Gerontology

Gerontology 2014;60:346-356 DOI: 10.1159/000356699 Received: June 29, 2013 Accepted: October 7, 2013 Published online: February 27, 2014

Does Strategy Training Reduce Age-Related Deficits in Working Memory?

Heather R. Bailey^a John Dunlosky^b Christopher Hertzog^c

^aDepartment of Psychology, Washington University in St. Louis, St. Louis, Mo., ^bDepartment of Psychology, Kent State University, Kent, Ohio, and ^cSchool of Psychology, Georgia Institute of Technology, Atlanta, Ga., USA

Key Words

Working memory \cdot Strategy use \cdot Aging \cdot Training \cdot Transfer effects

Abstract

Background: Older adults typically perform worse on measures of working memory (WM) than do young adults; however, age-related differences in WM performance might be reduced if older adults use effective encoding strategies. **Ob**jective: The purpose of the current experiment was to evaluate WM performance after training individuals to use effective encoding strategies. Methods: Participants in the training group (older adults: n = 39; young adults: n = 41) were taught about various verbal encoding strategies and their differential effectiveness and were trained to use interactive imagery and sentence generation on a list-learning task. Participants in the control group (older: n = 37; young: n = 38) completed an equally engaging filler task. All participants completed a pre- and post-training reading span task, which included self-reported strategy use, as well as two transfer tasks that differed in the affordance to use the trained strategies - a paired-associate recall task and the self-ordered pointing task. *Results:* Both young and older adults were able to use the target strategies on the WM task and showed gains in WM performance after training. The age-related WM deficit was not greatly affected, however, and the training gains did not transfer to the other cognitive tasks. In fact, participants attempted to adapt the trained strategies for a paired-associate recall task, but the increased strategy use

KARGER

© 2014 S. Karger AG, Basel 0304-324X/14/0604-0346\$39.50/0

E-Mail karger@karger.com www.karger.com/ger did not benefit their performance. **Conclusions:** Strategy training can boost WM performance, and its benefits appear to arise from strategy-specific effects and not from domain-general gains in cognitive ability. © 2014 S. Karger AG, Basel

Introduction

Working memory (WM) is a limited capacity system in which information is simultaneously maintained and manipulated. Older adults typically perform worse on measures of WM than do young adults; however, agerelated differences in WM performance might be reduced if older adults use effective encoding strategies [1]. The ability to process information in WM is highly indicative of other higher-order cognitive abilities such as fluid reasoning and reading comprehension [2, 3]. The importance of WM processing for supporting other cognitive abilities has been demonstrated in children with attention-deficit/hyperactivity disorder [4], college students [5], patient populations with compromised brain function [6], and cognitively healthy older adults [7, 8]. Typically, WM is measured by complex span tasks, which involve a storage component and a concomitant processing component. One widely used complex span task is the reading span (RSPAN) task. In a common version of this task [9], participants are instructed to determine the accuracy of a sentence and then commit an independent but simultaneously presented item (e.g. a word or letter) to

Heather Bailey Department of Psychology One Brookings Drive, Campus Box 1125 Washington University, Saint Louis, MO 63130 (USA) E-Mail hroth@artsci.wustl.edu memory. Following a varying number of sentences, participants are prompted to recall the to-be-remembered items in serial order. WM performance can be scored as the highest amount of items that an individual successfully recalled or as the proportion of correctly recalled items across trials. In either case, individuals differ widely in their performance on these tasks, indicating variability in WM span. Those persons who remember longer series of words are often referred to as *high spans*, and those who remember shorter series are referred to as *low spans*.

Why does WM capacity differ amongst individuals, and why does it decline with age? Individual and age-related differences in WM performance partly arise from differences in functional integrity of brain regions critical for storage, maintenance and retrieval of information [10]. Age-related changes in brain integrity can result in slowing of information-processing speed [11] or in the ability to inhibit no-longer-relevant or task-irrelevant information from WM [7]. Individual and age-related differences in WM performance are also associated with the ability to employ effective encoding strategies on WM tasks [12, 13]. From a theoretical perspective, encoding can influence WM performance because elaborative encoding strategies can boost recall of verbal materials that serve as the memoranda for WM tasks [14]. A sizeable portion of individuals - even low spans - spontaneously use effective encoding strategies on some WM span trials [1, 15–17], but they do not use effective strategies on all trials. Thus, from an empirical perspective, individual differences in how often people use effective strategies across trials is positively related to performance on WM tasks [13]. The reasons for this pattern are not entirely clear, but it does suggest that adults can improve their WM performance if they use more effective strategies on a greater proportion of WM trials.

Although spontaneous use of effective strategies in WM tasks accounts for a significant proportion of variance (individual differences) in WM performance, it accounts for only a small portion of the age-related variance [1, 18]. Bailey et al. [1] had young and older adults complete verbal WM span tasks and then report which encoding strategies they used on each trial. Older adults reported using effective encoding strategies (e.g. using mental imagery) on a similar proportion of trials as did the young adults, and differences in recall in these trials were somewhat smaller between young and older adults. Importantly, older adults used effective strategies on only about one third of the span task trials and used a less effective strategy (rote repetition) or no strategy in the majority of trials [see also 18]. Put differently, older adults perform more like young adults when they use effective strategies to encode information on WM span tasks, but they perform disproportionately worse than young adults on the trials in which less effective encoding strategies are used. The pattern of effects in Bailey et al. [1] raises the following questions: could older adults benefit from using effective strategies more often on a span task, and how much could improving the use of effective strategies reduce age differences in WM performance?

Towards answering these questions, the main goal of the current experiment was to evaluate whether strategy training improves WM performance in older adults. Strategy training is one instance of a broader approach to training that can also be referred to as process-specific training - i.e. training individuals to improve their implementation of specific cognitive process that can improve cognitive performance on tasks that afford its use. For instance, training older adults the method of loci involves training a specific process (e.g. mental imagery) that can improve performance on tasks that afford imagery (e.g. learning concrete words) but would benefit performance little – if any – on tasks that do not afford imagery (e.g. learning abstract concepts). Such an approach can be contrasted with domain-general training, which often provides task practice that targets general cognitive processes and mechanisms that promise to promote domaingeneral gains in performance across many tasks. Although many intervention studies use domain-general WM training (including simply providing extensive WM task practice) to evaluate how WM can be improved, only 1 other study (described below) has explicitly examined whether strategy training influences WM performance in older adults.

We view the distinction between strategy training and domain-general WM training as a critical one. Strategy training involves teaching techniques to help individuals more effectively encode, maintain and recall information that can be effective for a WM span task. In contrast, domain-general WM interventions seek to use task practice to improve target processes such as attention and inhibition to help individuals increase their functional WM capacity (e.g. through learning to ignore distracting information [19]). Domain-general WM interventions are often referred to as WM training paradigms, but they typically involve practice with multiple tasks that theoretically engage WM processes, cover multiple modalities and require frequent memory updating (e.g. complex span tasks, updating tasks, N-back tasks, etc.; for a review see [20]). Overall, this type of WM practice has proven fairly successful in improving span performance in the practiced task context [21–23] and, in some cases, in improving performance in unpracticed WM transfer tasks [22]. For a review of WM training, see [24]; for an opposing view see [25]. However, these WM studies typically do not train specific strategic processes that can help people to remember the target span list, whereas studies that incorporate strategy training do exactly that.

In the current study, we used a strategy-training approach - training adults to use normatively effective encoding strategies such as interactive imagery and sentence generation. We refer to these strategies as normatively effective strategies because memory performance is higher when these strategies are used during encoding compared to when less elaborative strategies or rote rehearsal are used [for reviews, see 14, 26]. Critically, we did not explicitly train strategy use in the WM task context itself. Instead, we provided general training on how to use encoding strategies, and then later introduced trainees to a WM task that afforded an opportunity to use the trained strategies. Although spontaneous strategy use at encoding influences recall performance on WM tasks [13], we may find that strategy training does not improve overall WM performance in older adults for at least two reasons. First, individuals may not perceive the strategy training as being relevant to the WM task, and therefore may not employ the trained strategies in that task. Second, the trained strategies might be difficult for older adults to implement in the WM task context. WM span tasks are fast paced and place substantial demands on cognitive control processes [19], so perhaps some people (and in particular older adults) will not have enough time or resources available to implement newly learned strategies. It may be the case that only people with higher WM capacity benefit from strategy training [12, 13, 27]. If so, age-related differences in WM span could even increase after strategy training [28].

Despite these possibilities, our main hypothesis was that training effective encoding processes would improve WM span performance for older adults by increasing the likelihood of effective strategy use. First, strategy training has been used extensively in episodic memory tasks and has been successful in improving memory performance in older adults [for review, see 29]. Second, manipulations targeting strategy use in WM tasks, including instructions to use strategies [30] and explicit WM strategy training [31], have also successfully improved WM performance in younger adults. Finally, strategy training has also been effective for populations with reduced or impaired WM capacity such as young children [32], children with reading disabilities [33] and patients with mild traumatic brain injury [34].

To our knowledge, Carretti et al. [35] reported the only study that involved training encoding strategies to improve WM performance in older adults. Their young and older adults completed the interactive imagery training regimen devised by McNamara and Scott [31]. Training consisted of three sessions that took approximately 30-60 min each. During each training session, participants practiced using interactive imagery to encode four lists of words and then rated the quality of their images following recall. Transfer of training was assessed using the categorization WM span task [36]. Performance of participants on the WM task significantly improved from pre- to posttraining tests, and improvements were comparable for both age groups. However, Carretti et al. [35] did not directly measure strategy use in the WM task, so it is unclear whether their training benefits arose specifically from increased use of effective strategies or from improved implementation of strategies, or whether they were generated by some other unknown variables activated by the training.

The current study extended and further evaluated the finding that strategy training improves WM performance. The training procedures were implemented to help older adults use elaborative encoding strategies more frequently and more effectively. We trained participants to use more than one effective encoding strategy rather than just training them to use interactive imagery as in Carretti et al. [35]. Given that some individuals prefer to use a visual strategy and others prefer a verbal strategy [37, 38], we trained all individuals to use both interactive imagery and sentence generation in an episodic memory task context - free recall of word lists. In addition to practicing the strategies, participants also learned about the various verbal encoding strategies and their differential effectiveness. Recent evidence has demonstrated that people incorrectly believe that relatively ineffective strategies such as rote repetition promote learning [39], which contributes to the age-related deficit in WM [40]. Thus, we predicted that instruction about the efficacy of verbal encoding strategies in conjunction with strategy training on word lists would improve strategy use. The key issues were as follows: (1) whether people would generalize this kind of strategy training in the WM task context, (2) whether the strategies would influence WM performance and (3) whether the trained strategies would reduce agerelated deficits in WM performance.

Given that we trained participants to use multiple strategies, it was important to evaluate which strategies

Table 1. I	Demographics
------------	--------------

Group	Subjects, n	Age, years	Education, years	Self-reported health	Vocabulary	Speed
Young						
Control	38	20.6 (4.3)	12.7 (1.1)	4.3 (0.72)	0.40 (0.13)	18.9 (5.0)
Training	41	21.6 (6.5)	12.3 (0.8)	4.0 (0.84)	0.42 (0.14)	20.3 (4.1)
p value Older		0.255	0.951	0.116	0.548	0.431
Control	39	71.7 (7.7)	14.5 (2.2)	3.9 (0.73)	0.66 (0.15)	15.8 (9.4)
Training	39	68.9 (6.9)	14.9 (2.4)	3.7 (0.86)	0.62 (0.16)	14.9 (7.5)
p value		0.057	0.426	0.223	0.307	0.484

Education: average years of education. Self-reported health: scores ranged from 1 (poor) to 5 (excellent). Vocabulary: average proportion of correct on Shipley vocabulary test. Speed: average number of items correctly completed on the Letter Comparison test. Values in parentheses are SD.

they used. As in Bailey et al. [1], we directly evaluated whether participants implemented the trained strategies by collecting a strategy report immediately after each WM span trial (for evidence supporting the validity and nonreactivity of this measure, see [13]). This approach allowed us to address the question of whether trained encoding strategies were generalized to the WM task.

Finally, we evaluated whether the trained encoding strategies would also transfer to a task that affords their use (a paired-associate cued-recall task) in contrast to a task that in theory should not benefit from encoding strategies (the self-ordered pointing task, SOPT). The SOPT is a measure of executive function that involves choosing a different abstract shape on each trial. Thus, we did not expect verbal encoding strategies to be effective for maintaining and updating abstract shapes. If strategy training increases strategy use as well as strategy effectiveness that generalizes to other task contexts, then participants in the training group should outperform those in the control group on the paired-associate task. However, we did not expect training group differences on the SOPT because its materials are not amenable to organizational encoding strategies.

Methods

Participants

A total of 76 older adults were recruited through a newspaper advertisement in northeast Ohio, and 79 young adults recruited from introductory psychology courses at Kent State University participated to complete a course requirement. The older adults completed a phone interview and were excluded from the current study if they had a history of dementia, stroke, other neurological disorders, or the use of medications for memory problems. Participants were randomly assigned to one of two groups (strategy

Strategy Training, Working Memory and Aging

training or control). Of the 76 older adults, 39 (24 female) were assigned to the training group and 37 (31 female) to the control group. Of the 79 young adults, 41 (31 female) were assigned to the training group and 38 (22 female) to the control group. Demographic variables for each group are presented in table 1. Typical age differences were observed: young adults performed better on the letter comparison task, whereas older adults performed better on a vocabulary test [41]. Each older adult was paid USD 20 and each young adult received course credit for their participation.

Materials

RSPAN Task. We used a modified version of the RSPAN task from Kane et al. [9]. In this task, participants read a sentence aloud (e.g. 'Mr. Owens left the lawnmower in the lemon.'), reported whether it was logical or illogical, and then read an unrelated, tobe-remembered word aloud (e.g. eagle). Once the word was read aloud, the next sentence appeared on screen. After presentation of the final sentence-word pair of each trial, participants were instructed to recall the target words in serial order. This task consisted of 16 experimenter-paced trials that ranged from three to six sentence-word pairs. The words and the order of set sizes were randomized, and the same order was used for all participants. Following recall on each trial, participants completed a strategy report. We used the set-by-set strategy reports created by Dunlosky and Kane [13], in which the participant indicated how they attempted to remember the words on that particular trial by choosing one of the six strategy options: reading, repetition, sentence generation, imagery, grouping, or a different strategy. Note that participants could report not using any strategy by choosing the 'reading' option (i.e. they read the to-be-remembered word according to the instructions but did not use any further encoding strategy). The validity of these reports has been empirically demonstrated, and the reports have negligible reactive effects on WM span performance [1, 13, 18].

Participants completed two versions of each task, and the order of administration (version A vs. version B) was counterbalanced across participants' pre- and post-training tests. Performance was computed using partial-credit unit scoring [for details, see 42]. That is, performance on each trial was scored as the proportion of correctly recalled items (e.g. trial 1: 3/4 = 0.75, trial 2: 3/3 = 1 and

trial 3: 4/6 = 0.67), and overall performance was expressed as the mean proportion of correctly recalled items [e.g. (0.75 + 1 + 0.67)/3 = 0.81].

Strategy-Training Task. Participants in the training group worked individually to complete a self-paced strategy-training procedure. In the first part of this procedure, they learned about how human memory can be affected by the use of different strategies. They learned about the different strategies afforded by verbal materials (e.g. rote repetition, imagery and sentence generation) and about the differential effectiveness of these strategies. In the next part, they learned how to use interactive imagery and sentence generation properly when trying to memorize a list of words. That is, they were given a list of words (e.g. pony, dress, coins, tulip) and were given an example of how to implement interactive imagery (e.g. 'you could picture a *pony* wearing a big dress made only out of coins who is trying to balance all of its weight on one tulip.'). In the final part, they practiced using these strategies on a list-learning task in which words were presented one at a time on screen for 2 s apiece with a 1-second intertrial interval. They were encouraged to use the strategies to help them remember the words. After the final word on each trial, participants attempted to recall the words in serial order. The practice trials began with sets of only 3 words and gradually increased to sets of 6 words. Following the practice trials with 6 words, participants received more practice trials, but the length of the word lists were presented in a random order. Participants completed a total of 18 practice trials. After completing the training procedure, the participants were told that they could use the effective encoding strategies to help improve their memory performance on the remaining tasks. Note that the task used during the training procedure was not a WM span task because it did not involve a secondary task (e.g. solving equations or reading sentences), but the training task was similar to the storage component of the RSPAN task (learning and recalling words in serial order). On average, the strategy-training procedure took 20.37 min for older adults (range = 12.01-38.84 min) and 12.72 min for young adults (range = 9.41-21.08 min).

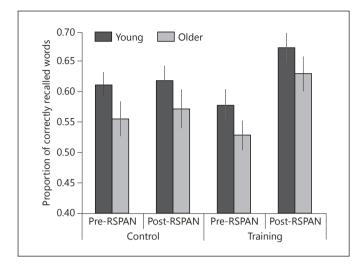
Filler Task. Participants in the control group completed an equally engaging task. This task involved learning to classify birds. More specifically, the pictures of 6 exemplars (e.g. song sparrow, house sparrow, white-crowned sparrow) from 12 bird families (e.g. sparrow, swallow, vireo) were presented individually. Each bird was presented with its family name (e.g. a house sparrow was presented with the label 'sparrow'), and the order of birds for presentation was randomized anew for each participant. During the study, the participant could study each bird as long as she or he wanted, and then after studying each bird, the participant predicted the likelihood that they would correctly classify the bird on the upcoming test. After studying all birds, 48 novel birds (4 birds from each of the 12 families) were presented without labels, and participants were asked to classify each one by selecting its family name (all 12 family names were listed below the to-be-classified bird). After the classification of novel exemplars, the previously studied birds were presented for classification (details of this procedure are presented in [43]). Moreover, although the task may involve associative processing (attempting to associate pictures of bird exemplars and their family name while learning each bird category), the processes would unlikely promote the generation of associative mediators that were the focus of our strategy training. Thus, this task was chosen because it is engaging, it requires approximately as much time as the strategy training to complete, and

it requires a different kind of associative processing than demanded by the use of trained mnemonics.

Transfer Tasks. We assessed whether the trained strategies benefited WM performance as well as other cognitive tasks. In particular, participants completed a paired-associate cued-recall test that afforded the use of the trained strategies and the SOPT that did not afford their use. Given time limitations of this single-session intervention, we did not administer the transfer tasks prior to training. Nevertheless, given random assignment (which resulted in groups of participants with closely matched demographics), any post-training differences between groups are interpretable.

Paired-Associate Cued-Recall Test. Participants studied 40 unrelated word pairs (e.g. doctor-lobster) presented on the computer screen at a 5-second rate. During the recall phase, the cue (e.g. doctor) was presented and participants typed in the correct response (e.g. lobster). Following recall, participants were presented with the list again, and completed a strategy report in which they recounted which specific strategy (passive reading, rote repetition, interactive imagery, sentence generation, or 'other') they had used to study each word pair [44].

Self-Ordered Pointing Task. Participants also completed the SOPT, a measure of executive functioning [45]. In this task, 16 abstract shapes were presented on the computer screen. Participants were instructed to choose 1 shape, and after they had made their choice the next screen appeared. This screen contained the same 16 shapes but they were rearranged in a different order. Participants again were instructed to choose 1 shape and to try not to choose that same shape again. No time limit was used. Trials in which a previously selected shape was reselected were scored as perseveration errors; performance was scored as the proportion of errors committed (e.g. total number of errors divided by 16).


Procedure

After signing the consent form, participants completed a demographics questionnaire and the pre-test RSPAN task. Next, participants in the training group completed the strategy training, whereas participants in the control group completed the filler task. Then all participants completed the post-test RSPAN task, the paired-associates cued-recall task and the SOPT. Finally, participants in the training group completed the strategy questionnaire.

Results

Each variable was screened for values more than 3.5 standard deviations (SD) different from the sample mean, and no value met this criterion. All variables were approximately normally distributed (skewness < |1.5|, kurtosis < |1.5|). In addition to statistical significance tests, we also report Cohen's [46] d as an estimate of the effect size of differences in means, scaled as SD unit differences. Typical benchmarks are d \leq 0.2 for a small effect, d approximately 0.5 for a medium-sized effect, and d \geq 0.8 for a large effect.

First, we evaluated pre-training RSPAN performance for young and older adults in the control and training groups, and then we compared their post-training RSPAN

Fig. 1. RSPAN performance for young and older adults in the control and training groups. Error bars reflect ±1 standard error of the means.

Table 2. Proportion of trials that young and older adults in the control and training groups reported using effective strategies on the pre- and post-training RSPAN tasks

Age group	Control		Training		
	pre-RSPAN	post-RSPAN	pre-RSPAN	post-RSPAN	
Young adults Older adults				0.59 (0.06) 0.65 (0.06)	
Standard errors of the means are reported in parentheses.					

performance. We then examined whether participants implemented the trained strategies on the post-training RSPAN task and, if so, whether the strategy lesson and practice increased the use of effective strategies as well as their effectiveness. Finally, we reported performance on the transfer tasks.

Reading Span

Span Performance. Prior to strategy training (fig. 1), young adults significantly outperformed older adults on the RSPAN task ($t_{155} = 2.07$, p = 0.02). To evaluate the effects of strategy training, we conducted a 2 (age: young vs. old) × 2 (group: control vs. training) × 2 (test: pre- vs. post-training) mixed ANOVA on RSPAN performance. The main effect of test was significant ($F_{1, 151} = 42.69$, p < 0.001, $\eta^2 = 0.28$), but neither the main effect of age ($F_{1, 151} = 3.48$, p = 0.064, $\eta^2 = 0.02$) nor the main effect of group

(F < 1) were significant. As evident from inspecting figure 1, the group \times test interaction was highly significant $(F_{1,151} = 26.82, p < 0.001, \eta^2 = 0.18)$, indicating that span performance improved significantly more from pre- to post-test for participants in the training group than in the control group. The age \times test, age \times group, and age \times group \times test interactions were not significant (Fs < 1.0, ps > 0.56). Consistent with outcomes from the omnibus ANOVA, both the young and older adults in the training group showed medium training effect sizes (d = 0.54 and 0.60, respectively), whereas the improvements made by the young and older adult controls were near zero (d =0.04 and 0.08, respectively). These results suggest that both young and older adults benefitted from the strategy training. As a consequence, the post-test reduction in age-related differences was rather modest; that is, the small age-related difference in WM span performance at pre-test (d = 0.33) was not eliminated at post-test (d = 0.25), as shown in figure 1.

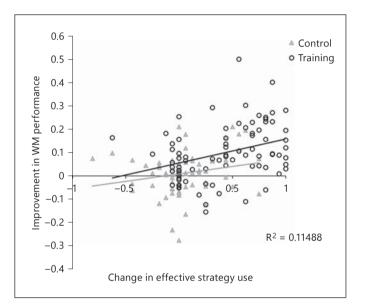
Effective Strategy Rates. Did participants in the training group use the encoding strategies they learned during the training phase and apply them on the post-training RSPAN task? We evaluated whether participants reported using effective strategies on a higher proportion of trials on the post-training than on the pre-training RSPAN task. To do so, we first computed the mean proportion of span task trials that each participant reported imagery and sentence generation (which are the normatively effective strategies), and then we averaged across all participants (see table 2). On the pre-training RSPAN task, participants reported using effective encoding strategies on approximately 30% of the RSPAN trials, which is similar to the pattern of reported strategy use from previous studies [1, 13, 15].

A 2 (age: young vs. older) \times 2 (group: control vs. training) \times 2 (test: pre- vs. post-training) mixed ANOVA revealed significant main effects of group ($F_{1, 151} = 3.92$, p < 0.048, $\eta^2 = 0.03$) and test (F_{1, 151} = 72.97, p < 0.001, $\eta^2 =$ 0.48). The main effect of age was not significant ($F_{1,151} =$ 2.15, p = 0.15, $\eta^2 = 0.01$), and this lack of significant agerelated differences in effective strategy use replicated the results in Bailey et al. [1]. The group x test interaction was also highly significant ($F_{1,151} = 47.31$, p < 0.001, $\eta^2 = 0.31$), indicating that strategy use on the RSPAN task increased significantly more from pre- to post-training for participants in the training group than in the control group. This training-related increase in effective strategy use was significant for both the young adults ($t_{40} = 5.68$, p < 0.001, d = 0.54) and older adults ($t_{38} = 4.96$, p < 0.001, d = 0.78). In contrast, strategy use did not change for young and older adults in the control group (ts < 1.3, ps > 0.11). The age \times test, age \times group, and age \times group \times test interactions were not significant (Fs < 1.0, ps > 0.35).

We also evaluated individual differences in WM performance as a function of the degree of increase in effective strategy use. Increases in effective strategy rates (the change in proportion of effective strategies used from preto post-training) significantly correlated with the change in WM performance for the entire sample (r = 0.43, p < 0.001; young: r = 0.51, p < 0.001; older: r = 0.35, p = 0.001; see fig. 2). This correlation was numerically stronger in the training group (r = 0.34, p = 0.001) than in the control group (r = 0.20, p = 0.04), but this difference in correlations was not statistically significant using a normal deviate test after Fisher's r–z transformation (z = 0.92, p =0.18). Thus, increased strategy use in either condition was related to improved WM performance.

Strategy Efficacy. Participants in the training group reported using the target strategies more often on the post-training RSPAN task, but did they also use them more effectively? To answer this question, we assessed performance on trials in which participants reported using the effective strategies (interactive imagery and sentence generation) on the pre- and post-training RSPAN tasks. These strategy efficacy measures are reported separately for young and older adults in the control and training groups in table 3.

We conducted a 2 (age: young vs. old) × 2 (group: control vs. training) × 2 (test: pre- vs. post-training) ANOVA on WM performance for trials on which effective strategies were reported. We observed a significant main effect of age ($F_{1,88} = 7.52$, p = 0.007, $\eta^2 = 0.09$). Further, the main effect of test was significant ($F_{1,88} = 9.75$, p = 0.002, $\eta^2 = 0.11$), with participants using strategies more effectively at the post-training test. However, the main effect of group was not significant, and neither were the age × group, age × test, group × test, and age × group × test interactions.


Transfer Effects

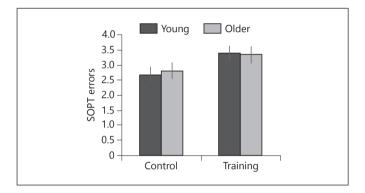
Strategy training on freely recalled lists of words improved WM span performance. Are these training gains due to more efficient strategy use or to improved domaingeneral executive control processes? To answer this question, we compared performance on two transfer tasks – one that affords the use of strategies similar to the trained strategies (paired associate recall) and one that does not afford the use of similar strategies but assesses executive control processes (SOPT). We first present analyses on the paired-associate recall performance and then on the SOPT performance.

Table 3. Performance on trials that young and older adults in thecontrol and training groups reported using effective strategies onthe pre- and post-training RSPAN tasks

Age group	Control		Training		
	pre-RSPAN	post-RSPAN	pre-RSPAN	post-RSPAN	
Young adults Older adults			0.70 (0.04) 0.52 (0.04)		

Standard errors of the means are reported in parentheses.

Fig. 2. Scatter plot for the change in effective strategy use and improvement in WM performance (from pre- to post-training) for the control and training groups.


Paired-Associate Cued-Recall. Paired-associate recall is presented in table 4. A 2 (age: young vs. old) × 2 (group: control vs. training) ANOVA showed a significant main effect of age ($F_{1, 108} = 18.78$, p < 0.001, $\eta^2 = 0.17$). However, the main effect of group was not significant nor was the age × group interaction (Fs < 1). Although strategy training did not affect paired-associate recall in the young adults, we observed a trend towards higher recall for the trained older adults ($t_{55} = 1.42$, p = 0.08, d = 0.38).

Given that we had collected strategy reports for this task, we examined whether participants in the training group attempted to apply the trained strategies. We first computed the mean proportion of trials that each participant reported imagery and sentence generation, and then we averaged across participants. The average proportion

Table 4. Paired-associate recall performance on all trials, proportion of effective strategies reported, and paired-associate recall performance on trials that effective strategies were reported for young and older adults in the control and training groups following training (n = 112)

Age group	Paired-associat	Paired-associate recall		Proportion of effective strategies reported		Paired-associate recall given effective strategies used	
	control	training	control	training	control	training	
Young adults	0.44 (0.05)	0.44 (0.07)	0.45 (0.07)	0.51 (0.08)	0.80 (0.06)	0.63 (0.07)	
Older adults	0.16 (0.05)	0.25 (0.04)	0.28 (0.06)	0.55 (0.06)	0.53 (0.08)	0.42 (0.06)	

Standard errors of the means are reported in parentheses.

Fig. 3. Mean number of errors that young and older adults reported using on the SOPT. Error bars reflect ± 1 standard error of the means.

of trials that participants reported using effective strategies on the paired-associate recall task is presented in table 4. We conducted a 2 (age: young vs. old) \times 2 (group: control vs. training) ANOVA on the proportion of trials that participants reported using effective strategies. The main effect of group was significant ($F_{1, 108} = 5.79$, p = 0.018, $\eta^2 = 0.05$), indicating that participants in the training group reported using the trained strategies more often on this transfer task than participants in the control group. The main effect of age and the age \times group interaction were not significant ($F_{1, 108} = 2.31$, p = 0.13, $\eta^2 = 0.02$). Finally, we examined performance on the trials in which participants reported using effective strategies (see table 4). A 2 (age: young vs. old) \times 2 (group: control vs. training) ANOVA revealed main effects of age ($F_{1, 108} = 12.71$, p = 0.001, $\eta^2 = 0.15$) and group (F_{1, 108} = 4.45, p = 0.038, $\eta^2 = 0.05$). On trials in which effective strategies were reported, younger adults outperformed older adults and, unexpectedly, participants in the control group outperformed participants in the training group; however, the age \times group interaction was not significant (Fs < 1).

We also calculated the correlation between the proportion of effective strategy use and recall performance on the paired-associate task. Across the entire sample, there was a strong correlation (r = 0.73, p < 0.001), indicating that individuals who reported using effective strategies on more trials also performed better on paired-associate recall.

Self-Ordered Pointing Task. The average number of errors made on SOPT by age group and training group are presented in figure 3. A 2 (age: young vs. old) × 2 (group: control vs. training) ANOVA revealed only a significant main effect of group ($F_{1, 105} = 5.76$, p = 0.018, $\eta^2 = 0.05$), with participants in the training group committing more errors than those in the control group. Neither the main effect of age nor the age × group interaction was significant (Fs < 1).

Discussion

The vast majority of WM training studies provide extensive WM task practice as a basis for improving performance [22]. In contrast, the present study provided no WM task training, but instead trained participants to use mnemonic strategies relevant to enhancing WM span performance [13]. Our goals were to evaluate whether training young and older adults to use encoding strategies would (1) increase the frequency of their use on WM span tasks, (2) generate improvements in WM span performance and (3) transfer to performance on other cognitive tasks. Regarding the first goal, participants in the training group reported using effective strategies significantly more often than controls after training (table 2), and this increase was related to improvements in their WM performance (figure 2). Thus, the present results show that training individuals in the use of effective verbal encoding strategies benefits WM performance, which replicates and extends the previous study that examined this issue [35].

Regarding the second goal, we found that prior to training both younger and older adults reported using effective encoding strategies on approximately one third of the span task trials [1, 13, 15]. Furthermore, WM recall performance of both young and older adults improved after strategy training, without having much of an effect on age-related differences in WM performance. The magnitude of age differences observed here were smaller than might be expected from the larger literature [47]. The age similarity in effective strategy use prior to training may partially explain why strategy training did not greatly impact age-related differences in WM performance.

The age equivalence in training gains we observed in the current study was similar to those reported in some studies implementing domain-general training [21, 48-50]. Other studies using domain-general training, however, have reported larger gains in young adults compared to older adults [22, 51-53]. One reason that differential training gains are observed across age groups may be the degree to which older adults can implement the trained process. Previous work has shown that training gains depend on the compliance of the older adults [54]. That is, successful implementation of training depends on the degree to which older adults can or will expend the effort to fully implement or adapt a process to meet the demands of a task. Perhaps the trained process in the current study (creating mediators) was easy enough for older adults to master, which increased compliance and led to age equivalence in training gains [54]. Whether compliance moderates the degree to which young and older adults demonstrate performance gains after training is an open question, and answering it will require directly measuring the trained process (e.g. strategy use) so as to estimate the degree of compliance and use of the trained processes after training.

The present results indicate that both younger and older adults have the capacity to improve their performance on a demanding WM task when they are given the appropriate cognitive tools to do so. They learned about the efficacy of different verbal encoding strategies and were given limited practice with two effective ones - sentence generation and interactive imagery - on a list-learning task. They were able to apply this knowledge on the RSPAN task when they were told that the trained strategies could be used on a variety of tasks. This finding is noteworthy because other studies suggest that older adults often do not realize that mnemonic strategies can be adapted and used in different situations. For instance, Bottiroli et al. [55] found that older adults used a selftesting strategy as often as young adults when the task more readily afforded its use. However, when the task affordance of this strategy was low, older adults were less likely to use the strategy. Likewise, the use of trained mnemonic strategies does not necessarily occur in different (untrained) task contexts without explicit encouragement to think about how the strategies could be adapted to work in the untrained contexts [56].

However, as indicated by reported strategy use in the current experiment, older adults in the training group used the trained strategies on both the WM task and on the paired-associate recall task, perhaps because of the surface similarity of the trained and untrained tasks. Even so, results from Bottiroli et al. [55] and Cavallini et al. [56] suggest that WM improvement after strategy training may be even greater if subjects are explicitly instructed to use their trained strategies on new tasks (such as the WM task). Regarding the larger question of transfer effects, improvements owing to mnemonic strategy training were not apparent in either transfer task. Participants in the training group did not outperform participants in the control group on either paired-associate recall or the SOPT. Participants in the training group reported using the trained strategies more often than those in the control group on the paired-associate recall task, but this increased strategy use did not benefit them (see table 4). Further, the training group actually performed more poorly on the SOPT task compared to the control group, suggesting negative transfer (attempting to use encoding strategies when they are not useful in the SOPT task context).

Why would the increased use of effective encoding strategies not benefit paired-associate recall, when studies show that associative mnemonics have a positive influence on associative recall [14]? One possibility is that the organizational encoding strategies that benefit performance on free recall and WM tasks (e.g. integrating multiple unrelated words into a single sentence or image) are subtly but qualitatively different in their implementation from the mediational strategies needed for paired associates, in which integration of the two concepts into a single representation is required for optimal associative recall [14]. Experience in using organizational strategies for multiple items may require rapidly finding and adapting a schema or script that loosely ties disparate words in a single context, but that approach may not promote generating a single well-integrated associative mediator binding 2 words together. Poor implementation of a mediational strategy would lead to high reported strategy use, but also to frequent failures to recall the mediator and the target [57, 58].

Another possibility (perhaps related to the first) is that participants may have successfully encoded the to-be-remembered items using associative mediators (images or sentences) and later retrieved these mediators at test. However, they may have failed to decode these mediators at retrieval to recover the target word (given that this process was not trained or practiced in the WM task context). Dunlosky et al. [57] and Hertzog et al. [58] found that people sometimes were unable to retrieve the correct items even when they had successfully retrieved the correct mediator for the cue-target word pair, an error that was more common in older adults.

Another possibility is that the trained encoding strategies did benefit performance on the paired-associate task, but the filler task completed by the control group provided experience that also would generalize to paired-associate learning. For instance, the bird learning filler task involved classifying exemplars into categories and may have encouraged associating each bird exemplar (a picture) to its category label. We doubt that this possibility can explain the current outcomes, however, given that different kinds of associative processing would probably be required for the two tasks. The bird-learning task would rely on a one-to-many mapping (multiple exemplars to each label) involving complex pictures (bird exemplars) that would not easily afford the use of verbal mediators, which are meant to support paired-associate learning of words and were the focus of strategy training. Note, also, that a final possibility for lack of transfer pertains to a limitation of the current design; namely, participants did not complete the paired-associate recall and SOPT tasks prior to training, so we cannot directly assess gains (or losses) in performance. That is, despite random assignment to groups, perhaps participants in the control group would have performed better on these tasks prior to the intervention. Although we cannot rule out this possibility, given how well the two groups were matched on other demographics, we suspect that it cannot entirely account for the current lack of transfer. In any case, the lack of transfer of the strategy training to paired-associate recall performance suggests that the process-specific strategy training did not have domain-general benefits.

Conclusions

A lesson and practice with effective verbal encoding strategies improved WM performance for both young and older adults, although the age-related WM deficit was not eliminated. Individuals who completed the training used the strategies more often on the WM task and the use of these strategies became more effective for the older adults following training. Lack of transfer effects indicate that increases in WM after training did not arise from domain-general benefits of training but instead were limited to enhanced use of specific processing strategies that were not easily adapted to different performance contexts. Thus, cognitively healthy older adults have the ability to learn (or hone) these strategies and apply them on a demanding WM task.

Acknowledgments

Thanks to Melissa Bishop for assistance with data collection. Thanks also to Chris Wahlheim and Larry Jacoby for their help with our filler task. This research was supported by NIH grant F32 AG039162 (Heather Bailey, principal investigator) and NIH grant R37 AG13148 (Christopher Hertzog and John Dunlosky, principal investigators).

References

- Bailey H, Dunlosky J, Hertzog C: Does differential strategy use account for age-related differences in working-memory performance? Psychol Aging 2009;24:82–92.
- 2 Daneman M, Merikle PM: Working memory and language comprehension: a meta-analysis. Psychon Bull Rev 1996;3:422–433.
- 3 Kane MJ, Hambrick DZ, Conway ARA: Working memory capacity and fluid intelligence are strongly related constructs: comments on Ackerman, Beier, and Boyle (2005). Psychol Bull 2005;131:66–71.
- 4 Martinussen R, Hayden J, Hogg-Johnson S, Tannock R: A meta-analysis of working memory impairments in children with attentiondeficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2005;44:377–384.
- 5 Ackerman PL, Beier ME, Boyle MO: Working memory and intelligence: the same or different constructs? Psychol Bull 2005;131:30– 60.
- 6 McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ: Differential working memory load effects after mild traumatic brain injury. Neuroimage 2001;14: 1004–1012.
- 7 Hasher L, Zacks RT: Working memory, comprehension, and aging: a review and a new view; in Bower GH (ed): The Psychology of Learning and Motivation. New York, Academic Press, 1988, vol 22, pp 193– 225.
- 8 Salthouse TA, Babcock RL: Decomposing adult age differences in working memory. Dev Psychol 1991;27:763–776.
- 9 Kane MJ, Hambrick DZ, Tuholski SW, Wilhelm O, Payne TW, Engle RW: The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. J Exp Psychol Gen 2004;133:189–217.
- 10 Grady C: The cognitive neuroscience of aging. Nat Rev Neurosci 2012;13:491–505.
- 11 Salthouse T: The aging of working memory. Neuropsychology 1994;8:535–543.
- 12 Cokely ET, Kelley CM, Gilchrist AL: Sources of individual differences in working memory: contributions of strategy to capacity. Psychon Bull Rev 2006;13:991–997.

- 13 Dunlosky J, Kane MJ: The contributions of strategy use to working memory span: a comparison of strategy assessment methods. Q J Exp Psychol (Hove) 2007;60:1227–1245.
- 14 Richardson JTE: The availability and effectiveness of reported mediators in associative learning: a historical review and an experimental investigation. Psychon Bull Rev 1998; 5:597–614.
- 15 Bailey H, Dunlosky J, Kane MJ: Why does working memory span predict complex cognition? Testing the strategy-affordance hypothesis. Mem Cognit 2008;36:1383–1390.
- 16 Bailey H, Dunlosky J, Kane MJ: Contribution of strategy use to performance on complex and simple span tasks. Mem Cognit 2011;39: 447–461.
- 17 Unsworth N, Spillers GJ: Variation in working memory capacity and episodic recall: the contributions of strategic encoding and contextual retrieval. Psychon Bull Rev 2010;17: 200–205.
- 18 Touron DR, Oransky N, Meier ME, Hines JC: Metacognitive monitoring and strategic behavior in working memory performance. Q J Exp Psychol 2010;63:1533–1551.
- 19 Kane MJ, Engle RW: Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. J Exp Psychol Gen 2003;132:47–70.
- 20 Morrison AB, Chein JM: Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon Bull Rev 2011;18:46– 60.
- 21 Li SC, Schmiedek F, Huxhold O, Rocke C, Smith J, Lindenberger U: Working memory plasticity in old age: practice grain, transfer, and maintenance. Psychol Aging 2008;23: 731–742.
- 22 Schmiedek F, Lovden M, Lindenberger U: Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Front Aging Neurosci 2010;2:1–10.
- 23 Zinke K, Zeintl M, Eschen A, Herzog C, Kliegl M: Potentials and limits of plasticity induced by working memory training in old-old age. Gerontology 2011;5:79–87.
- 24 Chein JM, Morrison AB: Expanding the mind's workspace: training and transfer effects with a complex working memory span task. Psychon Bull Rev 2010;17:193–199.
- 25 Shipstead Z, Redick TS, Engle RW: Is working memory training effective? Psychol Bull 2013; 138:628–654.
- 26 Hertzog C, McGuire CL, Lineweaver TT: Aging, attributions, perceived control and strategy use in a free recall task. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 1998;15: 85–106.
- 27 Naumann J, Richter T, Christmann U, Groeben N: Working memory capacity and reading skill moderate the effectiveness of strategy training in learning from hypertext. Learn Individ Differ 2008;18:197–213.

- 28 Kliegl R, Smith J, Baltes PB: Testing-the-limits and the study of adult age differences in cognitive plasticity of a mnemonic skill. Dev Psychol 1989;25:247–256.
- 29 Gross AL, Parisi JM, Spira AP, Kueider AM, Ko JY, Saczynski JS, Samus QM, Rebok GW: Memory training interventions for older adults: a meta-analysis. Aging Ment Health 2012;16:722–734.
- 30 Turley-Ames KJ, Whitfield MM: Strategy training and working memory task performance. J Mem Lang 2003;49:446–468.
- 31 McNamara DS, Scott JL: Working memory capacity and strategy use. Mem Cognit 2001; 29:10–17.
- 32 St. Clair-Thompson H, Stevens R, Hunt A, Bolder E: Improving children's working memory and classroom performance. Ed Psychol 2010;30:203–219.
- 33 Swanson HL, Kehler P, Jerman O: Working memory, strategy knowledge, and strategy instruction in children with reading disabilities. J Learn Disabil 2010;43:24–47.
- 34 Cicerone KD: Remediation of 'working attention' in mild traumatic brain injury. Brain Inj 2001;16:185–195.
- 35 Carretti B, Borella E, De Beni R: Does strategic memory training improve the working memory performance of younger and older adults. Exp Psychol 2007;54:311–320.
- 36 De Beni R, Palladino P, Pazzaglia F, Cornoldi C: Increases in intrusion errors and working memory deficit of poor comprehenders. Q J Exp Psychol A 1998;51:305–320.
- 37 Marks DF: Visual imagery in the recall of pictures. Br J Psychol 1973;64:17–24.
- 38 Paivio A: Imagery and Verbal Processes. New York, Holt, Rinehart & Winston, 1971.
- 39 Hertzog C, Price J, Dunlosky J: How is knowledge generated about memory encoding strategy effectiveness? Learn Individ Differ 2008;18:430–445.
- 40 Bender AR, Raz N: Age-related differences in recognition memory for items and associations: contributions to individual differences in working memory and metamemory. Psychol Aging 2012;27:691–700.
- 41 Ekstrom RB, French JW, Harman HH, Dermen D: Manual for Kit of Factor-Referenced Cognitive Tests. Princeton, Educational Testing Service, 1976.
- 42 Conway ARA, Kane MJ, Bunting MF, Hambrick DZ, Wilhelm O, Engle RW: Working memory span tasks: a methodological review and user's guide. Psychon Bull Rev 2005;12: 769–786.
- 43 Wahlheim CN, Dunlosky J, Jacoby LL: Spacing enhances the learning of natural concepts: an investigation of mechanisms, metacognition, and aging. Mem Cognit 2012;39:750– 763.

- 44 Dunlosky J, Hertzog C: Measuring strategy production during associative learning: the relative utility of concurrent versus retrospective reports. Mem Cognit 2001;29:247–253.
- 45 Petrides M, Milner B: Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 1982;20: 249–262.
- 46 Cohen J: Statistical Power Analysis for the Behavioral Sciences, ed 2. Hillsdale, Erlbaum, 1988.
- 47 Verhaeghen P, Salthouse TA: Meta-analyses of age-cognition relations in adulthood: estimates of linear and nonlinear age effects and structural models. Psychol Bull 1997;122: 231–249.
- 48 Bherer L, Kramer AF, Peterson MS, Colcombe S, Erickson K, Becic E: Training effects on dual-task performance: are there age-related differences in plasticity of attentional control? Psychol Aging 2005;20:695–709.
- 49 Richmond LL, Morrison AB, Chein JM, Olson IR: Working memory training and transfer in older adults. Psychol Aging 2011;26: 813–822.
- 50 von Bastian CC, Langer N, Jancke L, Oberauer K: Effects of working memory training in young and older adults. Mem Cognit 2013;41: 611–624.
- 51 Brehmer Y, Westerberg H, Bäckman L: Working-memory training in younger and older adults: training gains, transfer, and maintenance. Front Hum Neurosci 2012;6: 1–7.
- 52 Dahlin E, Stigsdotter Neely A, Larsson A, Bäckman L, Nyberg L: Transfer of learning after updating training mediated by the striatum. Science 2008;320:1510–1512.
- 53 Heinzel S, Schulte S, Onken J, Duoan QL, Riemer TG, Heinz A, Kathmann N, Rapp MA: Working memory training improvements and gains in non-trained cognitive tasks in young and older adults. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2014;21:146–173.
- 54 Bagwell DK, West RL: Assessing compliance: active versus inactive trainees in a memory intervention. Clin Interv Aging 2008;3:371– 382.
- 55 Bottiroli S, Dunlosky J, Guerini K, Cavallini E, Hertzog C: Does task affordance moderate age-related deficits in strategy production? Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2010;17:591–602.
- 56 Cavallini E, Dunlosky J, Bottiroli S, Hertzog C, Vecchi T: Promoting transfer in memory training for older adults. Aging Clin Exp Res 2010;22:314–323.
- 57 Dunlosky J, Hertzog C, Powell-Moman A: The contribution of five mediator-based deficiencies to age-related differences in associative learning. Dev Psychol 2005;41:389–400.
- 58 Hertzog C, Fulton EK, Mandviwala L, Dunlosky J: Older adults show deficits in retrieving and decoding associative mediators generated at study. Dev Psychol 2013;49:1127– 1131.