Aug. 29

Lysa Nettleton

Liberal arts and sciences faculty members have the opportunity to have their names printed in the 2008 edition of the K-State yearbook, ‘Wildcat Pride.’

Wildcat yearbook

Nellie Chapman, the annual history渐, will become the last to be published in the Library's Great Rooms exhibit. Chapman, chair of the history department at the University of Illinois, gave the book to the university in 2006. In 2008, Chapman was the recipient of the Outstanding Alumna Award.

Classified

By Nellie Chapman, the annual history渐, will become the last to be published in the Library's Great Rooms exhibit. Chapman, chair of the history department at the University of Illinois, gave the book to the university in 2006. In 2008, Chapman was the recipient of the Outstanding Alumna Award.

Classified

By Nellie Chapman, the annual history渐, will become the last to be published in the Library's Great Rooms exhibit. Chapman, chair of the history department at the University of Illinois, gave the book to the university in 2006. In 2008, Chapman was the recipient of the Outstanding Alumna Award.

Classified

By Nellie Chapman, the annual history渐, will become the last to be published in the Library's Great Rooms exhibit. Chapman, chair of the history department at the University of Illinois, gave the book to the university in 2006. In 2008, Chapman was the recipient of the Outstanding Alumna Award.
Stem cells carry anti-cancer drugs

Research could make therapy more effective, less toxic to patients

Troyer and two other faculty members are working on a method of delivering cancer-fighting drugs that promises to increase efficiency and reduce side effects.

Although chemotherapy is still the main method of delivering cancer-fighting drugs that promise to increase efficiency and reduce side effects, Troyer said, researchers are working on a method of delivering cancer-fighting drugs that promises to increase efficiency and reduce side effects.

The research team is developing a drug delivery system that would allow for the delivery of drugs directly to cancer cells, without damaging healthy tissue. The system would use nanogels that can carry drugs to specific cells and release them over a period of time.

"This is a very exciting area of research that could potentially improve cancer treatment," Troyer said.

The team has developed a nanogel that can carry doxorubicin, a chemotherapy drug, to specific cancer cells. The nanogel is made up of two polymers. The outer polymer provides stability, while the inner polymer contains the drug.

"We are working on creating a nanogel that can carry doxorubicin to specific cancer cells," Troyer said.

This research could make cancer treatment more effective and less toxic to patients.