The voluntary service, which is available to all students, faculty and staff, will allow users to sign up at any time for text message alerts of campus emergencies. By visiting K-State’s Leader Alert system, users can register a cell phone to receive text-message alerts of a campus emergency. A confirmation text message will be sent to their cell phone with a confirmation number. By submitting the confirmation number online, users can then access the system, authorize emergency text messages and choose the phone numbers to which they want to receive text messages. Users will have the ability to select which categories of messages they want to receive and to unsubscribe from the service at any time. 

By visiting: K-State’s eProfile system, users can register a cell phone to receive text-message alerts of a campus emergency. A confirmation text message will be sent to their cell phone with a confirmation number. By submitting the confirmation number online, users can then access the system, authorize emergency text messages and choose the phone numbers to which they want to receive text messages. Users will have the ability to select which categories of messages they want to receive and to unsubscribe from the service at any time.
Roman Ganta has been awarded a grant to study a tick-borne bacteria

Roman Ganta, a professor of microbiology and pathology at the University of California at Davis, has received a grant from the National Institutes of Health to study a tick-borne bacteria that can be fatal.

This particular tick-borne pathogen is known to cause encephalitis and meningitis, killing 10 to 30 percent of humans and 100 percent of animals it infects. Ganta said his research is aimed at understanding the pathogenesis of the bacteria and developing new treatments.

The bacteria, which is called Anaplasma phagocytophilum, infects white blood cells and other cells in the body, causing symptoms such as fever, headaches, nausea, vomiting, diarrhea and fatigue. In severe cases, the infection can be fatal.

Ganta said the bacteria is commonly found in cattle, horses, sheep and other livestock, and is transmitted to humans through tick bites. The bacteria can also be transmitted through blood transfusions and other medical procedures.

This particular tick-borne pathogen is known to cause encephalitis and meningitis, killing 10 to 30 percent of humans and 100 percent of animals it infects. Ganta said his research is aimed at understanding the pathogenesis of the bacteria and developing new treatments.

The bacteria, which is called Anaplasma phagocytophilum, infects white blood cells and other cells in the body, causing symptoms such as fever, headaches, nausea, vomiting, diarrhea and fatigue. In severe cases, the infection can be fatal.

Ganta said the bacteria is commonly found in cattle, horses, sheep and other livestock, and is transmitted to humans through tick bites. The bacteria can also be transmitted through blood transfusions and other medical procedures.

The bacteria has been isolated from a variety of hosts, including ticks, birds, and small mammals. It is a zoonotic agent, meaning it can be transmitted from animals to humans.

In addition, ticks that carry the bacteria can be found in many parts of the world, including the United States, Canada, Europe, Asia, and Africa. The bacteria is thought to be transmitted to humans through the bite of infected ticks, which are commonly found in wooded areas and other environments where animals are present.

Ganta said the bacteria is of particular concern because it can cause severe illness and even death in some patients. He said the grant he received will allow him to continue his research into the pathogenesis of the bacteria and develop new treatments for it.

The grant was awarded by the National Institutes of Health under the Burroughs Wellcome Fund's Wellcome Trust, which supports biomedical research.

The grant will allow Ganta to continue his research into the pathogenesis of the bacteria and develop new treatments for it.

The bacteria is of particular concern because it can cause severe illness and even death in some patients. Ganta said the grant will allow him to continue his research into the pathogenesis of the bacteria and develop new treatments for it.

The grant was awarded by the National Institutes of Health under the Burroughs Wellcome Fund's Wellcome Trust, which supports biomedical research.

The bacteria is of particular concern because it can cause severe illness and even death in some patients. Ganta said the grant will allow him to continue his research into the pathogenesis of the bacteria and develop new treatments for it.

The grant was awarded by the National Institutes of Health under the Burroughs Wellcome Fund's Wellcome Trust, which supports biomedical research.

The bacteria is of particular concern because it can cause severe illness and even death in some patients. Ganta said the grant will allow him to continue his research into the pathogenesis of the bacteria and develop new treatments for it.