compared with control novices, would 

exhibit better alignment of coarse and fine boundaries for basketball videos, compared 

with Overwatch. We also predicted a within-subjects effect such that basketball experts 

3Each participant received one correlation score for each of the eight videos. This process was repeated three times, using everyone, 
domain experts, and one’s own group as the different comparison groups for generating the normative boundaries. The main analyses 
presented used everyone as the comparison (normative) group to increase power.
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themselves would exhibit better alignment of coarse and fine boundaries for basketball 

videos, compared with Overwatch, since they themselves were novices in Overwatch.

A generalized linear multilevel model was used to predict enclosure from the fixed effects 

of group, activity, and their interaction, and the random effects of participant and video. 

A significant main effect of group (t = 2.07, p = .04) and a marginally significant main 

effect of activity (t = 3.27, p = .07) were present; however, these effects were qualified by 

a significant interaction between group and activity (t = 2.03, p = .04). Basketball experts 

exhibited better enclosure for basketball (M = .57, SE = .03, 95% CI [.50, .63]), compared 

with Overwatch (M = .47, SE = .03, 95% CI [.41, .52]), whereas control novices (basketball: 

M = .46, SE = .02,95% CI [.42, .51]; Overwatch: M = .43, SE = .02, 95% CI [.38, .47]), did 

not differ in their enclosure ability across the two activities (see Fig. 3). This result supports 

our hypothesis in that experts showed better encoding organization of activities within their 

expert domain.

Does expertise affect memory for dynamic activities?

The majority of work done with experts has shown that experts possess better memory for 

information within their field of expertise (for review, see Ericsson & Smith, 1991; Vicente 

& Wang, 1998). Based on this, we hypothesized to find a within-subjects effect such that 

basketball experts would exhibit better recognition memory for basketball videos compared 

with Overwatch videos. We also hypothesized to find a Group × Activity interaction such 

that experts would remember more than control novices for the basketball videos, but they 

would not differ in their recognition memory performance for the Overwatch videos.

Recognition—A generalized logistic multilevel model was used to predict recognition 

performance from the fixed effects of group, activity, and their interaction, and the random 

effects of participant and video. A significant interaction between group and activity was 

present (z = 5.05, p < .001) such that basketball experts exhibited significantly better 

recognition performance for basketball (M = .68, SE = .02, 95% CI [.63, .72]), compared 

with Overwatch (M = .59, SE = .02, 95% CI [.55, .63]), whereas control novices (basketball: 

M = .56, SE = .01, 95% CI [.53, .58]; Overwatch: M = .59, SE = .01, 95% CI [.56, .62]), 

did not differ in their recognition performance across activities (see Fig. 4). No other effects 

were present (all ps > .05). This result supports our expertise hypothesis and replicates the 

benefit effect of expertise on memory for information in one’s expert domain.

Does experts’ better segmentation ability explain the memory benefits?

Segmentation agreement is associated with memory for events (e.g., Bailey et al., 2013; 

Flores et al., 2017; Sargent et ah, 2013); thus, we hypothesized participants with high 

segmentation ability would also have better memory, regardless of activity. Additionally, 

we predicted that segmentation agreement would interact with group such that basketball 

experts would show an even stronger relationship between agreement and memory as 

compared with the control novices for basketball videos. This prediction is based on the 

idea that knowledge would improve segmentation agreement, which would in turn improve 

memory.
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Segmentation agreement—A generalized Poisson multilevel model was used to predict 

recognition performance from the full factorial of the fixed effects of segmentation 

agreement,4 group, and activity and the random effects of participant and video. A 

significant main effect of segmentation agreement (z = 1.96, p = .05) indicated that 

recognition was indeed better for people with higher segmentation agreement, replicating 

prior work (Bailey et al., 2013; Flores et al., 2017; Sargent et al., 2013; Zacks et al., 2006). 

However, the Segmentation Agreement × Group interaction was not significant, indicating 

that the effect of segmentation on memory was not stronger for experts.

A significant two-way interaction between knowledge and activity was present (z = −2.97, p 
= .003), such that basketball experts’ recognition was better for basketball videos, compared 

with Overwatch but control novices’ recognition did not differ by activity. A significant two­

way interaction between coarse segmentation agreement and activity (z = −2.23, p = .03) 

indicated that segmentation agreement more strongly predicted recognition for Overwatch 

than for basketball. However, these two-way interactions were qualified by a three-way 

interaction between segmentation agreement, group, and activity was marginally significant 

(z = 1.90, p = .06). Segmentation agreement only predicted recognition performance for 

experts in the Overwatch videos (r = .38; see Fig. 5). No other effects were present (all ps > 

.05).

These results partially supported our hypothesis in that segmentation agreement was 

associated with better memory; however, this relationship was not stronger overall 

for experts. Experts’ segmentation agreement did not explain their improved memory 

performance in their expert domain. Rather experts’ segmentation agreement only predicted 

their memory performance for the unfamiliar activity, suggesting that segmentation may 

benefit memory more when people need to rely on encoding efficiency and not semantic 

knowledge to help remember an activity.

Discussion

The current study replicated and extended the literature on domain knowledge and event 

cognition by evaluating whether domain knowledge influences segmentation and memory 

for events within and outside of one’s knowledge field. Overall, basketball experts’ 

segmentation and memory ability for activities within their area of expertise differed from 

that of the control novices (between-groups comparison) and also differed from their own 

segmentation and memory ability for the activity outside their area of expertise (within­

subjects comparison). Importantly, however, experts’ superior memory was not a product 

of their more normative segmentation ability, suggesting that effects of knowledge and 

segmentation may influence memory independently. Explanations for these findings are 

outlined below.

4We used coarse segmentation agreement here, but fine segmentation agreement produced the same pattern of results.
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Encoding differences

Boundary identification

Previous work evaluating influences of expertise and familiarity on segmentation has found 

that fewer subevents are identified as people gain knowledge for, or familiarity with, an 

activity (e.g., Bläsing, 2015; Hard et al., 2006b; Levine et al., 2017). The current study 

did not replicate these findings. At the coarse level, basketball experts did not differ from 

control novices on the number of perceived event boundaries. However, at the fine level, 

experts identified more event boundaries, particularly for the activity in which they had more 

knowledge. Neither Bläsing (2015) nor Levine et al. (2017) distinguished between coarse 

and fine boundary identification.

One possibility is that experts are better at differentiating between information in their 

expertise area (Herzmann & Curran, 2011). Evaluation of experts’ superior differentiation 

abilities has been restricted to object categorization and feature processing, as opposed to 

perception of dynamic events. Based on the evidence in the current study, experts may 

engage in differentiation processing when identifying fine subevents for dynamic activities 

within their field of expertise. Future studies should further evaluate the influence of 

knowledge on coarse and fine segmentation to better understand how experts perceive event 

structure within their domain.

Boundary agreement

Levine et al. (2017) found that figure-skating experts agreed on the major subevents within 

the figure-skating routine. The current study replicated this effect at the coarse-grain level. 

Interestingly, this higher agreement among experts at the coarse grain was not due to 

their identifying more coarse-grain boundaries, because they identified a similar number of 

coarse boundaries as the control novices. Of the coarse boundaries identified by participants, 

experts identified more similar boundaries for basketball, whereas control novices displayed 

more idiosyncratic coarse boundary identification (lower agreement). Experts may use 

their similar knowledge base to guide their segmentation. Although not explicitly tested 

in this study, experts may demonstrate greater agreement in their domain because they are 

better able to track event coherence or experience fewer prediction errors because they 

can anticipate a wider range of outcomes. It is also possible that experts may be more 

precise in their timing when identifying boundaries, compared with novices who may be 

slower to notice important changes. Motor perception research suggests that motor expertise 

modulates action anticipation (basketball: Aglioti, Cesari, Romani, & Urgesi, 2008; music: 

Wöllner & Cañal-Bruland, 2010), such that observers are better at anticipating actions of 

others when they themselves have experience performing the same actions.

Interestingly, fine segmentation agreement for experts and control novices did not differ, 

despite experts identifying more fine boundaries for basketball. It is possible that 

identification of fine boundaries may be driven by changes in perceptual cues (e.g., motion: 

when one basketball player passed the ball to another). If experts and novices both rely 

on motion to guide their segmentation of fine events, they could have identified similar 

boundaries.
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Boundary organization

Previous research has found no influence of knowledge on hierarchical alignment 

differences (Sargent et al., 2013). The current study, however, found experts showed 

better enclosure of coarse and fine boundaries for basketball. Similarly, Feller et al. 

(2018) found that basketball experts were better able to perceive structure in basketball 

games than novices, conceptually replicating the encoding organization effects found with 

basketball experts in the current study. These studies suggest knowledge influences encoding 

organization of boundaries; however, future research should continue to investigate effects of 

event structure on segmentation.

Altogether, experts and control novices differed on most of the dependent measures of 

encoding, suggesting that experts encode dynamic information within their knowledge field 

differently than information outside their field. These findings support EST, in that domain 

knowledge influenced segmentation ability. Importantly, the current findings may not have 

been present had grain size (coarse and fine) not been included. This manipulation allowed 

us to investigate the levels of encoding or online event processing on which knowledge may 

have an effect, which is important for revising EST or translating these effects to applied 

scenarios (e.g., education).

Retrieval differences

The current study replicated decades of research demonstrating experts’ superior memory 

for information within their knowledge field. Basketball experts exhibited more accurate 

recognition performance compared with control novices, particularly for basketball videos, 

suggesting that knowledge facilitated memory.

Does encoding predict retrieval? It depends

A major goal of the current study was to evaluate the extent to which experts’ segmentation 

ability predicted memory within their knowledge field. We found that experts had more 

knowledge for basketball, and this knowledge was associated with better segmentation 

ability when encoding parts of a basketball game. The between-subjects effect of knowledge 

on coarse segmentation was moderate (d = .42) and the within-subjects effect was large 

(d = .96), thus showing comparable effect sizes to prior work showing moderate effects 

of knowledge (e.g., d = .33; Newberry & Bailey, 2019) and large effects of expertise 

(e.g., η2 = .26; Levine et al., 2017). Further, segmentation ability predicted recognition in 

the current study, which replicated previous work showing better segmentation agreement 

was related to better memory (e.g., Bailey et al., 2013; Flores et al., 2017; Sargent 

et al., 2013) and generally supports the fourth principle of the event horizon model. 

However, this relationship was only present when experts lacked knowledge for the activity, 

suggesting that experts’ superior memory in their knowledge domain was not due to better 

segmentation.

One explanation is that segmentation helps organize and integrate incoming information 

during encoding, but semantic knowledge structures (when available) may influence 

retrieval more so than episodic memory representations created during segmentation. 
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However, when knowledge for the activity does not exist or is impoverished, people have 

no other option than to rely upon those episodic memory representations to guide retrieval. 

The current results are not the first to show such an effect. Smith et al. (2020) manipulated 

participants’ familiarity with various everyday activities and found that segmentation ability 

only predicted memory accuracy in unfamiliar activities for both young and older adults. 

This may suggest that both segmentation and knowledge influence memory, but they do so 

independently of one another. We want to be cautious when making such claims, though, 

because we only found this effect in our expert group (segmentation predicted memory in 

the Overwatch videos) and not in our novice group that lacked knowledge for both types of 

activity. Additionally, segmentation is not the only encoding mechanism that might benefit 

memory. Basketball experts in the current study could have engaged in other encoding 

mechanisms (e.g., semantic chunking or elaboration) to guide their encoding and retrieval 

of the basketball events. Future research should attempt to tease apart experts’ and novices’ 

reliance on schema and event structure when remembering information from events within 

and outside of one’s knowledge area.

Another important note is that the measure of memory in the current study was recognition. 

Previous work investigating the relationship between segmentation and memory has used 

recall measures (e.g., Flores et al., 2017; Sargent et al., 2013). It is possible that effects 

of knowledge on segmentation and memory may be more prominent through recall. 

Recognition is easier than recall because it provides relevant cues and allows people to 

rely on retrieval and feelings of familiarity (e.g., Graesser & Nakamura, 1982; Schwartz, 

2018). Recall, on the other hand, does not use (or uses limited) cues, and requires that 

the person retrieve the information rather than identify the information. Here, the memory 

effects may not have been large enough to see a benefit of knowledge on segmentation 

predicting memory due to the availability of cues. We did not use recall in the current study, 

because control novices could be disadvantaged by not knowing the terminology to describe 

what they had viewed.

Limitations

The current study was subject to some limitations. First, recruitment of Overwatch experts 

was difficult, even after targeting Overwatch players. Part of this difficulty may have been 

due to unfortunate timing with the release of a new, more popular video game, Fortnite 

(Ranker, 2018). Future work may have more success by recruiting videogame experts 

online through sites such as Amazon Mechanical Turk. Moreover, future work should focus 

on replicating these expertise effects in additional domains of expertise. Previous studies 

focused on dance and figure skating, which share several characteristics such as learning 

choreographed movements and often rely on the individual’s skills. For the current study, we 

selected activities that involved a different skill set; however, both activities were team-based 

and involved multiple players. Thus, given the limited number of domains tested to date, 

future work should focus on a wider array of domains.

That being said, it should be noted that the merit of the current work remains significant. 

Both between-subjects and within-subjects comparisons were conducted, which sets this 

work apart from previous work (e.g., Bläsing, 2015; Levine et al., 2017), and importantly, 
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the control novices did not show the same segmentation benefit as the experts for basketball, 

suggesting that the effects shown were due to differences in knowledge, not the stimuli.

Second, event memory was only assessed using one memory task. Unfortunately, the order 

memory results were not interpretable due to extremely low reliability (alpha = .22). Further, 

recall was not assessed because of possible differences in vocabulary that could have put 

control novices at a disadvantage when trying to describe the events of basketball and 

Overwatch. However, given that recall may be more sensitive to influences of knowledge 

(e.g., Anderson & Pichert, 1978; Bransford & Johnson, 1972), future studies ought to 

consider including a recall measure despite the vocabulary limitation.

Conclusions

Ultimately, support for the Event Horizon Model and EST were found, suggesting that 

knowledge aids memory and that knowledge influences segmentation ability. The current 

study found that expertise did influence event segmentation ability, but experts’ superior 

memory for events within their field of expertise was not due to better segmentation ability. 

Evidence was present for both encoding and retrieval differences between experts and 

control novices; however, preliminary evidence suggests that segmentation and knowledge 

appear to influence memory independently of one another.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Number of boundaries identified for each activity, at each grain, by experts and control 

novices. Error bars indicate standard error of the mean. * is significant .001
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Fig. 2. 
Segmentation agreement for each activity, at each grain, by experts and control novices. 

Error bars indicate standard error of the mean. * is significant .05
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Fig. 3. 
Enclosure for each activity, by experts and control novices. Similar to temporal distance, 

scores farther from zero are better. Error bars indicate standard error of the mean. * is 

significant .05
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Fig. 4. 
Recognition performance for each activity, by experts and control novices. Error bars 

indicate standard error of the mean. *is significant .001
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Fig. 5. 
Coarse segmentation agreement predicts recognition performance. Colored areas indicate 

confidence of the fit of the line. Shaded areas indicate confidence of the line fit (95%)
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Table 1

Participant characteristics (N = 165)

Group N % Female Mage in years (SD)

Basketball experts 35 51 18.66 (.68)

Control novices 61 90 18.82 (1.37)

Intermediates 55 73 18.82 (1.38)

Overwatch experts 12 0 18.75 (1.14)

Uncategorized 2 – –
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Table 3

Knowledge scores by expertise group

Basketball experts Controls (novices)

Overwatch 1.29 (.38) 1.34 (.28)

Basketball 20.06 (.27) 4.51 (.29)

Note. Standard error in parentheses. Novice ≤ 7; Expert ≥ 17
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