
  

A mosaic approach can advance the understanding and conservation of native biodiversity in 

natural and fragmented riverscapes 

 

 

by 

 

 

Sean M. Hitchman 

 

 

 

B.S., University of South Carolina, 2004 

M.S., University of San Diego, 2011 

 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

Division of Biology 

College of Arts and Sciences 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2018 

 

  



  

Abstract 

Understanding the complex relationship between organismal distribution and spatial 

heterogeneity is central to many ecological questions. This challenge of identifying the 

biodiversity consequences of spatial patterns is especially critical for resource conservation at the 

larger riverscape scale because climate- and human-related impacts often act through intricate 

and spatially-connected organismal-habitat relationships. Specifically, resource managers cannot 

manage the adverse effects of common disturbances on aquatic ecosystems (e.g. water-

withdrawal, dams, urbanization) if the influence of spatial heterogeneity is not recognized and 

understood. Towards this larger goal, I examined the role of spatial heterogeneity on stream fish 

biodiversity in the Upper Neosho River, KS in three ways. First, I used a mosaic approach (in 

which connected, interacting collections of juxtaposed habitat patches were examined) to build 

the scientific foundation for a general model that aids in the understanding and environmental 

management of disturbance-related, ecologically-based conservation problems. Second, I 

examined landscape metrics to quantify the impact of low-head dams on stream habitat and fish 

diversity. Third, I evaluated multiple quantitative approaches to develop a fuller understanding of 

how the arrangement of habitats across the riverscape influenced stream fish biodiversity. 

Related to these questions, the dissertation research provided four key take-home messages that 

advanced science-based conservation related to stream fish habitat and biodiversity. First, 

mapping larger-scale patterns of heterogeneity showed that quantitatively-different, physically-

distinct pool, riffle, run, and glide habitats were arranged in unique combinations created diverse 

habitat mosaics across sites. Second, riffles, which comprised < 5% of all habitat patches, acted 

as keystone habitats that disproportionately increased fish biodiversity (i.e., species richness was 

significantly higher in mosaics with higher numbers of riffles). Third, mosaic approach metrics 



  

provided new insights into the influence of low-head dams on stream fish biodiversity that were 

not detected with traditional approaches to habitat sampling and statistical analysis. For example, 

low-head dams dampened the natural habitat diversity that is needed for the maintenance of 

resilient communities. Furthermore, using path analysis, I found that species richness was higher 

immediately below low-head dams as mediated through an increase in the proportion of riffle 

habitat, but this higher species richness was offset by a greater decrease in species richness in the 

impoundment habitat above low-head dams. Thus, the choice of scale influenced the 

interpretation of how dams affected habitat heterogeneity and resultant organismal patterns. 

Finally, landscape approaches to examining compositional and configurational heterogeneity 

provided new insights about stream fish habitat-biodiversity relationships. For example, riffle 

patch density had a positive effect on species richness, species richness was higher within 

shallow, slow flowing riffles, and adjacent neighbor habitats affected riffle species richness as 

mediated through alterations to within-habitat characteristics. In summary, quantifying the 

complex patterns of spatial heterogeneity in a range of ways can aid in the understanding of 

habitat-biodiversity patterns and help conserve stream fishes at a variety of scales.  
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Chapter 1 - Identifying keystone habitats with a mosaic approach 

can improve biodiversity conservation in disturbed ecosystems 

  

 Abstract 

Conserving native biodiversity in the face of human- and climate-related impacts is a 

challenging and globally important ecological problem that requires an understanding of 

spatially-connected, organismal-habitat relationships. Globally, a suite of disturbances (e.g., 

agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic 

approach (in which connected, interacting collections of juxtaposed habitat patches are 

examined) provides a scientific foundation for addressing many disturbance-related, 

ecologically-based conservation problems. For example, if specific habitat types 

disproportionately increase biodiversity, these keystones should be incorporated into research 

and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3-km 

sites within the Upper Neosho River sub-drainage, KS, from June-August 2013 yielded three 

generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, 

run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied 

across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size 

reflected field availability. Furthermore, habitat mosaics that included more riffles had greater 

habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone 

habitats. Third, additional conceptual development, which we initiate here, can broaden the 

identification of keystone habitats across ecosystems and further operationalize this concept for 
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research and conservation. Thus, adopting a mosaic approach can increase scientific 

understanding of organismal-habitat relationships, maintain natural biodiversity, advance spatial 

ecology, and facilitate effective conservation of native biodiversity in human-altered ecosystems. 

 

 Introduction 

Conserving native biodiversity and the habitats that maintain biodiversity is a challenging 

and globally important ecological problem. Biodiversity provides goods and services to society 

(Hooper et al., 2005; Maes et al., 2012) and can act as an indicator of ecosystem degradation 

(Parr et al., 2016). However, human impacts and climate change fragment and degrade habitats 

in a way that can reduce biodiversity (Fahrig, 2003; Dudgeon et al., 2006; Wilson et al., 2016). 

The identification of critical habitats that maintain biodiversity is essential to conserve native 

species and sustain resilient ecosystems. Here, our overarching question is whether specific types 

of habitats have disproportionate effects on biodiversity (Fig. 1.1). Streams are model 

ecosystems to develop, define, and refine the keystone habitat concept because they are 

composed of repeating types of habitat patches, which individually and collectively can drive the 

distribution and abundance of stream biota (i.e., pool, riffle, run, glide mesohabitats; Frissell et 

al., 1986; Newson & Newson, 2000). 

 Freshwater ecosystems are among the most imperiled ecosystems worldwide. A suite of 

anthropogenic disturbances (Dudgeon et al., 2006; Vörösmarty et al., 2010; Matono et al., 2014) 

exacerbated by climate change (e.g., Almodovar et al., 2012; Hauer et al., 2013; Floury et al., 

2013) alters hydrology, modifies aquatic habitats, and threatens freshwater biodiversity. 

Globally, species are declining at higher rates in freshwater ecosystems than terrestrial and 

marine systems (Dudgeon et al., 2006; Vaughn, 2010). For example, the proportion of North 
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American freshwater fishes that are imperiled or extinct has increased by 40% over the last 20 

years (Jelks et al., 2008). The distribution of organisms and overall biodiversity in streams are 

strongly influenced by habitat (Smith & Mather, 2013; Silva et al., 2014). Therefore, it is critical 

to identify and conserve the habitats that promote biodiversity in these and other threatened 

ecosystems.  

Here we seek to develop, define, and refine the keystone habitat concept using fish 

biodiversity in a stream ecosystem. Several approaches have been used to examine organismal-

habitat relationships. We used a mosaic approach to develop the keystone habitat concept since 

this approach explicitly considers habitat composition (e.g., number and relative amount of each 

habitat type; Li & Reynolds, 1995; Malard et al., 2002; Barnes et al., 2013). The mosaic 

approach views ecosystems as a collection of physically distinct habitat units (Pringle et al., 

1988; Winemiller et al., 2010; Kleindl et al., 2015). As a result, this approach allows for the 

quantification of the relative proportion of mesohabitat patches across the landscape, which in 

turn facilitates an examination of interactions among habitat patches. Although mosaics include 

commonly studied habitat types, here we test if new ecological metrics, properties, and insights 

emerge from examining these connected, interacting collections of juxtaposed habitat types. A 

second approach to organismal-habitat relationships relates a range of habitat variables to 

organismal distribution and diversity at individual sites, often along equally spaced transects 

(Didham et al., 1998; Stefanescu et al., 2004; Kwik & Yeo, 2015). However, these spatially-

isolated, small-scale data typically do not accurately predict patterns of biotic changes at larger 

scales or in response to major disturbances. A third approach to organismal-habitat relationships 

characterizes habitat using intermediate-scale geomorphological habitat patches (Taylor, 2000; 

Schwartz et al., 2015). This approach has been useful in identifying organismal-habitat 
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relationships (Kruess, 2003; Erös, 2007; Naskar et al., 2015), but viewing mesohabitats as 

separate, isolated units often results in low resolution for detecting site-to-site variation. 

Although less common, the mosaic approach, which we use here, has advantages over transect 

and geomorphic approaches and is applicable to an array of aquatic and terrestrial ecosystems 

(Bulleri & Benedetti-Cecchi, 2006; Williams & Kremen, 2007; Villemey et al., 2015). 

The keystone concept has been widely applied to species (e.g., Paine, 1969; Delibes- 

Mateos et al., 2011; Mouquet et al., 2013). For example, a Web of Science search yielded over 

1,100 journal articles on “keystone species” published from 1980 to 2016, including 91 with > 

100 citations. Since the reporting of the dramatic changes in a rocky intertidal community that 

occurred with the removal of a predatory starfish (Pisaster ochraceus; Paine, 1966; cited 2,898 

times), the keystone species concept has been refined to describe a species that has a 

disproportionately large effect on its community or ecosystem relative to its abundance (e.g., 

Power et al., 1996). Well-documented cases of keystone species include sea otters in kelp forests 

(e.g., Estes & Palmisano, 1974; Estes & Duggins, 1995; Kenner et al., 2013), trophic cascades in 

lakes and oceans (e.g., Carpenter et al., 1985; Carpenter & Kitchell, 1988; Hessen & Kaartvedt, 

2014), and fish in streams (e.g., Power et al., 1985; Schindler et al., 1997; Small et al., 2011). 

The keystone species concept has been expanded from top predators to prey species (Holt, 1977; 

Utne-Palm et al., 2010), parasites (Evans et al., 2011; Roche et al., 2013), mutualists (Gilbert, 

1980; Betts et al., 2015), and ecosystem engineers (Naiman et al., 1986, Jones et al., 1994, Magle 

& Angeloni, 2011). Recently, a variety of quantitative approaches (e.g. community viability 

analysis, community sensitivity analysis, ecological network analysis) have been used to 

measure interaction strength and to understand community importance (e.g., Berg et al., 2011; 

Aizen et al., 2012, Stouffer et al., 2012). Functional importance (Hurlbert, 1997; Davic, 2003) 
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and unique roles (Kotliar, 2000) have been emphasized to address the criticism that the keystone 

species concept has become too broad to be useful (Strong, 1992; Mills et al., 1993; Cottee-Jones 

& Whittaker, 2012). Keystone species have an exceptional ability to influence biodiversity. 

However, the ability to predict the presence and strength of keystone species a priori is limited in 

that context affects the “quest for keystones” (Power et al., 1996). 

In contrast, the keystone concept has rarely been applied to habitat (Davidar et al., 2001; 

Bonnet et al., 2009). At smaller spatial scales, the term ‘keystone structure’ has been used to 

describe structures that provide goods and services to maintain species diversity (Tews et al., 

2004). At a regional scale, Davidar et al. (2001), while investigating bird species richness in the 

presence of wet forests in the Andaman Islands, used the term keystone habitat to describe 

habitat that maintains biodiversity. The keystone habitat concept could apply to a range of 

ecosystems: (a) if a more specific definition existed to determine the types of habitat that can be 

considered keystones, (b) if better details on the linkage between habitat and biodiversity were 

available, and (c) if a framework was developed to generalize the impact of keystone habitats 

across organisms and ecosystems. 

To develop the keystone habitat concept in a way that can improve conservation planning 

and outcomes in the face of global change, we asked five specific research questions (Fig. 1.1). 

First, are mesohabitat patches (i.e., pool, riffle, run, and glide) statistically distinct based on 

physical variables (i.e. depth, width, water velocity, and substrate)? In many ecosystems, discrete 

habitats do not exist because physical variables change along a continuous gradient. However, 

here we predict that stream habitat categories will vary predictably in physical features. Second, 

do the number and type of habitat patches within each distinct mesohabitat type vary across 

mosaics? In some ecosystems with homogeneous habitat, mosaics may not exist or may be too 
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simple or rare to be functionally important. Alternatively, here we predict that mosaics can vary 

in composition and configuration throughout the watershed. Third, does biodiversity differ 

among individual stream mesohabitat patches? We predict that distinct relationships persist 

between mesohabitat type and fish biodiversity. Fourth, using the mosaic approach, do keystone 

habitats (i.e., habitats that affect biodiversity disproportionately relative to their abundance) 

exist? Habitat patches could influence biodiversity independent of other habitat types that 

surround them. Alternatively, mesohabitat patches could interact with surrounding habitats to 

produce effects on biodiversity that would be overlooked if habitat patches were examined in 

isolation. Finally, can the predictions and insights from the keystone species concept, developed 

using food web ecology, inform the keystone habitat concept or do the two keystone concepts 

function in fundamentally different ways? 

 

 Materials and Methods 

 Study Area 

The Neosho River drainage joins the Arkansas River in northeastern Oklahoma (Juracek 

& Perry, 2005; Fig. 1.2a). Our study area, the Upper Neosho River sub-drainage, includes the 5th 

order (Strahler, 1957) Cottonwood and Upper Neosho Rivers and drains approximately 7,770 

km2 upstream of the John Redmond Reservoir (Fig. 1.2b). The Upper Neosho and Cottonwood 

Rivers lie predominately on Permian age limestone and shale bedrock overlain by Quaternary 

alluvium (Juracek & Perry, 2005). Land use is dominated by agricultural fields of soybean, 

wheat, and corn with small riparian zones adjacent to the crop fields and streams (Tiemann et al., 

2004). The Neosho River contains a diverse native fish fauna of 55 species (Cross, 1967) that are 



7 

adapted to longitudinally-connected, predictably-variable flow and temperature regimes (Dodds 

et al., 2004). 

In order to identify keystone habitats, we examined fish biodiversity-habitat patterns in 

the Upper Neosho River sub-drainage. Our research focused on adjacent mesohabitat patches 

(pool, riffle, run, and glide) at ten 3-km sites. Six sites (Sites 1-6) were located along the Upper 

Neosho River (Fig. 1.2b). One site (Site 7) was located just below the confluence of the Upper 

Neosho and Cottonwood Rivers, and three sites (Sites 8-10) were located on the Cottonwood 

River (Fig. 1.2b). This project was undertaken in conjunction with a larger project that 

investigated potential impacts of low-head dams on the native stream fish community. 

Consequently, we sampled fish and habitat at five sites below low-head dams (Sites 1, 4, 5, 8, 

10, Fig. 1.2b) and five sites located at undammed locations (Sites 2, 3, 6, 7, 9, Fig. 1.2b). All 

intact low-head dams in the upper Neosho River drainage [< 3 m height, constructed in 1860-

1995, for milling, water supply, recreation (Fencl et al., 2015)] were sampled. Undammed sites 

were selected based upon distance from dam sites, stream accessibility, and landowner 

permission. Sampling was identical at dammed and undammed sites (see below). Because no 

direct and consistent statistical differences in habitat (number of patches per mesohabitat type) 

existed between dammed and undammed sites (W = 17, p = 0.42; Wilcoxon rank sum test), all 

sites were analyzed together. The Upper Neosho River sub-drainage is a stream network that has 

the potential to provide general insights for understanding human impacts and climate change in 

streams for diverse geographic regions. Streams in the Great Plains have a naturally variable 

hydrologic regime characterized by regularly occurring floods and droughts (Dodds et al., 2004). 

Mean annual discharge at our study sites were 8.72 m3s-1 (SE± 0.94, USGS gage 07179730, 
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1963-2013) and 24.55 m3s-1(SE± 2.19, USGS gage 07182250, 1963-2013) for the Neosho and 

Cottonwood Rivers, respectively. 

 

 Mesohabitat Patch Characteristics 

Environmental variables (i.e., wetted stream width, water depth, water velocity, and 

median substrate size) were measured at 20 randomly selected habitat patches (five in each of 

our four mesohabitat types) at each of our ten 3-km sites (Fig. 1.2b). If there were less than five 

patches of a particular mesohabitat type at a sample site, all patches of that mesohabitat type 

were sampled. The four major mesohabitat patches that we quantified in our study system were 

pools, riffles, runs, and glides. These channel units are described in detail elsewhere (McCain et 

al., 1990; Hawkins et al., 1993; Bisson et al., 2006). Pools have slow, deep, non-turbulent flow 

with fine substrate. Riffles have fast, shallow, turbulent flow in which the stream substrate 

breaks the surface. Runs (fast, non-turbulent flow, deeper than riffles) and glides (slow, non-

turbulent flow, shallower than pools) are intermediate in physical features. Wetted stream width 

was recorded using a Nikon 8398 range finder (<1 m accuracy, range 3-200 m) at the midpoint 

of each mesohabitat patch. At five equally-spaced sampling points along the cross-stream 

transect, water depth, water velocity, and median substrate sizes were quantified. Depth (m) was 

measured with a meter stick. Flow velocity (60% of the depth) was measured with a Marsh-

McBirney Model 2000 flowmeter. Substratum was classified using a modified Wentworth scale 

(Wentworth, 1922) ranging from 0 to 6 (0 = clay, 1 = silt, 2 = sand, 3 = gravel, 4 = pebble, 5 = 

cobble, 6 = boulder). A stepwise discriminant function analysis was used to evaluate if the 

mesohabitat patch types were distinct based on water depth, water velocity, and mean substrate 

size. Width was not included in the discriminant function analysis due to multicollinearity with 
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water depth. Environmental variables were log-transformed to satisfy statistical assumptions. A 

chi-square approximation of Wilks’ lambda (Manly, 1986) was used to evaluate the separation 

among mesohabitat patch types. A jackknife cross-validation procedure assessed accuracy in 

assigning mesohabitat patch types, based upon the environmental variables (MASS package; 

Venables & Ripley, 2002). 

 

 Mesohabitat Patch Distribution and Proportion 

We mapped interacting sequences of mesohabitat patches within each of our ten 3-km 

sampling sites to examine if discrete mesohabitat patches formed habitat mosaics that varied 

across sites. Sampling occurred during baseflow conditions (13.0-19.0 m3s-1; USGS gage 

07182250). During June-August, 2013, while kayaking downstream, we identified, measured 

and mapped the incidence and locations of mesohabitat patches based on agreement by two 

independent observers using an objective series of surface flow, channel morphology, and 

sediment composition criteria (McCain et al., 1990; Harvey & Clifford, 2009). 

We quantified size and location of mesohabitat patches by using trackplots at 5-s 

intervals and waypoints at the upper and lower boundary for each habitat unit from a handheld 

Garmin GPSmap76Cx (Garmin International, Olathe, KS). Trackplots and waypoints for each 

sample site were imported into ArcMap v. 10.2 (ESRI, Redlands, CA). Mesohabitat patches at 

each site were digitized into polygons in ArcMap 10 and stored as separate feature classes in the 

geodatabase. Each polygon layer was converted to raster format to visualize habitat for each of 

the sample sites. 
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 Fish Biodiversity-Sampling 

To quantify fish biodiversity, we captured fish using a two- person mini-Missouri trawl. 

In multiple and diverse publications from 2009-2016, the mini- Missouri trawl has been used to 

capture both small (Herzog et al., 2009; Driver & Adams, 2013) and large-bodied (Hintz et al., 

2016) fish across a variety of aquatic ecosystems including streams and large rivers (Harrison et 

al., 2014; Starks et al., 2015), lakes and impoundments (Fischer & Quist, 2014; Pratt et al., 

2016), coastal plains (Kirk et al., 2010) and island complexes (Hintz et al., 2015). The mini-

Missouri trawl is a two-seam slingshot balloon trawl covered with a 3.2 mm delta style mesh that 

can be used in wadeable and non-wadeable areas of the river (Herzog et al., 2009). We chose this 

gear to ensure consistent sampling across mesohabitats and study sites. In a gear experiment in 

the Neosho River, we found that the mini-Missouri trawl caught as many or more species than 

other common fish sampling gear (mini-Missouri trawl = 7 species, seine = 6 species; hoop nets 

= 6 species; backpack electrofisher = 4 species; Fencl personal communication). Within each 

mesohabitat patch that we sampled, two people pulled the trawl through a standard 30 m transect 

from upstream to downstream at a speed slightly faster than the current speed, as is advocated by 

the gear developers (Herzog et al., 2009). Captured fish were placed in an aerated live well, 

identified to species, enumerated, and then returned alive to the stream. We measured α diversity 

(Whittaker, 1972) in up to 5 of each type of mesohabitat at each sample site. Traditionally α 

diversity is measured at the site (or reach) scale and not broken into habitat components within a 

stream. Measuring α diversity within each mesohabitat allowed us to determine if keystone 

mesohabitats existed. 
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 Fish-Mesohabitat Relationships 

We used non-metric multidimensional scaling (NMDS) on two fish datasets, (abundance 

and presence-absence) to quantify species-habitat relationships within mesohabitats. In the 

abundance dataset, common species were dominant, whereas for presence-absence data, all 

species had equal influence (Legendre & Legendre, 1998). NMDS has been shown to be a robust 

technique for analyzing ecological data (Minchin, 1987) and has been used elsewhere to analyze 

distribution patterns (e.g., Heino et al., 2002; Kiernan et al., 2012). For the NMDS, we used a 

Bray-Curtis distance matrix that quantified the similarity among patches for which mesohabitat 

type was the factor (row) and fish assemblage (species abundance, species presence-absence) 

was the response variable (column). Data represented a standard 30 m sample. Separation for the 

species assemblage associated with each mesohabitat type was analyzed using analysis of 

similarity (ANOSIM) in which a p value < 0.05 indicated a unique species assemblage 

associated with a particular mesohabitat type. We used the metaMDS function (distance = bray) 

under package vegan in R (Oksanen et al., 2013). 

 

 Identifying Keystone Habitats 

We compared biodiversity patterns between isolated mesohabitats and mosaics 

(combinations of adjacent, connected interacting mesohabitats) using multiple graphic and 

statistical analyses. For these analyses, we imported the raster files of the habitat maps for each 

sample site into FRAGSTATS 4.1 (McGarigal et al., 2012). First, to assess if any mesohabitat 

type in our study area was limiting, we created barplots of the proportion of each mesohabitat 

type and mean patch size across sample sites. Second, to evaluate the effect of mesohabitat type 

on fish diversity, we compared mean species richness (aggregated by all species captured within 
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a particular mesohabitat type across all sample sites) for each mesohabitat type. Alternatively, to 

test if any mesohabitat type had a disproportionate effect on species richness (i.e., were keystone 

habitats) when availability of mesohabitats reflected natural field conditions, we created barplots 

of weighted species richness for each mesohabitat type (mean species richness within a 

mesohabitat shown in proportion to the availability of each mesohabitat across sample sites). 

Species richness-mesohabitat comparisons were analyzed using Kruskal-Wallis nonparametric 

tests for which mesohabitat type was the treatment and species richness was the response. 

Third, to quantify the role of mesohabitat patches within the mosaic (i.e., examining all 

mesohabitats combined rather than individual mesohabitats patches separately), we ran 

additional analyses. We used linear regression to test if habitat diversity (Shannon’s habitat 

diversity = regressor) affected mosaic species richness (response). We also ran four additional 

linear regressions to examine the effect of mesohabitat density (number of pools, riffles, runs, 

and glides per km2, respectively = regressors) on mosaic species richness (response). Finally, 

using multiple regression, we assessed the relative role of each mesohabitat using multimodel 

inference (AICc; Burnham and Anderson 2003) and the “glmulti” package in R (Calcagno, 

2013). For this last analysis, mosaic habitat heterogeneity and species richness were the response 

variables in two separate AICc analyses for which multiple regressors were patch densities of 

each of the four mesohabitat types. All possible combinations of regressors were included as 

candidate models. From these multiple regressions, we calculated model-averaged slope (β), a 

measure of effect size, and variable importance. If a single mesohabitat is more influential in the 

mosaic, the corresponding average slope and variable importance will be large compared to the 

other mesohabitats. For all analyses, statistical assumptions were tested. All analyses were 

performed using R (R Development Core Team, 2013). 
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 Results 

 Mesohabitat Characteristics 

Mesohabitat categories, based on a multivariate combination of depth, water velocity, and 

mean substrate size, were quantitatively distinct (Fig. 1.3a). The first and second discriminant 

functions accounted for 93.9% and 4.9% of the total variance associated with mesohabitat group 

dispersion, respectively (Fig. 1.3a). A low Wilks’ Lambda value (λ = 0.09, p < 0.001) indicated 

that our three mesohabitat-specific environmental variables effectively discriminated among 

riffle, run, pool, and glide mesohabitat categories. In a cross-validation of jackknifed 

mesohabitat-environmental variable scores, 87% of all mesohabitats were classified correctly. 

Pools were characterized by deep, slow-flowing water with relatively fine substrate (Fig. 1.3b). 

Riffles were the shallowest and fastest mesohabitats with the coarsest substrate (Fig. 1.3b). Runs 

had shallower intermediate depths with fast-flowing waters (Fig. 1.3b) whereas glides had deeper 

intermediate depths with slow-flowing water (Fig. 1.3b). 

 

 Mesohabitat Distribution and Proportion 

The number and type of mesohabitat patches varied across all ten 3-km sample sites (Fig. 

1.4a-j, Sites 1-10). The total number of patches per 3-km ranged from 17 (Fig. 1.4j, Site 10) to 

59 (Fig. 1.4b, Site 2). Riffle (mean = 6.3, range = 3-9 patches per site), and run mesohabitats 

(mean = 8.1, range = 2-16 patches per site) were present across all sites. In the Neosho River, 

glides (mean = 6.5, range = 0-18 patches per site) were an irregularly distributed (absent at 30% 

of sites) transitional habitat associated with riffles or pools (adjacent to pools 68-74%; adjacent 

to riffles 19-21%). The composition of stream mesohabitat varied across sites. Habitat diversity 
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(Shannon’s habitat diversity index) ranged from 0.85 to 1.53. The abundance of habitat types at 

each sample site differed (χ
2
 = 70.42, p < 0.001). The number of patches at dammed sites ranged 

from 17 (Fig. 1.4j, Site 10) to 40 (Fig. 1.4a, Site 1) and the number of patches at undammed sites 

varied from 19 (Fig. 1.4g, Site 7) to 59 (Fig. 1.4b, Site 2). Thus, mesohabitat patch combinations 

were variable at sites both with (Fig. 1.4a, d, e, h, j; Sites 1, 4, 5, 8, 10) and without dams (Fig. 

1.4b, c, f, g, i, Sites 2, 3, 6, 7, 9). Mesohabitats were not consistently different between dammed 

and undammed sites (W = 17, p = 0.42). 

 

 Fish-Mesohabitat Relationships 

We sampled a total of 7,791 fish representing 35 species across seven families at ten sites 

within the Upper Neosho River sub-drainage (Table A.1). Based on NMDS analyses, fish 

assemblages differed among mesohabitats for abundance (ANOSIM Global R = 0.24, p < 0.001; 

Fig. 1.5a) and presence absence datasets (ANOSIM Global R = 0.20, p < 0.001; Fig. 1.5b). The 

separation was greatest between riffles and other mesohabitats for both biodiversity datasets 

(Fig. 1.5). Specifically, riffles contained more species and more individuals that were riffle 

specialists (Central Stoneroller, Suckermouth Minnow; Table B.1, Fig. B.1), riffle generalists 

(Bluntnose Minnow Table B.1, Fig. B.1), riffle-run generalists Shiner (Red Shiner, Bluntface 

Shiner Table B.1, Fig. B.1), and generalists (Slenderhead Darter Table B.1, Fig. B.1). 

 

 Identifying Keystone Habitats 

Proportionally by area, pools were the most common mesohabitat and riffles were the 

least common mesohabitat across all sample sites (χ2 = 20.6, p < 0.001; Fig. 1.6a). Based on 

surface area, pools were also the largest mesohabitat, and, in general, were an order of magnitude 
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larger than riffles, runs, and glides (χ2 = 20.6, p < 0.001; Fig. 1.6b).  Mean species richness was 

not different for standard 30-m samples across mesohabitats (χ2 = 1.23, p = 0.54; Fig. 1.7a). 

However, when mean species richness was weighted by field mesohabitat availability, species 

richness was significantly higher in the riffle mesohabitat (χ2 =5.15, p < 0.001; multiple 

comparison: riffle > run, glide > pool; p < 0.05; Fig. 1.7b). 

For the entire suite of habitats at each of our sample sites (i.e., the mosaic), a significant, 

positive relationship existed between habitat diversity and species richness (r
2
 = 0.70; p <0.01; 

Fig. 1.8a). In univariate regressions, species richness increased with riffle patch density (r
2
 = 

0.47; p = 0.03; Fig. 1.8b) and to a lesser degree with glide patch density (r
2
 = 0.39; p = 0.07; Fig. 

1.8e). However, species richness did not increase with pool patch density (Fig. 1.8c) or run patch 

density (Fig. 1.8d). 

When the relative roles of individual mesohabitats were evaluated using multimodel 

inference, of all mesohabitats present within mosaics, riffles had the largest effect on habitat 

diversity (model averaged slope = 0.08; Fig. 1.9a) and species richness (model averaged slope = 

2.12, Fig. 1.9b). In both AICc analyses, variable importance was also much greater for riffles 

compared to other mesohabitats for habitat heterogeneity (riffles = 0.42, glides = 0.26, runs = 

0.07, pools = 0.13) and species richness (riffles = 0.55, glides = 0.28, runs = 0.09, pools = 0.09). 

 

 Discussion 

Our approach to understanding biodiversity-habitat relationships in spatially-connected 

ecosystems can increase the effectiveness of conservation in human-altered ecosystems. Several 

important take-home messages emerged from our research. First, combinations of environmental 

variables created discrete mesohabitat patches that formed varying patterns of connected mosaics 
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across the riverscape. This quantifiable physical template provided the structural foundation for 

the keystone habitat concept. Second, riffles functioned as keystone habitats because habitat 

mosaics that contained more riffle patches had disproportionally greater biodiversity. The mosaic 

approach was essential for detecting riverscape patterns. If we had not used this approach, which 

considered the arrangement and connections as well as the type and amount of mesohabitats, we 

would not have detected these patterns. Third, keystones (species versus habitats) share features 

but differ in organization and hierarchy. Consequently, a new conceptual framework, as we 

initiated here, is needed to advance the keystone habitat concept. Considered together, the 

insights from our research show that the keystone habitat concept can help researchers and 

environmental practitioners understand and manage responses to global change in human-altered 

ecosystems. Specifically, this underutilized concept can guide future research in spatial ecology, 

clarify how anthropogenic and climate disturbances affect biodiversity through habitat, and 

inform conservation. These take-home messages are discussed in detail below. 

 

 Discrete Habitat Patches Create Mosaics 

 For keystone habitats to exist, the landscape must include discrete habitat units (Forman 

and Godron, 1986; Turner et al., 2001). Mesohabitat types in our study were quantitatively 

separate based on variation in water depth, water velocity, and mean substrate size. Pool, riffle, 

and run mesohabitats are commonly used to classify stream habitats in other lotic systems across 

ecoregions (Hynes, 1970; Frissell et al., 1986; Hauer et al., 2011) and have been shown to be 

ecologically meaningful (Matthews et al., 1994; Schwartz & Herricks, 2008; Naskar et al., 

2015). Of course, natural habitats have also been quantified using continuous variables.  

However, our mesohabitats varied along continuous variables, pool, riffle, run, and glide were 
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categorically distinct in our system. Although differences existed in fish assemblages across all 

mesohabitats, our NMDS analysis showed that riffle assemblages were the most distinct. The use 

of distinct and discrete habitat patches paves the way for a while series of innovative conceptual 

frameworks such as we develop below. 

 

 Riverscape Patterns Would Not Have Been Detected Without the Mosaic Approach 

The mosaic approach allowed us to quantify the structure and function of keystone 

habitats. For example, when an individual habitat type has a greater effect on biodiversity than 

other habitat types because it interacts with the habitats surrounding it (e.g., creates habitat 

heterogeneity), then examination of habitat patches without consideration of surrounding habitats 

will misrepresent the overall effect of that habitat type. The majority of fish habitat studies have 

considered mesohabitats as separate, individual habitat types (Schlosser, 1982). Because the 

composition and configuration of patches affects biological patterns and processes (Pringle et al., 

1988; Lowe et al., 2006; Pichon et al., 2015), examining mesohabitat patches in the context of 

how they create mosaics of habitat across the landscape is essential. Mapping adjacent habitat 

patches across the landscape and linking community assemblage structure within and among 

patches is an important step to identifying keystone habitats. 

 

 Riffles Were Keystone Habitats 

In the Neosho River, riffles acted as a keystone habitat by disproportionately influencing 

fish species richness within collections of adjacent and interacting mesohabitats. Riffles 

constituted the least amount of available habitat in the study area. However, within mosaics, 

species richness was greater at sites with a higher density (# per km2) of riffles. Although glides 

influenced habitat heterogeneity in univariate regressions, multimodel inference on multiple 
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regression models showed that riffles were the dominant mesohabitat responsible for increased 

mosaic habitat diversity and species richness [i.e., larger effect sizes (slope) and larger variable 

importance compared to all other mesohabitat types].  

The higher overall species richness at locations with a higher density of riffles was not 

simply related to (a) the presence of more riffle species because species richness was not 

different across standard samples of individual mesohabitat types (pool, riffle, run, and glide), 

(b) a species-area relationship because riffle mesohabitat constituted the smallest and least 

common mesohabitat, by area, along the Neosho and Cottonwood Rivers, or (c) simply adding 

more habitats because an increase in run and pool patches did not yield the same increase in 

species richness. Riffles are prominent features in prairie streams (e.g., well oxygenated 

environments; Greig et al., 2007) that provide functions not found in other habitats.  These 

functions include specialized spawning and rearing habitat for many fish species (Teichert et al., 

2013) or refuges from fish predation (Schlosser, 1987). We speculate that these unique functions 

of riffles attract specialists, generalists, and other fish moving among mesohabitats. 

 

 Keystone Species vs. Keystone Habitats 

 At least three aspects of the well-developed keystone species literature could be directly 

transferable to the keystone habitat concept. First, using previous operational definitions of the 

keystone species concept (Power et al., 1996; Kotliar, 2000), we propose a detailed definition of 

a keystone habitat with the following hallmarks: 1) keystone habitats have a large effect on 

community structure (e.g. species richness), 2) the effects of keystone habitats are large relative 

to their availability, and 3) keystone habitats provide a function not performed by other available 

habitats. Second, keystone species traits are not ubiquitous across space and time (Mills et al., 
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1993; Menge et al., 1994) and keystone species are inherently context dependent (Christianou & 

Ebenman, 2005; Cottee-Jones & Whittaker, 2012). Likewise, complexity likely exists in 

widespread generalizations about keystone habitats. Third, consequences of both keystone 

concepts are substantial, in that both food webs with keystone species and landscapes with 

keystone habitats function differently than those without keystones. Neither food webs nor 

habitats can be understood, maintained, restored, or conserved without considering keystones. 

Keystones for species and habitats may be quite different, however, suggesting that many 

predictions about keystone species may not be directly applicable to keystone habitats. Species 

within a food web are linked in predictable ways relative to trophic role. As examples, predators 

have a clear hierarchical top-down connection to their prey, shared resources define the lateral 

position of competitors in a food web, and trophic position (via diets and isotopes) is the 

common currency for creating food webs. These energetic links impose an order on species 

within food webs that is the basis for much food web theory (e.g., food chain length). In contrast, 

we know very little about conceptual, functional, and geographic links that connect physical 

habitat types and fish communities across habitats. At present, a conceptual structure (network, 

web, or other) that applies to the composition and function of habitats across landscapes is 

lacking. Without this basic information on how habitat patches are functionally connected, many 

predictions about keystone species from food web theory are difficult to directly apply to 

keystone habitats. 

 

 Conservation Benefits 

Identifying keystone habitats is relevant to the understanding, conservation and 

restoration of biodiversity in disturbed ecosystems in that human and climate disturbances alter 
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habitats. Rivers are highly dynamic ecosystems consisting of a suite of habitat types, likely 

promoting resilience among aquatic communities under changing conditions. Human impacts 

(e.g., agriculture and urbanization) and climate change (IPCC, 2013) are predicted to alter some 

combination of water withdrawal, precipitation, and land use. As a result, these ubiquitous 

disturbances will alter the flow regime causing increased floods (Pall et al., 2011), increased 

droughts (Mishra et al., 2010; Cooke et al., 2015), decreased natural flow variation, and 

decreased hydrologic connectivity (Jaeger et al., 2014; Castello and Macedo, 2016). Climate 

change models for the U.S. Great Plains predict that more intense precipitation events will 

deliver the same amount of rainfall in a shorter time period (Meehl et al., 2005; Christensen et 

al., 2007), resulting in more extreme floods and longer droughts (IPCC, 2013). In the Neosho 

River, riffles promote higher habitat heterogeneity and maintain biodiversity. However, with 

more intense precipitation expected as a result of climate change (Meehl et al., 2005; Christensen 

et al., 2007), the hydrologic regime will be altered (e.g. extreme droughts and floods). Drought 

reduces overall habitat area, disconnects floodplain and mainstem habitats, limits access to 

critical spawning and refuge habitats by fragmentation (Stanley et al., 1997;  Magoulick & 

Kobza, 2003; Jaeger et al., 2014), and can alter functional community structure (Boucek & 

Rehage, 2014). Riffles are typically the first instream habitats to dewater during hydrologic 

drought. For example, a 1999 drought in West Virginia headwater streams caused a 96% 

reduction in stream discharge, a 52% reduction of riffle habitat area, but only a 2% reduction in 

pool habitat area (Hakala & Hartman, 2004). Not only do the impacts of hydrologic drought 

negatively impact the abundance and growth of riffle-dwelling species (Avery-Gomm et al., 

2014), but this extreme drying fragments the riverscape, resulting in a decrease in overall 

biodiversity (Lake, 2003). At the other extreme of disturbance, periods of intense precipitation 
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are expected to increase discharge, raise water levels, and also eliminate riffle habitat through 

flooding (de Almeida et al., 2011). Keystone habitats, identified through a mosaic approach, 

provide a scientific foundation for addressing these disturbance-related, global conservation 

problems (agriculture, urbanization, water withdrawal, and climate). 

 

 Summary 

 The mosaic approach and keystone habitat concept could have broad generality to other 

organisms and ecosystems through the implementation of relatively simple conceptual and 

empirical extensions. Many organisms use multiple habitats (Law & Dickman, 1998; Dahlgren 

& Eggleston, 2000; Rosenberger & Angermeier, 2003). These specific habitats serve different 

functions such as spawning or nesting habitats (Isaak et al., 2007; Hagen et al., 2013), nursery 

habitats (Barceló et al., 2016), movement corridors (Machtans et al., 1996; Blẚzquez-Cabrera et 

al., 2016) or biogeochemical hotspots (McClain et al., 2003; Lautz & Fanelli, 2008; Bernhardt et 

al., 2017). Future research that examines both if these individual habitats function differently, 

whether some habitats may be disproportionally important, and if the arrangement of habitats 

changes the ecological outcome can advance both science and conservation. 

Only a few examples of keystone habitats exist at present, but here, we have initiated a 

framework that can expand the keystone habitat concept to other ecosystems. For example, our 

approach outlines how to identify critical habitat that maintains biodiversity: (1) evaluate 

whether individual habitat patches are unique and discrete physical entities, (2) demonstrate 

through habitat surveys that individual mesohabitats create clear and diverse mosaics of habitat 

along the stream channel, (3) assess habitat-biodiversity relationships for individual habitat 

patches, and (4) compare biodiversity patterns in individual mesohabitats to integrated habitat 
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mosaics. Identifying the distribution, arrangement, and function of habitat patches across a wide 

collection of landscapes is the next step in the development of the keystone habitat concept for 

other ecosystems. Consequently, evaluating biodiversity response to the habitat mosaic can add a 

new dimension to spatial ecology and increase the effectiveness of conservation in a range of 

ecosystems impacted by global changes. 
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Figure 1.1. Conceptual figure of research including overarching question, specific research questions, predictions, goals, and 

implications. Determining physical differences of mesohabitats (Q1) is a precursor to mapping site-specific mosaics (Q2). For 

these isolated and connected physical habitat templates, we measured isolated mesohabitat (Q3) and connected mosaic (Q4) 

biodiversity. To advance future research, we ask if the extensive literature on keystone species can guide future keystone 

habitat research (Q5). As a result of our research, conservation planning for impacted habitats can be more effective. 
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Figure 1.2. Map of study area including (a) Neosho River within the state of Kansas, and 

(b) ten 3-km sampling sites within the Upper Neosho River sub-drainage along the Neosho 

and Cottonwood Rivers, KS below five low-head dam sites (black dots) and at five 

undammed sites (gray dots). Note: habitat below dammed and undammed sites was not 

statistically different. 
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Figure 1.3. An evaluation of three environmental variables (water depth, flow velocity, 

substrate size) is shown to quantitatively assess if mesohabitats were discrete. A biplot (a) 

of the first two axes of the linear discriminant function analysis shows the discriminant 

function statistic (Wilk’s lambda), which was used to show the separation among 

mesohabitat types. Three-dimensional scatterplots (b) of environmental variables (x-axis 

velocity, y-axis substrate, z-axis depth) for each mesohabitat category. Pool, riffle, run, and 

glide mesohabitats are indicated in blue, green, red, and purple. 
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Figure 1.4. Maps illustrating habitat mosaics (composed of variable patterns of pool, riffle, run, and glide mesohabitats 

indicated in blue, green, red, and purple patches) at ten sample sites within our Upper Neosho River sub-drainage study 

location. Sites include (a) #1-Riverwalk, (b) #2-Reference 1, (c) #3-Reference 2, (d) #4-Ruggles, (e) #5-Emporia, (f) #6-

Reference 3, (g) #7-Reference 4, (h) #8-Soden, (i) #9-Reference 5, (j) #10-Cottonwood Falls. Maps were oriented to fit within 

figure.  The white arrow indicates true north. 
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Figure 1.5. Non-metric multidimensional scaling biplots for (a) abundance for entire fish 

community (stress = 0.197; ANOSIM Global R = 0.24, p < 0.001) and (b) presence-absence 

for entire fish community (stress = 0.259; ANOSIM Global R = 0.20, p < 0.001) at ten 

sample sites located along the Neosho and Cottonwood Rivers, KS. Ellipses indicate 95% 

confidence intervals.  Pool, riffle, run, and glide mesohabitats are indicated in blue, green, 

red, and purple. 
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Figure 1.6. (a) Stacked bar plot of the relative proportion of mesohabitats (pool, riffle, run, 

glide) at each of ten sample sites along the Neosho and Cottonwood Rivers, KS. (b) Mean 

patch size (ha) for each mesohabitat type. Pool, riffle, run, and glide mesohabitats are 

indicated in blue, green, red, and purple. 
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Figure 1.7. (a) Mean species richness (# of individual species / 30 m transect) across 

mesohabitats and species richness weighted by the proportion of each mesohabitat. Errors 

bars represent 2 SE. Asterisks denote statistical significance (α = 0.05; Kruskal-Wallis test 

and multiple comparisons). 
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Figure 1.8. Regression plots of species richness (Y) and (a) habitat diversity (Shannon’s H’), (b) riffle density, (c) pool density, 

(d) run density and (e) glide density at ten sample sites along the Neosho and Cottonwood Rivers, KS. Trend lines were added 

where regression analysis revealed significant relationships (α = 0.05). 
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Figure 1.9. Multimodel inference results shows that riffles are keystone habitats and have 

the largest influence (i.e., slope) on habitat diversity (Y) and species richness (Y) in the 

context of all mesohabitats (X1-X4) in multiple regressions.  Shown are model-averaged 

slopes for the responses (a) habitat diversity, measured as Shannon’s H’, and (b) species 

richness.   
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Chapter 2 - Habitat mosaics and path analysis can improve 

biological conservation of aquatic biodiversity in ecosystems with 

low-head dams 

 Abstract 

Conserving native biodiversity depends on restoring functional habitats in the face of 

human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades 

aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact 

habitat and associated biodiversity, our research examined complex interactions among three 

spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic 

habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-

like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations 

downstream of low head dams also have important consequences, but these downstream dam 

effects are more challenging to detect. In a multidisciplinary field study at five dammed and five 

undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of 

habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of 

covariance and path analysis). We used fish as our example of biodiversity alteration. Our 

research provided three insights that can aid environmental professionals who seek to conserve 

and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a 

mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of 

riffles) that were not detected using the more commonly-used transect sampling approach. 

Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in 

stream habitat.  Third, path analysis, a statistical approach that tests indirect effects, showed how 
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dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head 

dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased 

fish species richness. Furthermore, the pool habitat that was created above low-head dams 

dramatically decreased fish species richness. As we show here, mosaic habitat sampling and path 

analysis can help conservation practitioners improve science-based management plans for 

disturbed aquatic systems worldwide. 

 

 Introduction 

Managing the adverse impacts of low-head dams on aquatic biodiversity is an urgent but 

complex biological conservation challenge that requires combining insights from the 

hydrosphere, biosphere, and anthroposphere (Cooper et al., 2017). Low-head dams (< 4 m in 

height) are ubiquitous worldwide with as many as 2 million of these small barriers fragmenting 

river ecosystems in the U.S. alone (Graf, 1993; Poff et al., 1997). In spite of the widespread 

distribution of these disturbances, the ecological effects of low-head dams on riverine 

ecosystems remain poorly understood (Benstead et al., 1999; Poff and Hart, 2002; Fencl et al., 

2015). Creation of upstream, lake-like reservoir habitats and the consequent reduction of native 

biodiversity are well-documented hydrological and biological impacts of low-head dams (Ward 

and Stanford, 1979; Watters, 1996; Santucci et al., 2005; Fencl et al., 2017). However, changes 

in habitat and biota downstream of low-head dams can also have important impacts on natural 

communities and ecosystems. These downstream dam effects are often more challenging to 

detect (e.g., Fencl et al., 2017). Here we evaluate how man-made low-head dams impact habitat 

and associated native biodiversity (Fig. 2.1) by comparing two approaches to quantifying habitat 

(mosaic and transect) and two statistical analyses [analysis of covariance (ANCOVA) and path 
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analysis]. Additional tools for detecting low-head dam impacts on habitat and biodiversity will 

help conservation efforts of state and federal environmental agencies that seek to monitor, 

manage, repair, or prioritize the removal of low-head dams (Bellmore et al., 2016; Tullos et al., 

2016).  

 Environmental professionals increasingly seek to understand and manage the effects of 

low-head dams (Gillette et al., 2005; Santucci et al., 2005; Slawski et al., 2008). Low-head dams 

have been shown to directly impact lotic ecosystems by fragmenting stream corridors (Dodd et 

al., 2003; Chick et al., 2006), altering the natural flow regime (Poff et al., 1997; Csiki and 

Rhoads, 2010; Yan et al., 2013) or blocking the dispersal of aquatic organisms (Benstead et al., 

1999; Helfrich et al., 1999; Rahel, 2007). As climate change continues to degrade lotic systems 

(Beatty et al., 2017), dam repair and removal will be implemented globally to restore 

connectivity and improve fluvial health (Tonra et al., 2015). Since most dams are relatively small 

structures (Bellmore et al., 2016), evaluation of low-head dam impacts, as we provide here, is 

critical to the success of dam repair and removal efforts (Poff and Hart, 2002). A focus on habitat 

and landscape metrics to understand dam effects on biodiversity is essential for effective 

watershed management (Cheng et al., 2016). 

A transect approach assesses habitat conditions at regular intervals (e.g., transects or 

other repeated data collection units) over a spatially extensive area (Platts et al., 1983; Fitzpatrick 

et al., 1998; Hauer and Lamberti, 2007). This commonly used approach to habitat sampling 

measures point-specific environmental characteristics (e.g., width, depth, velocity, and substrate) 

at systematically-placed sampling points along the stream channel (Simonson et al., 1994; 

Fitzpatrick et al., 1998). For example, transects can be spaced two-three times the mean stream 

width (Krause et al., 2013) for an extent of 13-20 transects (Simonson et al., 1994) or up to 35 
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stream widths (Lyons, 1992). Transects have also been used within specific habitat units 

(Tiemann et al., 2004; Weaver et al., 2014), typically for habitats > 50% of the channel width 

(e.g. Fitzpatrick et al., 1998). An advantage of the habitat transect approach is that this 

frequently-used method maximizes repeatability and precision of measurements at regular, 

representative intervals over a large spatial scale while minimizing subjective bias (Platts et al., 

1983; Simonson et al., 1994; Fitzpatrick et al., 1998). Disadvantages of the transect approach are 

that this method emphasizes the dominant habitat, may fail to detect underlying heterogeneity 

created by less common habitat patches, and can miss connections and interactions among 

habitat patches that may be important for biodiversity.  

The mosaic approach provides an alternative method for quantifying habitat. Lotic 

ecosystems can be viewed as mosaics (defined as interconnected habitat patches) that 

individually vary in structure and function and together create complex but predictable patterns 

of heterogeneity (Hitchman Chapter 1). Consequently, the mosaic approach quantifies type and 

arrangement of aquatic mesohabitat patches (e.g., pool, riffle, run, and glide; Jowett, 1993) that 

individually have been linked to aquatic community structure (Yeiser and Richter, 2015; Cheek 

et al., 2016). An advantage of the mosaic approach is that this method considers compositional 

and configurational metrics that can detect underlying ecological patterns for both common and 

uncommon habitat patches. Because the spatial configuration and composition of patches affect 

biological patterns and processes (Pringle et al., 1988; Lowe et al., 2006; Pichon et al., 2016), 

viewing streams as a connected habitat mosaic may improve the chances of detecting 

downstream impacts of anthropogenic disturbances, such as low-head dams, on both the 

hydrosphere and biosphere.  
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Choice of statistical approach can affect the ability of environmental professionals to 

detect low-head dam impacts on habitat and biodiversity. Most common statistical approaches 

assume direct effects between independent and dependent variables (e.g. general and generalized 

linear models including analysis of variance, ANCOVA, multiple regression; Dodd et al., 2003; 

Greathouse et al., 2006) or identify direct patterns related to multiple variables (e.g. ordination 

analyses including non-metric multidimensional scaling, canonical correspondence analysis; 

Helms et al., 2011, Chu et al., 2015; Hastings et al., 2016). Less often used are statistical 

techniques that quantify both direct and indirect effects including how independent variables 

affect a response variable as mediated through a third set of variables (e.g., path analysis). When 

used, path analysis has provided new information about how stream flow metrics (Bruder et al., 

2017), land-use (Taka et al., 2016), and beaver dams (Smith and Mather, 2013) affect aquatic 

communities and ecosystems. Most researchers do not set out to look for mediated statistical 

effects when studying dam impacts on biodiversity and habitat alteration, but this less frequently-

used approach to statistical analysis may provide new ecological understanding about subtle but 

important downstream effects of low-head dams. 

Here we tested four research hypotheses (Fig. 2.1) using fish species richness as a proxy 

for biodiversity. First, do transect and mosaic approaches provide different research and 

conservation insights about habitat patterns below low-head dams compared to undammed sites 

(Q1)? We predicted that mosaics of common and rare habitats will better distinguish dammed 

from undammed sites because of increased resolution. Second, as an extension of the previous 

question, do dammed and undammed sites differ in habitat variability (Q2)? Because many 

human impacts simplify the environment, we predicted that dams could reduce natural habitat 

variability. Third, using a frequently-used general linear model, ANCOVA, do transect and 
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mosaic habitat approaches show different dam-habitat-fish biodiversity patterns downstream of 

dams and at undammed sites (Q3)? As noted above, we predicted that the additional resolution 

provided by habitat mosaics would better discriminate fish biodiversity patterns at dammed and 

undammed sites. Fourth, for both transect and mosaic habitat data, does a less-common statistical 

approach that can detect mediated effects (e.g., path analysis) provide new knowledge about 

dam-habitat-fish relationships both downstream (Q4a; dammed vs. undammed site comparisons) 

and upstream of dams (Q4b; upstream vs. downstream of low-head dam)? In this research, our 

focus was primarily on impacts downstream of dams. However, because habitat alteration is a 

conservation concern both upstream and downstream of dams, we also included the upstream-

downstream comparison as a way to ground truth the path analysis approach on a well-

documented dam impact (Q4b). In addition, combining upstream and downstream alterations 

allowed us to assess the basin-wide implications of these co-occurring dam-effects. 

 

 Materials and Methods 

 Study Area 

Our study was conducted along the upper Neosho River and lower Cottonwood River, 

two 5th order streams located within the Upper Neosho River basin (UNRB), KS, USA. The 

UNRB drains approximately 7,770 km2 upstream of the John Redmond Reservoir in Morris, 

Lyon, and Chase Counties, KS. Flow within the UNRB is influenced by six intact low-head 

dams which impound approximately 14,000 km2 of water (Fencl et al., 2015). The Upper 

Neosho and Cottonwood Rivers lie predominately on Permian age limestone and shale bedrock 

overlain by Quaternary alluvium (Juracek and Perry, 2005). Land use is dominated by row-crop 

agricultural fields and characterized by small riparian zones (Tiemann et al., 2004). Baseflow 
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conditions (5.0-32.0 m3/s, Neosho River, USGS gage 07179730; 13.0-19.0 m3/s Cottonwood 

River, USGS gage 07182250) were similar at the time of sampling. 

 

 General Sampling Regime 

Sampling occurred during baseflow conditions at five low-head dam sites and at five 

undammed sites (Fig. 2.2). With this design, we sampled all intact low-head dams in the UNRB 

except for Correll Dam (between sites 3 and 4) to which we were denied access by the 

landowner. Our sites were constrained by large, Army Corp of Engineers dams at Council Grove 

and Marion Reservoirs at the upper boundaries of the Neosho and Cottonwood Rivers, 

respectively and by the John Redmond Reservoir at the lower boundary of the study area. For 

this purpose, we distinctly use the term “undammed” to refer to sites that are not in close 

proximity to low-head dams (> 5km) instead of terms suggesting natural or control locations. 

The term “dammed” referred to low-head dam sites. Dammed (1, 4, 5, 8, 10) sites were 

interspersed with undammed sites (2, 3, 6, 7, 9) and separated by at least 5 km. Because 

geomorphological footprints of the low-head dams within the study area are less than 2 km 

(Fencl et al., 2015), this separation of > 5 km between dammed sites and undammed ensured that 

the undammed sites were outside of the immediate dam impact zone while still close enough to 

share similarity in geomorphology and other site-specific characteristics. Six sites (1-6) were 

located along the Upper Neosho River (Fig. 2.2). Site 7 was located just below the confluence of 

the Neosho and Cottonwood Rivers (Fig. 2.2). Three sites (8-10) were located on the 

Cottonwood River (Fig. 2.2). A Chi-square test found no significant differences in mesohabitat 

between the Neosho and Cottonwood Rivers (χ
2
 = 2.42; p = 0.49, Fig. 2.3). 
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 Specific Sampling and Analyses 

 Habitat transect sampling (Q1) 

Habitat transect surveys were used to collect wetted width, water depth, and flow 

velocity. We measured wetted stream width using a Nikon 8398 range finder (<1 m accuracy, 

range 3-200 m) at the midpoint of each mesohabitat unit (e.g. pool, riffle, run, glide). Next, using 

the wetted width, we selected five equally-spaced points across the midpoint of each habitat unit 

to measure depth (cm) and flow velocity (cm/s). Flow velocity was measured at 60% of the 

depth and at the substratum interface using a Marsh-McBirney Model 2000 flowmeter. From 

these measurements, we calculated means (water depth, flow velocity) to use in our statistical 

analyses (Table 2.1). 

 

 Habitat mosaic sampling (Q1) 

For our habitat mosaic approach, we continuously mapped sequences of four 

mesohabitats (pool, riffle, run, and glide) for 3 km at each of the study sites. For safety, the 

starting point for sampling was 100 m downstream of the dam (at dammed sites). To quantify 

mesohabitat, we kayaked from upstream to downstream and identified, measured, and mapped 

the number, location, and size of mesohabitats along the mainstem. We identified discrete 

mesohabitats through agreement by two independent observers, based on an objective series of 

surface flow, channel morphology, and sediment composition criteria (Bisson et al., 1981; 

McCain et al., 1990; Harvey and Clifford, 2009). Mesohabitats were quantified using trackplots 

at 5-s intervals and waypoints at the upper and lower boundary for each habitat unit from a 

handheld Garmin GPSmap76Cx (Garmin International, Olathe, KS). Trackplots and waypoints 

for each sample site were imported into ArcGIS v. 10.2 (ESRI, Redlands, CA). Mesohabitat 
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units at each site were digitized into polygons in ArcGIS and stored as separate feature classes in 

the geodatabase. Each polygon layer was converted to raster format to visualize the habitat 

mosaic for each of the ten sample sites. 

 

 Creating habitat mosaic variables (Q1) 

We used landscape ecology methods (Palmer et al., 2000; Wiens, 2002), calculated in 

FRAGSTATS 4.1 (McGarigal et al., 2012), to quantify the spatial heterogeneity created by the 

mosaic of mesohabitats. Each ArcGIS planform map was converted from a polygon-based 

feature file to a raster format and inputted into FRAGSTATS. Specifically, at each 3-km site, we 

calculated: 1) habitat diversity, 2) number of mesohabitat patches, 3) proportion of each 

mesohabitat, and 4) mean area of each mesohabitat at three different scales (patch-level, class-

level, landscape-level; Table 2.1). In this study, patches equate to individual mesohabitats, 

classes represent each mesohabitat type, and landscape corresponds to each of our ten sample 

sites.  

Habitat diversity was calculated as Shannon's Diversity Index (McGarigal and Marks, 

1995), an ecologically meaningful spatial heterogeneity index that has been used in other aquatic 

systems (Yarnell, 2005; Yarnell et al., 2006; Drakou et al., 2009). Habitat diversity incorporates 

both evenness (distribution of areas between patch types) and richness (number of patch types) to 

determine the overall diversity of patch types. Number of patches at each site and the proportion 

of mesohabitat at each site were calculated to evaluate whether mesohabitat composition was 

different below low-head dams compared to undammed sites. Number of patches and proportion 

of pools and riffles along the stream have been shown to influence stream biota (Barbour et al., 

1999; Rashleigh et al., 2005; Rowe et al., 2009; Pyron et al., 2011). Number, area, and 
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proportion of specific mesohabitat types are ecologically related but provide different pieces of 

habitat information. For example, even if the area of riffles is larger at some sites, proportion of 

riffles may or may not change depending on total stream area and size/frequency of other 

mesohabitats. 

 

 Transect vs. mosaic habitat - data analysis (Q1; Fig. 2.1) 

To examine differences between dammed and undammed sites, we used two sets of 

Wilcoxon signed-rank tests (for habitat transect and habitat mosaic data, respectively). The 

signed-rank test is a non-parametric analysis used to test differences in a response variable 

between two groups (here dammed and undammed sites). Boxplots helped visualize the results. 

In these analyses, the presence/absence of a dam was the treatment and the response variables 

were wetted width, water depth, flow velocity (for habitat transect data) or habitat diversity, 

number of mesohabitat patches, and proportion of mesohabitats (for habitat mosaic data).  

 

 Low-head dam effects on habitat variability (Q2; Fig. 2.1) 

To investigate whether low-head dams altered the natural variability in stream habitat 

diversity across sites, we bootstrapped empirically-derived, site-specific habitat diversity 

measures to estimate standard deviations in habitat diversity for dammed and undammed sites. 

First, as described above, we used empirical estimates of abundance and distribution of 

mesohabitats to calculate Shannon's Diversity Index at each site. Next, we ran 99 permutations 

of a bootstrapping procedure. For each permutation, we calculated standard deviations of 

Shannon’s Diversity for randomly selected empirical data from three dammed sites and three 

undammed sites. Finally, we used a Wilcoxon test to quantitatively compare differences in 
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variation in habitat diversity (standard deviation of Shannon's Diversity Index) at dammed and 

undammed sites. 

 

 Fish sampling   

Fish were sampled using a two-person mini-Missouri trawl at 20 randomly selected 

mesohabitat units (five pools, five riffles, five runs, five glides) at each of the ten study sites 

described above. In cases where there were less than five mesohabitat units of a particular type, 

all units of that mesohabitat type were sampled. The mini-Missouri trawl is a two-seam slingshot 

balloon trawl covered with a 3.2 mm delta style mesh (Herzog et al., 2009) that can be used in 

wadeable and non-wadeable areas. This construction ensured consistent sampling across 

mesohabitats and study sites. To sample with the mini-Missouri trawl, two people pulled the 

trawl while wading from upstream to downstream at a speed slightly faster than current speed as 

is proposed by the creators of this gear. Our tows were standardized to 30 m. All captured fish 

were placed in an aerated live well, identified to species, enumerated, and then returned alive to 

the stream. Because the number and length of trawls were the same in all habitats and at all sites, 

fish estimates (number / trawl) were comparable. We used this fish biodiversity data set (below 

dams and at undammed sites) to compare habitat sampling (transect vs. mosaic) using both 

statistical analyses (ANCOVA vs. path analysis).  

 

 Transect vs. mosaic habitat at dammed and undammed sites (Q3; Fig. 2.1) 

 We used an ANCOVA to compare the effect of a categorical factor (dam-no dam) on a 

dependent variable (species richness) while controlling for the effect of continuous covariates 
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(transect and mosaic habitat metrics). Fish abundances were log transformed to satisfy 

parametric assumptions of this analysis. 

 

 Transect vs. mosaic habitat at dammed and undammed sites (Q4a; Fig. 2.1) 

We also used path analysis to test how downstream species richness was influenced by 

habitat at dammed vs. undammed sites. Path analysis analyzes the complex networks of causal 

relationships in ecosystems (Shipley, 2002; Grace, 2006) using partial regressions to establish 

strengths of interactions among sets of variables while accounting for other interactions within 

the dataset. Standardized path coefficients (standardized β) indicate the strength of relationships 

and R
2
 quantify the amount of variation explained by specific sets of variables. We avoided 

multicollinearity by removing models with high variance inflation factors (VIF) > 10 (Borcard et 

al., 2011). For the downstream of dam - undammed site path analysis, we used all sample sites (n 

= 10). Dam was the exogenous variable, habitats were the endogenous, mediated variables, and 

fish species richness was the response variable. We used the library lavaan with function sem in 

R (Rosseel, 2012). 

 

 Transect vs. mosaic habitat upstream and downstream of dams (Q4b; Fig. 2.1) 

We also sampled fish and habitat for 3 km above all low-head dams using transect and 

mosaic approaches. Since the impounded area above the dams consisted entirely of pool habitat, 

we modified our sample design to ensure a complete assessment of fish biodiversity. Beginning 

0.2 km upstream of the dam (for safety purposes), we sampled along transects spaced every 0.2 

km to the 1 km above the dam, then every 0.5 km until we reached 3 km above the dam (except 

at Riverwalk Dam where the impoundment only reached 2 km above the dam). Wetted width 
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was collected using a Nikon 8398 range finder (<1 m accuracy, range 3-200 m) at each sample 

point. Depth was collected using a depth finder (Lowrance X-4 depth finder). We were unable to 

accurately measure flow velocity because greater depths prevented us from positioning the 

flowmeter at the required 60% interval. Fish were sampled using a mini-Missouri trawl attached 

to the bow of a jon boat with a lead line of 8 m and doors affixed to the bridle to keep the mouth 

of the net from tangling during deployment. Sampling occurred from upstream to downstream at 

a pace of ~6 km/hr for 100 m. Fish were identified to species, enumerated, and returned alive to 

the stream. For the upstream-downstream path analysis (Q4b), we used all dam locations (n = 5). 

Dam was the exogenous variable; habitats were endogenous, mediated variables, and fish species 

richness was the response variable. All analyses were performed using R (R Development Core 

Team 2013). Throughout we report p-values and clearly state comparisons made (Wasserstein & 

Lazar 2016).  

Finally, we mapped the geomorphic dam footprint (both upstream and downstream) for 

the five low-head dams in our study area to depict synthetic basin-wide impacts of low-head 

dams on habitat. Methods for the geomorphic dam footprint calculations are described in detail 

elsewhere (Fencl et al., 2015). 

 

 Results 

 Transect vs. mosaic habitat data (Q1) 

 Habitat transect approach  

Differences in means of habitat transect variables were relatively small downstream of 

dams compared to undammed sites (Fig. 2.4a-c). Width was the only habitat transect variable 

that was significantly different (W = 2261, p < 0.001; Fig. 2.4a). Specifically width was greater 
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below dams than at undammed sites. The other two habitat transect variables, depth (W = 1677, p 

= 0.69; Fig. 2.4b) and velocity (W = 1552, p = 0.76; Fig. 2.4c), were not significantly different 

between dammed and undammed sites.  

 

 Habitat mosaic approach 

Differences in means of habitat mosaic variables revealed several novel results about the 

effects of low-head dams on stream habitat (Fig. 2.4d-f). Although we found no significant 

difference in mean habitat diversity below dams relative to undammed locations (W = 15.2, p = 

0.60; Fig. 2.4d), the proportion of riffle (W = 25, p < 0.05; Fig. 2.4e) and area of riffle habitat (W 

= 684, p = 0.01; Fig. 2.4f) were significantly higher below dams compared to undammed 

locations. This result showed that the critical riffle habitat both increased in size and comprised a 

larger proportion of the total stream mosaic relative to other mesohabitats at dammed sites 

compared to undammed sites. 

 

 Low-head dam effects on habitat variability (Q2) 

Although mean habitat diversity did not differ (Fig. 2.4d), dammed sites had less 

variation in stream habitat diversity than undammed sites (Fig. 2.5). Specifically, undammed 

sites had a significantly higher mean standard deviation in habitat diversity (i.e., more varied and 

more variable habitat) than dammed sites (χ2= 50.57, p < 0.001), such that low-head dams 

depressed natural variability in habitat. 
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 Transect vs. mosaic habitat; fish biodiversity (Q3) 

We captured a total of 8,033 fish representing 36 species encompassing 18 genera 

upstream and downstream of five low-head dam sites and five undammed sites along the UNRB 

(Table 2.2). Using an ANCOVA on habitat transect data, we found no significant relationship 

between species richness and habitat and no significant relationship between species richness and 

the presence of dams (Fig. 2.6a-c). Specifically, slopes were neither significantly different from 

zero nor different between dammed and undammed sites for species richness using width 

[habitat (F = 0.05; df = 3, 6;  p = 0.83); dam treatment (F = 0.01; df = 3, 6; p = 0.95); Fig. 2.6a], 

depth [habitat (F = 0.25; df = 3, 6; p = 0.64); dam treatment (F = 0.60; df = 3, 6; p = 0.47); Fig. 

2.6b], or  flow velocity [habitat (F= 0.09; df = 3, 6; p = 0.78); dam treatment (F = 1.45; df = 3, 6; 

p = 0.27); Fig. 2.6c].  

Using ANCOVA on habitat mosaic data, we found no statistical differences between 

dammed and undammed sites, but we did find significant habitat-fish relationships (Fig. 2.6d-f). 

Increases in habitat diversity [habitat (F= 9.81; df = 3, 6; p = 0.02); dam treatment (F= 0.52; df = 

3, 6; p = 0.50); Fig. 2.6d], and proportion of riffle habitat [habitat (F= 10.92; df = 3, 6; p = 0.02); 

dam treatment (F= 0.48; df = 3, 6; p = 0.52); Fig. 2.6e] increased fish species richness. 

Proportion of pool habitat marginally decreased species richness [habitat (F= 4.56; df = 3, 6; p = 

0.08); dam treatment (F= 0.18; df = 3, 6; p = 0.68); Fig. 2.6f]. 

 

 Transect vs. mosaic habitat at dammed and undammed sites (Q4a) 

 Habitat transect data - below dams 

No significant, mediated effects of low-head dams on fish species richness were detected 

using habitat transect data (Fig. 2.7a). Specifically, using path analysis, dams affected the habitat 
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transect variable, width, in that wider stream channels occurred downstream of dams (R
2
= 0.11; 

p < 0.001; left and middle columns). However, dam-related width changes did not significantly 

influence fish species richness (Fig. 3.7a; middle and right columns). Depth and velocity were 

inversely proportional to species richness (R
2
 = 0.07; p < 0.05; Fig. 2.7a, middle and right 

columns), but were not significantly different between dammed and undammed sites (Fig. 2.7a; 

left and middle columns). 

 

 Habitat mosaic data - below dams 

Path analysis revealed strong and significant mediated effects of low-head dams on 

species richness using habitat mosaic data (Fig. 2.7b). Sites below low-head dams had 

significantly higher proportions of riffle habitat (R
2
 = 0.33; p < 0.03, Fig. 2.7b, left and middle 

columns), and strong and positive relationships also existed between the proportion of riffle 

habitat and fish species richness (R
2
 = 0.85; p < 0.001, Fig. 2.7b, middle and right columns). 

Habitat diversity and proportion of pool were related to species richness (Fig 2.7b, middle and 

right columns), but were not consistently different between dammed and undammed sites (Fig. 

2.7b, left and middle columns). 

 

 Transect vs. mosaic habitat upstream and downstream of low-head dams (Q4b) 

Path analysis also detected differences in fish biodiversity among sites upstream and 

downstream of dams using habitat mosaic but not habitat transect data. Low-head dams reduced 

fish biodiversity directly (R
2
 = 0.96; p < 0.001; Fig. 2.7c; bottom solid arrow). Low-head dams 

also reduced fish species diversity through an increase in the mediated habitat variable, 



63 

proportion of pool, above the dam (R
2
 = 0.73; p < 0.001; Fig. 2.7c; top arrows left, middle, right 

columns). 

 

 Basin-wide dam impacts 

Downstream dam-impacts on habitat extended < 2 km (Fig. 2.8 – red lines), but the 

geographic extent of upstream low-head dam impacts on habitat was greater (2-14 km; Fig. 2.8 – 

yellow lines). Together upstream and downstream dam effects had a basin-wide impact much 

greater than that suggested by the dam barriers alone. For example, in the UNRB, 17% of the 

basin area was affected by upstream or downstream dam habitat alterations (Fig. 2.8). 

 

 Discussion 

The mosaic approach provided new information about changes in habitat and fish 

biodiversity downstream of low-head dams. By incorporating the separate and combined effects 

of both common and uncommon habitats, the mosaic approach generated a new type of 

ecologically-meaningful habitat variable (e.g., habitat diversity, number, size, proportion of 

habitats). Mosaic habitat variables detected the interacting nature of habitat patches, which can 

benefit biological conservation in aquatic ecosystems that contain low-head dams. For example, 

a mosaic approach revealed that both overall area of riffle habitat and the proportion of riffle 

increased downstream of low-head dams. The behavior of these two different, but related, 

mosaic metrics indicated that, at dams, riffles increased in size and also increased in proportion 

to other stream mesohabitats. In contrast, for our transect data, only stream width (created by 

scour created below the low-head dams) was significantly different between dammed and 

undammed sites. Riffles can be keystone habitats that promote greater overall habitat diversity 
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and fish biodiversity in prairie streams (Hitchman Chapter 1). Thus, our use of the mosaic 

approach identified the importance of this mesohabitat within the context of the adjacent 

mesohabitats that comprise the stream mosaic. 

Another insight that our use of the mosaic approach identified was that low-head dams 

consistently dampened variation in habitat diversity associated with free-flowing lotic 

ecosystems. Habitat variability is essential for the structure and function of ecological systems 

and the patterns of biodiversity (Poff et al., 1997; Naiman et al., 2008). Sampling meaningful 

variability that drives biodiversity patterns remains challenging for field biologists, but is 

essential for ecosystem function (Puckridge et al., 1998; Naiman et al., 2008). Ours is not the 

only study to document a decrease in environmental variability due to large and small dams. For 

example, the Colorado River in northern Arizona was historically a turbid system with extremely 

variable thermal and flow fluctuations including periodic, large-scale flood events. After Glen 

Canyon Dam was built, however, the Colorado River became clear and cold with near-zero, 

long-term flow variability (i.e., flatline hydrograph; Stevens et al., 1995). Our approach yielded 

some interesting insights about habitat diversity across scales. Interestingly, though habitat 

diversity increased below low-head dams (diversity; Whittaker, 1972), there was a dramatic 

and larger decrease in habitat diversity above low-head dams (diversity; Whittaker, 1972). This 

leads to an overall decrease in habitat diversity at a regional scale (diversity; Whittaker, 1972). 

For environmental professionals seeking to conserve aquatic systems with and without dams, 

methods that capture site-to-site variability are critical because researchers and managers will fail 

to detect important disturbances and subsequent recovery if natural variability is not monitored. 

Path analysis provided a third insight into dam-habitat-fish biodiversity relationships. 

Specifically, our path analysis on habitat mosaic data showed that a change in a specific 
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component of habitat diversity (proportion of riffle), not just habitat diversity in general, was the 

functional link between low-head dams, habitat, and fish biodiversity. In the Qingyi River, 

China, low-head dams also modify local habitat characteristics (e.g. substrate heterogeneity) 

above and below low-head dams and alter fish species richness, but, in this study, using linear 

regression, the link between dams, species richness and substrate heterogeneity was only inferred 

(Li et al., 2016). Elsewhere, for non-dam disturbances, mediated effects have been shown to 

significantly alter aquatic communities. For example, Santin and Willis (2007) found that 

breakwaters indirectly influence fish communities by altering physical habitat. Our finding that 

low-head dams affected fish biodiversity indirectly through alterations in habitat is important and 

can easily be included in future dam-related statistical analyses. 

Using path analysis and metrics derived from habitat mosaic data, we also confirmed that 

impounded pool habitat upstream of low-head dams reduced fish biodiversity. In our research 

and elsewhere, the impounded area upstream of low-head dams increased water depth, decreased 

current velocity, reduced substrate size, and decreased fish assemblages (Gillette et al., 2005; 

Poulet, 2007; Yan et al., 2013). The adverse upstream geomorphic footprints of our five Neosho 

low-head dams extended over five times the area of downstream habitat alterations (Fencl et al., 

2015). Even though there was an increase in species richness below low-head dams due to 

increased riffle proportion, the dramatic and more extensive decrease in species richness above 

the dams confirmed that low-head dams are a major disturbance in flowing water systems. To 

understand and manage how the anthroposphere (human impacts related to dams) impacts the 

hydrosphere (stream habitat) and biosphere (native biodiversity) both upstream and downstream 

effects need to be considered for both individual dams and all dams within a basin. 
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Finally, all of our analyses considered together have clarified aspects of the complex 

relationship among low-head dams and their influence on stream habitat and fish biodiversity. 

Specifically, we have shown that dams, habitat, and fish need to be examined as an integrated 

series of related effects. Looking at the isolated effect of dams on habitat and the isolated effects 

of habitat on fish were informative but revealed only part of the story. Specifically, examining 

mosaic habitat at dammed and undammed sites showed that lowhead dams affected mean 

proportion of riffle, mean riffle area, and variability in habitat diversity (Fig. 2.4, 2.5). The 

ANCOVA analysis, which examined how habitat affected fish diversity at dammed and 

undammed sites, showed that habitat diversity, proportion of riffle, and proportion of pool 

affected fish richness although these variables were not different at dammed and undammed site 

(Fig. 6). The real discovery was gained from concurrently examining the effects of dams on fish 

as mediated by habitat (i.e., path analysis). The path analysis integrated discrepancies among 

individual analyses by showing that habitat diversity, proportion of riffle, proportion of pool 

affected fish richness, but only proportion of riffle was both affected by dams (Fig. 7b), and, in 

turn, affected fish richness. This finding about the need to statistically address dam-habitat-fish 

together is an important consideration for future studies that seek to conserve fragmented aquatic 

ecosystems. 

Our study highlighted the value of habitat mosaics, an approach that quantified 

composition and configuration for both common and uncommon habitats. The mosaic approach 

is no more time intensive or expensive than transect sampling. For example, we were able to 

continuous map riverine habitats using little more than a kayak and a GPS unit. The mosaic 

approach has broad applicability to other ecosystems with the increasing availability of spatially 

explicit models and geographic information systems. Also, we found path analysis was a useful 
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tool for examining low-head dam effects on fish biodiversity as mediated through alterations to 

habitat. Although use of mediated statistical effects is presently rare in low-head dam studies, 

this statistical approach can be widely incorporated into future dam-habitat-biodiversity studies. 

Thus, mosaic habitat sampling and path analysis will help conservation practitioners to construct 

and implement better science-based management plans and sampling regimes for disturbed and 

degraded aquatic systems worldwide.  
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Figure 2.1. Conceptual diagram illustrating how our research tests alternate approaches to habitat sampling and statistical 

analyses, which can alter stream habitat and fish biodiversity. Our four specific research questions are indicated. 
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Figure 2.2. Map of study area including (a) Neosho River within the state of Kansas, and 

(b) 10 3-km sampling sites within the Upper Neosho River basin along the Neosho and 

Cottonwood Rivers, KS, below five low-head dam sites and at five undammed sites. 
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Figure 2.3. Horizontal stacked bar plot of the relative proportion of mesohabitats (pool, 

riffle, run, and glide) at five dammed (D) and five undammed (U) sites along the Neosho 

and Cottonwood Rivers, KS. Sample sites are numbered as shown in Fig. 3-2. 
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Figure 2.4. Boxplots showing six habitat variables (a-f) at dammed (downstream) and 

undammed sampling sites. Habitat data were collected using both (a-c) transect and (e-f) 

mosaic approaches.  Data are means +/- 1 SE. P values are presented for significant 

relationships. 
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Figure 2.5. Comparison of  standard deviation in habitat diversity at dammed 

(downstream) and undammed sites.  Data are the result of a bootstrapping procedure 

designed to quantify variation in habitat diversity. Data are means +/- 1 SE. 
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Figure 2.6. Regression plots depicting results of an ANCOVA analysis examining the 

relationship between species richness and habitat at dammed (downstream) and 

undammed sites.  Habitat data were collected using (a-c) transect and (e-f) mosaic 

approaches. R
2
 and p values are presented for significant relationships. 
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Figure 2.7. Path analyses for species richness at (a) dammed (downstream) versus 

undammed locations using habitat transect data, (b) dammed (downstream) versus 

undammed locations using habitat-mosaic data and (c) the upstream vs. downstream 

effects of low-head dams using habitat mosaic data. Due to high collinearity, proportion of 

pool habitat was the only variable used in the upstream-downstream model. We only show 

significant relationships at α = 0.05. Solid lines represent positive relationships and dashed 

lines represent negative relationships. The standardized slope (β), coefficient of 

determination (R
2
), and significance (p) are shown for each variable pair (i.e., over each 

connecting line). 
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Figure 2.8. Map showing upstream (yellow tracks) and downstream (red tracks) geomorphic dam footprints at five low-head 

dams in the Upper Neosho River basin. The five inserts represent our five dam study sites. The maps indicate upstream and 

downstream dam footprints which comprise a substantial component (17%) of the Upper Neosho River basin. 
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Table 2.1. Summary of stream habitat measurements taken from the Upper Neosho River 

Basin and used in statistical analyses. 

Approach Metrics Description Range StDev 

Transect 

    

 

Width (m) Wetted width during baseflow conditions 3.6-56.4 9.9 

 

Depth (m) Mean depth at 5 equally-spaced points  0.02-2.16 0.42 

 

Flow Velocity 

(m/s) 

Mean flow velocity at 5 equally-spaced 

points  0-0.8 0.17 

 

 

Mosaic 

    

 

Habitat diversity Shannon's habitat diversity index (H') 0.6-1.2 15.66 

 

Number of patches Number of overall mesohabitat patches 17-59 13.17 

 

Proportion riffle Proportion of riffle habitat at each site 1.4-17.2 4.46 

 

Proportion pool Proportion of pool habitat at each site 36.2-82.6 15.66 

 

Riffle area (ha) Area of riffle habitat at each site (hectares) 0.03-0.16 0.05 

  

Pool area (ha) Area of pool habitat at each site (hectares) 0.1-5.0 1.44 
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Table 2.2. Abundances of fish species collected along the Neosho and Cottonwood Rivers, 

KS June-August, 2013. Downstream/undammed data were collected downstream of low-

head dam sites and at undammed sites (n = 10), while upstream data were collected 

upstream of low-head dam site (n = 5). 

    Abundance 

Common Name Scientific Name Downstream  Upstream  Total 

Red Shiner Cyprinella lutrensis 4,641 0 4641 

Sand Shiner Notropis stramineus 722 0 722 

Bullhead Minnow Pimephales vigiliax 523 0 523 

Mimic Shiner N. volucellus 387 105 492 

Orangespotted 

Sunfish 
Lepomis humilis 271 104 

375 

Slenderhead Darter Percina phoxocephala 289 0 289 

Central Stoneroller 
Campostoma 

anomalum 
265 0 

265 

Suckermouth 

Minnow 
Phenacobius mirabilis 204 0 

204 

Bluntnose Minnow P. notatus 128 0 128 

Fantail Darter Etheostoma flabellare 109 0 109 

Bluntface Shiner C. camura 66 0 66 

Longear Sunfish L. megalotis 44 1 45 

Channel Catfish Ictalurus punctatus 20 14 34 

Ghost Shiner N. buchanani 22 1 23 

Logperch P. caprodes 15 0 15 

Freshwater Drum Aplodinotus grunniens 0 12 12 

Orangethroat Darter  E. spectabile 11 0 11 

Carmine Shiner N. percobromus 10 0 10 

Fathead Minnow P. promelas 8 0 8 

White Crappie Pomoxis annularis 5 3 8 

Slim Minnow P. tenellus 8 0 8 

Brook Silverside Labidesthes sicculus 6 0 6 

Gizzard Shad 
Dorosoma 

cepedianum 
4 2 

6 

Freckled Madtom Noturus nocturnus 5 0 5 

Redfin Shiner Lythrurus umbratilis 4 0 4 

Golden Redhorse  
Moxostoma 

erythrurum 
4 0 

4 



88 

Neosho Madtom N. placidus 4 0 4 

Largemouth Bass 
Micropterus 

salmoides 
3 0 

3 

Flathead Catfish Pylodictis olivaris 3 0 3 

Channel Darter P. copelandi 3 0 3 

Spotted Bass M. punctulatus 2 0 2 

Bluegill Sunfish L. macrochirus 1 0 1 

Green Sunfish L. cyanellus 1 0 1 

Smallmouth Bass M. dolomieu 1 0 1 

Slender Madtom N. exilis 1 0 1 

Stonecat N. flavus 1 0 1 
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Chapter 3 - What and where can matter: habitat configuration 

within stream mosaics extends fish ecology and conservation to the 

riverscape 

 

 Abstract 

Understanding the complex relationship between fish biodiversity and physical habitat is 

a precursor for effective aquatic conservation that is especially challenging for larger geographic 

scales (e.g., watershed, drainage, riverscape). Traditional approaches to understanding fish-

habitat relationships that examine the role of individual physical conditions and isolated habitats 

have provided useful insights. However, additional approaches are needed to advance riverscape 

conservation in the face of accelerating environmental change. Landscape ecology has developed 

tools to look at a variety of patterns of spatial heterogeneity, but the transfer of useful landscape 

metrics to aquatic systems is still limited. We address this gap by quantifying habitat 

heterogeneity within and across stream mosaics that result from a combination of type 

(compositional heterogeneity), size, arrangement, and amount of configurational heterogeneity. 

We sampled fish biodiversity and aquatic habitat along ten 3-km sites within the Upper Neosho 

River sub-drainage, KS, from June-August 2013. Our research provided five take-home 

messages that can help researchers and managers understand riverscape habitat-fish biodiversity 

patterns. First, a survey that maps the spatial pattern of adjacent habitat patches within mosaics 

can be used to test the role of a range of compositional and configurational metrics. Specifically, 

we found stream habitats (pool, riffle, run, and glide) constituted discrete patches based upon 

stream width, depth, and flow velocity that formed varying mosaics of habitat across the 

riverscape. Second, variation within habitat types can affect biodiversity. For example, 
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considering all locations within the Neosho River, shallower, slower riffles had higher fish 

diversity. Third, select configurational heterogeneity metrics, particularly riffle and glide patch 

density, were useful predictors of stream fish biodiversity. More fish species were found in sites 

with higher riffle and glide patch density. Fourth, adjacent habitats can modify target habitat 

conditions and biodiversity. Thus, neighbors add additional heterogeneity to the whole-dataset 

generalizations. Finally, these metrics need to be linked to function to provide useful ecological 

and conservation insights. Because the relationship between spatial heterogeneity and 

biodiversity is critical for effective conservation of lotic ecosystems, many of the heterogeneity 

metrics we test here can start to extend fish ecology and conservation to the ‘scape. 

 

 Introduction 

Understanding the complex relationship between fish and physical habitat is a precursor 

for effective conservation of aquatic ecosystems. Addressing this organism-environment 

relationship at larger geographic scales (e.g., watershed, drainage, riverscapes) is critically 

important and especially challenging. Spatial habitat heterogeneity is ascribed to a landscape and 

refers to the uneven distribution of habitats of various sizes, shapes, and arrangements within an 

area. Heterogeneity influences ecological systems (e.g. Pervovic et al. 2015, Neumann et al. 

2016) and effective conservation (Bunn and Arthington 2002, Palmer et al. 2010, Hovick et al. 

2015). The roles of habitat type (Schlosser 1982, Vadas and Orth 2000; Fig. 3.1a) and amount 

(Magoulick 2000, Isaak et al. 2007, Fahrig 2013; Fig. 3.1b) are frequently examined. For 

example, stream fish communities associate with specific types of common habitats (e.g. pools 

and riffles) (Taylor 2000, Schwartz and Herricks 2008, Pegg et al. 2014), and the size (i.e., 

amount) of spawning habitat predicts Chinook salmon (Oncorhynchus tshawytscha) occurrence 
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(Isaak et al. 2007). In contrast, how habitats are arranged (Fig. 3.1c-d) is rarely examined in 

aquatic ecosystems (Palmer et al. 2000) even though configurational heterogeneity (i.e., the 

spatial arrangement of habitat patches) is central to the discipline of landscape ecology (Fahrig 

and Nuttle 2005, Cushman et al. 2008, Fahrig et al. 2011). Landscape ecology metrics have not 

been widely applied to aquatic systems even though quantifying the effect of different types of 

heterogeneity is the foundation of landscape ecology, possibly because existing metrics have not 

been clearly linked to system-specific function. Here, we examine the relationships between fish 

biodiversity and habitat metrics that quantify composition (what) and configuration (where) (Fig. 

3.1a-d).   

Traditional approaches that examine the relationship between physical conditions and the 

distribution of stream fishes have provided useful insights. First, fish assemblage composition 

and distribution have been associated with individual habitat variables such as depth (Schaefer 

2001, Harvey and White 2017), flow velocity (Aadland 1993, Vadas and Orth 2001, Del Signore 

et al. 2016), habitat cover (Teresa et al. 2012, Lobon-Cervia et al. 2015) and substrate (Freedman 

et al. 2013, Zhoa et al. 2016). As examples, riffle-dwelling darter species can occur in deeper 

[Logperch (Percina fulvitaenia); Morris and Page 1981, Tiemann 2014] or shallower riffles 

[Orangethroat (Etheostoma spectabile) and Slenderhead (P. phoxocephela) darters; Cross 1967, 

Eberle 2014a, Edds 2014]. Ictalurid catfish species can associate with slower [Yellow (Ameiurus 

natalis) and Brown (A. nebulosus) bullhead; Pfleiger 1997] or faster habitats [Blue catfish 

(Ictalurus furcatus); Pflieger 1997]. Second, past studies of aquatic ecosystems have linked fish 

to specific habitat types (Taylor 200, Schwartz and Herricks 2008, Schwartz 2016). Common 

examples are specific fish associations with riffles, pools, and runs (Aadland 1993, Vadas and 
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Orth 2000, Persinger et al. 2011, Hitchman Chapter 1). This voluminous literature on habitat has 

provided a foundation for both research and conservation in aquatic systems. 

Additional approaches to understanding fish-habitat relationships are needed to advance 

conservation in the face of accelerating environmental change in spite of this past progress on 

fish-habitat relationships. Globally, freshwater species are declining at high rates (Dudgeon et 

al., 2006; Vaughn, 2010), often because of alteration and degradation of the physical 

environment. A suite of anthropogenic disturbances such as agriculture (Piggott et al. 2015a, 

2015b), urbanization (Chadwick et al. 2006, McDonald et al. 2014), land use change (Martinuzzi 

et al. 2013), and instream barriers (Pringle et al. 2000, Poff and Hart 2002) can degrade various 

components of physical habitat. As examples, agriculture (Chará-Serna et al. 2015) and 

urbanization (Knouft and Chu 2015) alter hydrology by reducing the quantity and quality of 

water, changing the magnitude and timing of flow peaks, and consequently altering depth, 

velocity, and substrate (Labbe and Fausch 2000, Lake 2003, Strauch et al. 2015). Land use and 

land use change affects local (e.g. water temperature, shoreline vegetation type; Olker et al. 

2016). Low-head dams, like other instream barriers, affect sedimentation and local flow patterns 

(Stanley et al. 2002, Csiki and Rhoads, 2010, Fencl et al 2015), alter fish communities (Fencl et 

al. 2017) impede aquatic organism movements (Benstead et al. 1999), fragment the stream 

channel (Joy and Death 2001, Cumming 2004) and create other larger scale changes in physical 

habitat (Hitchman Chapter 2). Examining linked habitats, habitat-structure-function 

relationships, and ‘scape patterns may help researchers and managers deal with these 

conservation challenges. 

There is an emerging dichotomy that exists on whether to view landscapes as a collection 

of discrete habitat patches or as a continuum. The discrete patch model is central to landscape 
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ecology (Forman 1995, Turner et al. 2001). This model views landscape as a collection of 

discrete habitat patches. Alternative landscape models include the hierarchical patch dynamics 

model (Wu and Loucks 1995, Dunn and Majer 2007), the landscape variegation model 

(McIntyre and Barrett 1992, Costa et al. 2017), the island model (Shafer 1990) and continuous 

models (Austin 1985, Manning et al. 2004, Fischer and Lindenmayer 2006). The question, 

therefore, becomes when the discrete model is appropriate over alternative models including the 

continuous model. The approach to how habitat is defined in a study determines which landscape 

model is appropriate. The discrete patch model often considers landscapes to be binary with 

habitat patches providing resources necessary for an organism’s persistence within a patch. 

However, the discrete model can also include mosaics of patches of varying habitat quality but 

still exhibiting clear boundaries (Dunn and Majer 2007, Lindenmayer et al. 2007). Here, the 

discrete patch model is used to view landscapes and to develop the mosaic. Many ecosystems 

have been viewed as a mosaic of habitats including terrestrial (Law and Dickman 1998, Williams 

and Kremen 2007, Villemy et al. 2015), marine (Bulleri and Benedetti-Cechi 2006, Gross et al. 

2017) and freshwater ecosystems (Arletlaz et al. 2011, Kliendl et al. 2015). Stream fishes have 

been found to associate with habitats (e.g. pools and riffles; Taylor 2000, Schwartz and Herricks 

2008, Pegg et al. 2014); therefore, viewing streams as a mosaic of habitats is logical. However, 

some argue for pluralism in landscape models where a range of models may be required to 

understand complex ecological systems (Lindenmayer et al. 2007). Thus, we included some 

aspects of the continuous model to examine how habitat characteristics within a discrete patch 

influenced biodiversity.    

A mosaic of habitats units along the stream channel can create complex physical patterns 

to which compositional and configurational landscape metrics can be applied. Landscape 
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mosaics can be perceived as interconnected habitat patches that individually vary in structure and 

function and together create complex but predictable patterns of heterogeneity (Hitchman 

Chapter 1, Chapter 2). Stream habitat patches can result from distinct combinations of stream 

width, water depth, flow velocity, and substrate (Angermeier and Schlosser 1989) that create 

pools, riffles, glides, and runs (Rincón 1999, Hitchman Chapter 1, Chapter 2). Riffles are areas 

of high gradient with fast-flowing, turbulent water and coarser substrates; runs are areas with 

relatively fast-flowing water that are deeper than riffles with no turbulence. Glides are 

characterized by wide habitats with relatively low flow velocities and no turbulence; pools are 

the deepest waters of all four, with slower currents and finer sediments (Rincón 1999). These 

common habitat types can link aquatic community structure (Yeiser and Richter 2015, Cheek et 

al. 2016, Hitchman Chapter 1). Some fishes are exclusively recorded in runs or riffles, whereas 

others are typical inhabitants of pools (Schlosser 1982, Lobb & Orth 1991, Schwartz and 

Herricks 2008).  

Landscape ecology can offer additional approaches to address spatial heterogeneity in 

natural systems (Turner et al. 2001, Fausch et al. 2002, Wiens 2002). In landscape ecology, 

heterogeneity is defined both as the type and diversity of habitats (compositional heterogeneity) 

and the size, shape, and arrangement habitats (configurational heterogeneity; Fahrig et al., 2015). 

Landscape ecology metrics have provided useful tools to examine the effects of both types of 

heterogeneity on terrestrial biodiversity. For example, compositional metrics for habitat type 

(Wagner et al. 2000, Weibull et al. 2003) and habitat diversity (Poulson 2002, Williams et al. 

2002), as well as, configurational metrics for habitat size (Wagner and Edwards 2001, Kumar et 

al. 2006), shape (Helzer and Jelinski 1999, Moser et al. 2002) and connectivity (Ricketts 2001, 

Steffan-Dewater 2003) can influence species distributions and biodiversity. Some aquatic 
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researchers have applied landscape approaches to fish-habitat relationships (Schlosser 1995, 

Mossop et al. 2017). However, development of useful landscape metrics for aquatic systems, 

especially for configurational heterogeneity, is still limited (however, see Johnson and Gage 

1997, Johnson and Host 2010). Thus, a gap exists in quantifying habitat heterogeneity within and 

across stream mosaics that result from a combination of type (compositional heterogeneity; Fig. 

3.1-Q1a), size (Fig. 3.1-Q1b), arrangement (Fig. 3.1-Q1c), or amount of configurational 

heterogeneity (Fig. 3.1-Q1d). 

 Here we ask five specific research questions that examine how different patterns of 

heterogeneity affect fish biodiversity in riverscapes (Fig. 3.1). Before either compositional or 

configurational heterogeneity can exist, distinct habitat types must be arranged in a variety of 

spatial patterns. To evaluate this precursor to different types of heterogeneity, first, we tested if 

stream width, depth, and flow velocity clustered into discrete habitat types and if these habitat 

types were arranged in different combinations of habitat mosaics (Fig. 3.1-Q1). Second, variation 

in physical characteristics within discrete habitat types creates an additional type of 

compositional heterogeneity (Fig. 3.1-Q2). To quantify the effect of heterogeneity within a 

discrete habitat type, we examined how variation in depth and flow velocity within the discrete 

riffle habitat type influenced fish biodiversity. Because geographic location of habitats within the 

riverscape is an important component of heterogeneity, as an extension of this second question, 

we linked high-low velocity, shallow-deep riffles to spatial location (Fig. 3.1-Q3). Fourth, we 

asked if three common configurational heterogeneity metrics common in landscape ecology 

[e.g., patch size (area), patch shape (perimeter to area), patch density (number of riffle, run, pool, 

glide habitat patches within each mosaic)] influenced fish biodiversity (Fig. 3.1-Q4a, b, c). Many 

species have minimum area requirements (Wenny et al. 1993, Beier et al. 2002, Dardanelli et al. 
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2006), thus patch size in general (Munguia-Rosas and Montiel 2014) and specifically patch area 

(Lawton 2000, Scheiner et al. 2011) may increase species richness. Patch shape can affect the 

amount of habitat affected by edge effects, thus, patch shape, as measured by higher perimeter-

area ratios, may increase stream fish biodiversity. Patch density is another configurational 

heterogeneity metric that can be positively associated with increased biodiversity metric 

(Rüdisser et al. 2015, Chambers et al. 2016, Fraga-Ramirez et al. 2017) through a variety of 

mechanisms. Finally, we asked how adjacent habitats (upstream or downstream) influence 

environmental variables and fish biodiversity (Fig. 3.1-Q5) because the influence of neighboring 

habitats is an important form of configurational heterogeneity (Glass and Floyd 2015, Ollivier et 

al. 2015). Throughout, we often prioritize the riffle because this keystone habitat can 

disproportionately affect biodiversity (Hitchman Chapter 1). 

 

 Materials and Methods 

 Study Area 

Our study was conducted within the Upper Neosho River Basin along the upper Neosho 

River and lower Cottonwood River, two 5th order streams located KS, USA. The UNRB drains 

approximately 7,770 km2 upstream of the John Redmond Reservoir in Morris, Lyon, and Chase 

Counties, KS. Mean annual discharge at our sample sites was 8.72 m3/s (SE± 0.94, USGS gage 

07179730, 1963-2013) for the Neosho River and 24.55 m3/s (SE± 2.19, USGS gage 07182250, 

1963-2013) for the Cottonwood River.   

In order to examine heterogeneity, we mapped adjacent habitat patches for 3 km at ten 

sites within the Upper Neosho River sub-drainage (Fig. 3.2). This project was undertaken in 

conjunction with a larger project that investigated potential impacts of low-head dams on the 
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native stream fish community. Although differences existed in scape-scale metrics at dams 

(Hitchman Chapter 2), no direct and consistent statistical differences in number of patches per 

habitat type existed between dammed and undammed sites (W = 17, p = 0.42; Wilcoxon rank 

sum test).  Therefore, all sites were analyzed together. 

 

 General Sampling Regime 

 A continuous view of streams that encompasses mutli-scale spatial heterogeneity is 

essential for effective research and conservation within lotic ecosystems (Fausch et al. 2002). 

Patterns of environmental conditions in lotic ecosystems create a mosaic of habitats units along 

the stream channel. The approach used for this study (e.g. mosaic approach) quantified type and 

arrangement of habitat patches by employing a continuous survey to map stream habitat units. 

We continuously mapped habitat patches (pool, riffle, run, and glide) within each of ten 3 km 

sites to examine habitat mosaics. From June-August 2013, we identified, measured, and mapped 

the incidence and locations of habitat patches based on agreement by two independent observers 

using an objective series of stream channel morphology, surface flow, depth, and sediment 

composition (McCain et al. 1990, Harvey and Clifford 2009). Each sample location (N = 10) was 

considered a habitat mosaic. We quantified the spatial location of habitat patches by using 

trackplots at 5-s intervals and waypoints at the upper and lower boundary for each habitat unit 

from a handheld Garmin GPSmap76Cx (Garmin International, Olathe, KS). The mosaic 

approach is spatially explicit and allows for the quantification of the number, size, and 

arrangement of habitat units (pool, riffle, run, and glide) across the riverscape as well as distance 

between and among habitat patches. Sampling occurred during baseflow conditions (13.0-19.0 

m3s-1; USGS gage 07182250). Trackplots and waypoints for each sample site were imported 
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into ArcMap v. 10.2 (ESRI, Redlands, CA). Habitat patches at each site were digitized into 

polygons and converted to raster format. 

 

 Habitat Patch Characteristics 

Environmental variables (i.e., wetted stream width, water depth, and flow velocity) were 

measured within up to five patches of each habitat type (pool, riffle, run, and glide) at each of ten 

3-km sites. At sites with less than five habitat patches of a habitat type, then all patches were 

sampled (at minimum = 3). All patches of a particular habitat type were sample at sites that 

contained < 5 of a particular habitat type. These channel units are described in detail in Chapter 

1. Wetted stream width was recorded using a Nikon 8398 range finder (<1 m accuracy, range 3-

200 m) at the midpoint of each habitat patch. Cross-stream transects of five equally-spaced 

points were used to collect depth and water velocity measurements. Flow velocity (60% of the 

depth) was measured with a Marsh-McBirney (Loveland, CO) Model 2000 flowmeter.  

  

 Fish-Biodiversity Sampling 

We captured fish using a two- person mini-Missouri trawl to quantify fish biodiversity. 

The mini-Missouri trawl has been used to capture both small and large-bodied benthic fish (e.g., 

Herzog et al. 2009, Driver and Adams 2013, Starks et al. 2015). We chose the mini-Missouri 

trawl to ensure consistent sampling across habitats and study sites as it can be used in wadeable 

and non-wadeable areas. Two people pulled the trawl through a standard 30 m transect from 

upstream to downstream within each habitat sampled. More details on the mini-Missouri trawl 

and fish sampling appear in Chapter 1. Fish were returned alive to the stream after enumerated 

and identified to species. 
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 Data Analysis 

 Question 1: Are habitat patches discrete and does the arrangement of patches differ across 

riverscape mosaics? 

We used non-metric multidimensional scaling (NMDS) to evaluate if the habitat patch 

types (riffles, runs, pools, glides) were distinct and discrete (i.e., not continuous) based on the 

environmental variables (stream width, water depth, and flow velocity). NMDS has been shown 

to be a robust technique for analyzing ecological data (Minchin 1987). Environmental variables 

were log-transformed to satisfy statistical assumptions. For the NMDS, we used a Bray-Curtis 

distance matrix that quantified the similarity among patches for which habitat type was the factor 

(row) and environmental variables were the response variable (column) within the metaMDS 

function (distance = bray) in the R package vegan (Oksanen et al. 2013). Each habitat sample 

was plotted (N = 142). We then plotted 95% confidence ellipses for the mean (group centroids) 

by calculating standard error, which gives information about the sampling distribution of the 

mean centroid (as opposed to calculating based upon standard deviation, which is a measure of 

the spread of the data). Separation for each habitat type was analyzed using analysis of similarity 

(ANOSIM) in which a p value < 0.05 indicated a discrete, distinct, and unique habitat type based 

upon the environmental variables. If physical variables cluster in discrete categories, then the 

potential for mosaics of distinct habitat patches exists.   

We used a series of longitudinal profile plots to illustrate variation in the diversity, 

sequence, and size of habitat patches within and across each potential 3-km mosaic. To create 

each longitudinal profile plot, the length (meters) of each habitat type patch was plotted from 

upstream to downstream (X axis).  Habitat type was identified by color. The area of each patch 
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(hectares) was quantified on the Y axis.  Plots were created using the R package ggplot2 

(Wickam 2009). Habitat length and area were calculated from raster files for each site using 

ArcMap v. 10.2 (ESRI, Redlands, CA). In addition to the profile plots, we calculated the number 

of patches and overall habitat heterogeneity (Shannon’s Diversity Index) for each site. We then 

used chi square to test if habitat mosaics varied significantly across sample sites. If profiles are 

composed of different combinations of patches (different colored patches in different 

combinations), then different patterns of configurational heterogeneity exist. 

 

 Question 2: Do habitat characteristics within riffle habitat influence fish biodiversity? 

To investigate if specific riffle characteristics were linked to species richness, we ran 

linear regression models to examine relationships between species richness and environmental 

variables (width, depth, flow velocity) within discrete riffle patches. 

 

 Question 3: Where are the high biodiversity habitats located? 

We plotted locations of high diversity riffles on the watershed map to see if there was a 

link between within riffle variation and geographic locations, i.e., all high in the watershed or 

low in the watershed. 

 

 Question 4: Which configurational metrics were related to biodiversity? 

At each 3-km site, we calculated mean patch size (size), patch perimeter-area ratio 

(shape), and patch density using an ArcGIS planform map that was converted from a polygon-

based feature file to a raster format and inputted into FRAGSTATS 4.1 (McGarigal et al. 2012). 

All metrics were calculated for each habitat type (pool, riffle, run, and glide). We then combined 
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multiple regression and an inference-theoretic approach [Akaike information criterion modified 

for small sample size (AICc ) (Burnham and Anderson 2002)] to identify the best-approximating 

model for species richness as it relates to the predictor variables. To reduce the number of 

models, we examined pairwise correlations among each predictor variable (Table C.1). When a 

pair of predictors were highly correlated (> 0.70), the predictor that correlated highest with other 

variables was dropped from the analysis. Next, predictors were omitted from models if they had 

a variance inflation factor >10 or condition index >30. For parsimony, we limited each candidate 

model to one (N = 9) or two predictor variables (N = 36). Predictors were then standardized by 

subtracting the mean and dividing by the standard deviation. Models with the lowest AICc and 

the highest Akaike weights were considered the top candidate models. Only models with ΔAICc 

scores < 2 were interpreted (Burnham and Anderson 2002). Models were run using the MuMin 

package under the R platform (R Development Core Team 2013). 

 The simplest measure of configuration is patch size, which represents a fundamental 

attribute of the spatial character of a habitat patch. Mean patch size is a function of the number of 

patches for a particular habitat type (e.g. riffles) and total area encompassed by that habitat type. 

Perimeter-area ratio is a simple measure of shape complexity. Perimeter-area ratio is the ratio of 

patch perimeter to area in which patch shape is linked to patch size. Patch density is considered 

an important structural component of patch mosaics and can be used to facilitate comparisons of 

habitats and landscapes of different sizes. Patch density equals the total number of patches per 

100 hectares for each habitat type (class level) or at each sample site (landscape level). 
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 Question 5: Do adjacent habitats influence habitat-specific characteristics and biodiversity? 

Multivariate analysis of variance (MANOVA) was used to examine the influence of 

adjacent habitats on environmental variables (stream width, depth, and flow velocity) within a 

target habitat. For example, we investigated how environmental variables within pool habitat 

(target) would change when a riffles was present (adjacent habitat) both upstream and 

downstream. The analysis was performed for each target habitat (pool, riffle, run, and glide) and 

all combinations of adjacent habitat both upstream and downstream (N = 24). All statistical 

analyses were performed using R software (R Development Core Team 2013). Although we ran 

all combinations of target and neighbor habitats for the MANOVA, we only present significant 

relationships. 

Next, we used structural equation modeling (path analysis) to examine the effects of 

adjacent habitats on the environmental variables within a target habitat and how that relationship 

influenced fish species richness. Path analysis is based upon the calculation of path coefficients 

(standardized partial regression coefficients), which can be used to calculate direct and indirect 

effects (Grace 2006). Direct effects are the path coefficients between two variables connected by 

a path. Indirect effects are effects mediated through another variable (e.g. habitat). We chose 

path analysis because it can simultaneously evaluate direct and indirect effects of neighboring 

habitats on species richness. The analysis was performed for all combinations of target habitats 

(pool, riffle, run, and glide) and adjacent habitat both upstream and downstream. Standardized 

path coefficients (standardized β) indicated the strength of relationships and R
2
 quantified the 

amount of variation explained by specific sets of variables. We used the library lavaan with 

function sem in R (Rosseel 2012). Analyses were performed using the R platform (R 
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Development Core Team 2013). Although we ran all combinations of target and neighbor 

habitats for path analysis, we only present significant relationships. 

 

 Results 

 Question 1: Are habitat patches discrete and does the arrangement of patches differ across 

riverscape mosaics? 

Riffle, run, pool, and glide habitat categories were quantitatively distinct. We plotted 

95% confidence ellipses for the mean (group centroid) for each habitat type. Lack of overlap 

among the ellipses indicates pools, riffles, runs, and glides act as discrete habitat units based 

upon stream width, depth, and flow velocity). Specifically, glide, pool, riffle, and run habitats 

differed in width, depth, and flow velocity (ANOSIM Global R = 0.30, p < 0.001; Fig. 3.3). 

Riffles and runs were characterized as fast-flowing habitats with runs deeper than riffles (Fig. 

3.3). Pools were the slowest and deepest habitats (Fig. 3.3). Glides were also slow-flowing 

habitats and shallower than pool (Fig. 3.3).  

Mosaics differed in the type and sequence of habitat patches across all ten 3-km sample 

sites (Fig. 3.4). For example, Sites 1 and 2 were characterized as having a high number of 

patches and high habitat diversity (Fig. 3.4a, b). Site 7 was characterized as having a fewer 

number of patches and the lowest habitat diversity (Fig. 3.4g). Pool, riffle, and run habitats were 

present across all sites. Glides were irregularly distributed and were most commonly associated 

with riffles and pools (adjacent to pools 68-74%; adjacent to riffles 19-21%). The number and 

type of habitat patches varied across study sites (χ2 = 70.42, p < 0.001; Fig. 3.4). The total 

number of patches per 3-km ranged from 17 (Fig. 3.4j, Site 10) to 59 (Fig. 3.4b, Site 2). Overall 

habitat diversity ranged from 0.56 (Fig. 3.4g, Site 7)-1.15 (Fig. 3.4a, b, Site 1, 2). 
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 Question 2: Do habitat characteristics within riffle habitat influence fish biodiversity? 

Habitat-specific fish sampling occurred within 143 unique habitat patches. We sampled a 

total of 7,791 fish representing 35 species across seven families at ten sites within the Upper 

Neosho River sub-drainage (Table A.1).  

Although riffles were distinct from other habitat types, slow, shallow riffles had more 

fish species. Species richness was inversely related to riffle depth (R
2
 = 0.37; p = 0.001, Fig. 

3.5a). Species richness was highest within shallow riffles (Fig. 3.5a). Species richness was 

highest within low velocity riffles (R
2
 = 0.25; p = 0.02, Fig. 3.5b). Combined, species richness 

was greatest within shallow, slow flowing riffles (Fig. 3.5a, b). No significant relationship 

existed between species richness and riffle width (R
2
 < 0.01; p = 0.64). 

 

 Question 3: Where are the high biodiversity habitats located? 

Species richness was highest within shallow riffles located at sample sites 1, 2, and 7 

(Fig. 3.5c). Species richness was highest within low velocity riffles at sites 1, 2, 4, 7, and 8 (Fig. 

3.5d). Combined, species richness was greatest within shallow, slow flow riffle habitat at sample 

sites 1, 2, and 7 (Fig. 3.5c, d).   

 

 Question 4: Which configurational metrics were related to biodiversity? 

Select configurational heterogeneity metrics, common in landscape ecology, were related 

to increased species richness. We examined three configurational metrics (mean patch size, 

perimeter-area ratio, and patch density) for four habitat types (pool, riffle, run, and glide). We 

examined all pairwise correlations (N = 66; Table C.1). Metrics characterizing pool habitat were 
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correlated with one another (> 0.75; Table C.1). Glide patch density was correlated with glide 

perimeter-area ratio (> 0.75; Table C.1). Finally, riffle patch density was correlated with glide 

patch density (0.75; Table C.1). Out of a possible 45 models examined using multiple linear 

regression, only four models were included in the set of candidate models (ΔAICc scores < 2; 

Table 3.1). The top ranked model predicting fish species richness included riffle patch density 

and riffle area (R
2
 = 0.75; p = 0.004; Table 3.1). The next best models included riffle patch 

density and glide area (R
2
 = 0.73; p = 0.004; Table 3.1), riffle patch density and riffle perimeter-

area ratio (R
2
 = 0.71; p = 0.005; Table 3.1) and riffle patch density and run area (R

2
 = 0.69; p = 

0.007; Table 3.1). The most important variable explaining fish species richness was riffle patch 

density which explained 74% of the variation on average and was included in all models 

(variable importance = 1; Table 3.1). 

 

Question 5: Do adjacent habitats influence habitat-specific characteristics and biodiversity? 

For select combinations, neighboring patches altered environmental characteristics of 

target patches and, in some cases, species richness. Of the 24 target-neighbor habitat 

combinations tested, we observed six significant effects of neighbor on physical habitat 

attributes, of which three physical target-physical combinations were linked to significant 

changes in specific richness. First, flow velocity was higher in pool habitats (target) directly 

above runs (F = 6.37; p < 0.01; Fig. 3.6a). Second, run habitats (target) were moderately deeper 

when downstream of pools (F = 3.07; p < 0.1; Fig. 3.6b). Third, glide habitats (target) were 

significantly faster upstream of riffles (F = 6.00; p < 0.01; Fig. 3.6c). None of these physical 

changes resulted in changes to species richness. Fourth, stream depth was significantly shallower 

in riffle (target) habitats (R
2
 = 0.11; p < 0.05; Fig. 3.7a) located immediately downstream of 
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glide habitats (F = 3.87; p < 0.05; Fig. 3.6d) which led to a significant increase in species 

richness (R
2
 = 0.26; p < 0.05; Fig. 3.7a). Fifth, riffles were significantly deeper (R

2
 = 0.12; p < 

0.05; Fig. 3.7b) when downstream of run habitat (F = 3.87; p < 0.05; Fig. 3.6d), which led to a 

significant decrease in species richness (R
2
 = 0.31; p < 0.05; Fig. 3.7b). Sixth, riffles were more 

shallow and narrow (R
2
 = 0.16; p < 0.05; Fig. 3.7c) when upstream of glide habitats, increasing 

species richness (R
2
 = 0.26; p < 0.05; Fig. 3.7c). 

 

 Discussion 

Researchers and managers increasingly see a need to apply a landscape approach to 

aquatic systems (Wiens 2002, Allan 2004, Datry et al. 2016), but exactly how to operationalize 

this land to water transformation remains a challenge. Using both compositional and 

configurational habitat approaches can help address fish-habitat relationships across the 

riverscape. Research in aquatic ecosystems has indicated that both compositional (Yarnell et al. 

2005, Schwartz and Herricks 2008) and configurational metrics (Palmer et al. 2000, Isaak et al. 

2007) influence aquatic biodiversity. Our research provides five take-home messages that 

researchers and managers can apply to understanding biodiversity riverscape habitat-fish 

biodiversity patterns. First, a survey that maps the spatial pattern of adjacent habitat patches 

within mosaics can be used to test the role compositional and configurational metrics. Second, 

within habitat characteristics are important predictors of within habitat biodiversity. Third, some 

configurational heterogeneity metrics, particularly riffle patch density, are useful predictors of 

stream fish biodiversity. Fourth, adjacent habitats can influence neighboring habitat 

characteristics and biodiversity. Finally, these metrics need to be linked to function to provide 

useful ecological and conservation insights.  
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The mosaic approach illustrated riverscape patterns of habitat and fish biodiversity and 

facilitated tests of an array of spatial heterogeneity relationships. Our research showed that 

stream habitats (pool, riffle, run, and glide) were functionally distinct units characterized by 

stream width, water depth, flow velocity. These discrete and distinct habitat patches created 

connected aquatic mosaics along the stream channel. The majority of fish habitat studies have 

considered these habitats as separate, isolated units (Schlosser 1982). However, our maps of 

connected habitats allowed for the quantification of various configurational heterogeneity 

metrics that can then be used to go beyond simply linking stream fishes to a particular individual 

habitat and facilitate a more in-depth investigation about how those habitat arrangements across 

the riverscape influences stream fish. Additionally, in large sand bed rivers like the Kansas or 

Smoky Hill, habitat diversity (type and arrangement) maybe so low as to make examining 

composition and configuration of these habitats types unimportant. For these systems, another 

approach to quantifying the role of spatial heterogeneity is needed. Whereas, in many other 

streams, habitat types are likely distinct, diverse, and variable. Thus, an advantage of the mosaic 

approach is that this approach reveals patterns to which compositional and configurational 

metrics can be applied in order to detect underlying ecological patterns for both common and 

uncommon habitat patches. Though the mosaic approach has linked habitat to aquatic 

community structure (Yeiser and Richter 2015, Cheek et al. 2016), it is not commonly applied to 

aquatic ecosystems. Because mosaics are rarely mapped, we don’t at present know how the 

results from the Upper Neosho River Basin relate to other stream systems. Our research suggests 

that this mosaic approach should be more widely applied to aquatic ecosystems because viewing 

streams as a connected habitat mosaic may improve the chances of elucidating the effects of 

landscape configuration on biodiversity.  
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Some configurational metrics were functionally important. Riffle patch density was the 

most important predictor for stream fish biodiversity. Patch density has been found to be 

functionally important in terrestrial studies (Wasserman et al. 2012, Shirk et al. 2014, Cushman 

et al. 2013). For example, lizard diversity was positively associated with patch density of tropical 

dry desert (Fraga-Ramirez et al. 2017). Here, high patch density of riffles could be associated 

with a higher number of functionally important habitat patches available to stream fishes (Tews 

et al. 2004). Riffles are small habitats that occurred across all study sites and are functionally 

important. Riffles have been described as keystone habitat for fishes in the Upper Neosho River 

Basin in that they disproportionately increase biodiversity relative to their proportion across the 

riverscape (Hitchman Chapter 1). Riffles may be of particular importance in this system. Riffles 

are spaced an average of five to seven channel widths in undisturbed streams (Leopold et al. 

1964); however, due to the numerous low-head dams and a history of gravel mining, the system 

may become sediment starved making riffles a rarity (Kondolf 1997). Riffles serve as spawning 

and rearing habitat, foraging areas and provide refuge from predators (Schlosser 1987, Gillette 

2012, Teichert et al. 2013), therefore, areas of high riffle density would provide important, 

functional habitats in the study area. Metrics characterizing the size and shape of habitats (e.g. 

riffle, glide run area) were also predictors of fish species richness. Mean patch size has been 

found to influence species richness in terrestrial systems (Robbins et al. 1989, Bender et al. 1998, 

Kumar et al. 2006) and may be linked to species-area relationships. However, riffle patch density 

explained most of the variation among all models and may have carried these other metrics. 

Many of the metrics we examined were not linked to species richness however. For example, 

none of the metrics for pools were related to species richness. Therefore, a general transfer of 
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landscape ecology metrics does not work all the time and careful thought needs to be put into 

identifying ecologically important metrics.  

A key finding from our study indicated species richness was higher among shallow, slow-

flowing riffles. Here, we examined how within habitat characteristics across all riffles in the 

study influenced species richness by taking a continuous view of landscapes. Shallow riffles are 

essential habitat for macroinvertebrates (fish prey items) and necessary for the completion of life 

histories for stream fishes (Aadland 1993, Brewer et al. 2006). Many species in the Neosho River 

Basin [e.g. orangethroat darter (E. spectabile), central stoneroller (Campostoma anomalum), and 

fantail darter (E. flabellar) associate with shallow riffles (Cross 1967, Eberle 2014b, Gillette 

2014). Additionally, this relationship may correspond to preferred spawning habitats. For 

example, Brewer et al. (2006) found that many riffle-dwelling species move into shallow and/or 

slow flowing riffles to spawn. Shallow riffles provide refuge from predation of piscivorous fishes 

(Schlosser 1987, Winemiller and Jepsen 1998), which results in an increase in the number of 

species.  

Adjacent habitats can influence neighboring habitat characteristics and biodiversity. 

Habitats generally took on characteristics of flow velocity and depth of neighboring habitats in 

our study. Flow velocity within pools and glides increased when adjacent to fast-flowing habitats 

(e.g. riffles and runs). Runs were deeper downstream of pool habitat (characterized as the 

deepest habitat in our study). Occasionally, adjacent habitats can alter biodiversity in 

neighboring habitats. For example, bird species richness was found to be higher in aspen 

woodlands adjacent to riparian habitat relative to aspen stands located farther away (Glass and 

Floyd 2015). In streams, channel darters (Percina copelandi) had a strong affinity for riffles 

upstream of run and pool habitat (Reid et al. 2005). Path analysis was a useful tool that allowed 
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us to identify indirect effects adjacent habitat had on species richness. Adjacent habitats in our 

study influenced fish species richness primarily through mediated habitat effects. Riffles were 

deeper when located downstream of run habitats, which led to a decrease in species richness. 

When riffles were adjacent to glide habitats (both upstream and downstream), riffles were 

shallower and species richness increased. These findings are consistent with the within habitat 

analysis where species richness was higher within shallow riffles even though one analysis 

(within habitat characteristics) collectively considered all riffles in the study, whereas the other 

(adjacent habitats) was habitat specific. In our analysis, position of neighbors could alter 

characteristics of target patches, which is a new and exciting insight. Position could also 

influence a range of other habitat metrics such as size or shape. These hypotheses can be tested 

in future studies within this and other systems. In summary, the above results indicate that spatial 

arrangement (e.g. placement of habitats) and characteristics of habitat does matter and pluralism 

of landscape models should be taken into account when developing conservation strategies for 

stream fishes.  

To transfer landscape ecology approaches to lotic ecosystems, research questions should 

be focused and functionally matched to metrics. This study was not an exhaustive exploration 

into the best landscape metrics to be used in lotic ecosystems. Our research was intended to test 

if various metrics of configurational heterogeneity provided different information about a study 

system and thus should be considered in greater detail in the future. Landscape metrics are 

promising tools to measure aquatic biodiversity (Johnson and Host 2010). A variety of metrics 

have been suggested, however, many of them are complex and their ecological meaning is not 

always evident (Wiens 2002, McGarigal et al. 2012). Therefore, careful thought needs to be 

given to the number of metrics relative to sample sizes used in a study. Additionally, many 
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packages designed to calculate landscape metrics (e.g. FRAGSTATS, Spatial Analyst) have 

lowered technological barriers, thus allowing users to calculate a variety of landscape metrics 

without an understanding of how each metric relates functionally to ecological processes (Kupfer 

2012). For example, metrics used to describe connectivity in terrestrial ecosystems may not be 

applicable to lotic ecosystems due to their linear structure and unidirectional flow. Therefore, an 

understanding of the link between study system and response (e.g. energy flow, biodiversity, 

movement, etc.) needs to be thoughtfully considered when identifying which landscape metrics 

to use in a study. A conceptual framework that outlines possible metrics and approaches to 

describing spatial heterogeneity (Fig. 1) can be a useful strategy for taking landscape ecology 

approaches to aquatic ecosystems. 

Understanding the influence various measures of configurational heterogeneity have on 

biodiversity can aid in the conservation of stream fishes. We identified riffle patch density as a 

significant predictor of fish species richness. Riffles are important habitats for maintaining fish 

biodiversity (Hitchman Chapter 1). If management goals are to conserve overall native 

biodiversity, then increasing the density of riffles and/or glides may be important. However, 

patch density alone should not be the only consideration for effective conservation strategies. 

Riffles were positively impacted when located upstream and downstream of glide habitats and 

downstream of run habitats. Thus, consideration should also be given to how the habitats are 

arranged along the mosaic. Additionally, the spatial location of high biodiversity habitats (e.g. 

riffles) is useful for identifying target conservation areas for habitat specialist species. For 

example, the threatened Neosho madtom (Natorus placidus), whose distribution is currently 

declining due to habitat destruction and fragmentation, is a riffle-dwelling species primarily 

distributed along the Neosho and Cottonwood Rivers. Neosho madtom prefer shallow riffles 



112 

with loose substrate (Moss 1981, Wildhaber 2014). Diverse species in our study area preferred 

shallow, low-velocity riffles concentrated at sites 1, 2, and 7. However, since site 1 and 2 are 

above the distribution of the Neosho madtom, conservation efforts for mitigating riffles and 

gravel bars should concentrate around site 7. Our research illustrates how multiple measures of 

compositional and configurational heterogeneity can be used for the conservation of stream 

fishes. 

The mosaic approach allows for a holistic view of riverscapes. Emerging techniques exist 

to incorporate high-resolution, spatially explicit data to understand pattern and process at the 

riverscape scale (Carbonneau et al. 2012). The approach can incorporate multiple landscape 

models to quantify multiple measures of heterogeneity both within (continuous) and across 

(discrete) habitats. Additionally, the mosaic approach can extend to other theoretical concepts in 

ecology that include island biogeography, source-sink dynamics, and metacommunities. For 

example, scientists and managers can use the mosaic approach to identify high-quality patches 

along a mosaic of patches that serve as sources to other, low-quality habitats. Our use of mosaics 

in examining heterogeneity in this chapter and in testing other ideas in associated research 

(Chapter 1, Chapter 2) have led to new ways to conceptualize stream communities (e.g., mosaic 

approach, keystone habitats, mediated dam effects). The generality of these insights to other 

individual stream systems and other stream types needs to be tested. However, our research sets 

up clear testable hypotheses that have relevance to ecological research, conservation, and 

restoration. 
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Figure 3.1. Conceptual diagram outlining (I) types of configurational heterogeneity and (II) 

specific research questions linking configurational heterogeneity metrics with biodiversity. 
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Figure 3.2. Map of study area representing ten sampling sites located along the Neosho and 

Cottonwood Rivers, KS. Black dots represent low-head dam sites and gray dots undammed 

sections of the rivers. 
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Figure 3.3. Non-metric multidimensional scaling biplot for stream habitats (glide, pool, riffle, and run) at ten sample sites 

located along the Neosho and Cottonwood Rivers, KS. Dots represent each habitat sample (N = 142). Ellipses indicate 95% 

confidence ellipses (group centroids) for the mean. Analysis of similarity indicates significant separation among each habitat 

type (ANOSIM Global R = 0.30, p < 0.001).  
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Figure 3.4. Longitudinal profiles for each of ten sampling location along the Neosho and 

Cottonwood Rivers, KS. Sampling occurred for 3km at each site. Represented are mean 

patch area, total number of habitat patches (N), and overall habitat diversity calculated 

using Shannon’s Diversity Index (H’) for pool, riffle, run, and glide habitats. 
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Figure 3.5. Linear regressions between species richness and a) stream depth and b) stream flow velocity within all riffle 

habitats sampled in the Upper Neosho River Basin. Arrows indicate locations of riffles with the highest biodiversity (upper 

33% of all riffles sampled) based upon regressions for c) stream depth and d) stream flow velocity. 
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Figure 3.6. Boxplots showing significant relationships of within habitat characteristics relative to adjacent habitats: a) 

illustrates how flow velocity within pool habitats is influenced by downstream adjacent habitats, b) illustrates how depth 

within run habitats is influenced by upstream adjacent habitats, a) illustrates how flow velocity within glide habitats is 

influenced by downstream adjacent habitats, b) illustrates how depth within riffle habitats is influenced by upstream adjacent 

habitats. Heavy horizontal lines depict the median, the box represents the 2nd and 3rd quartiles, and the whiskers show the 1st 

and 4th quartiles. 
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Figure 3.7. Path analyses investigating direct and indirect relationships for species richness 

a) within riffle habitats that were located immediately downstream of glides b) within riffle 

habitats that were located immediately downstream of runs and c) within riffle habitats 

that were located immediately upstream of glides. We only show significant relationships at 

α = 0.05. Solid lines represent positive relationships and dashed lines represent negative 

relationships. The standardized slope (β), coefficient of determination (R2), and 

significance (p) are shown for each variable pair (i.e., over each connecting line). 
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Table 3.1. Multiple regression models to examine relationships between species richness (response) and configurational 

heterogeneity metrics (predictor). Bolded denotes significant variables at α = 0.05 and () displays standard errors. 

Abbreviations include the following: par = perimeter-area ratio, df = degrees of freedom, vif = variance inflation factor. Model 

average was calculated as the mean slope for each predictor. Variable importance was calculated as the proportion of 

candidate models for which each predictor was included. 
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Appendix A - Fish Sampling Data 

 Table A.1 

 Total abundance, percentage of total fish captured, and total tow occurrence for species 

collected at ten sample sites located within the Neosho and Cottonwood Rivers, KS. Fish were 

categorized into two groups, common fish (captured at ≥ 85% of total sites sampled) and 

uncommon fish (captured at < 15% of total sites sampled). 

Occurrence

Common Name Scientific Name N % %

Red Shiner Cyprinella lutrensis 4,641 59.6 94.0

Sand Shiner Notropis stramineus 722 9.3 56.9

Bullhead Minnow Pimephales vigiliax 523 6.7 85.3

Mimic Shiner N. volucellus 387 5.0 40.5

Slenderhead Darter Percina phoxocephala 289 3.7 66.4

Orangespotted Sunfish Lepomis humilis 271 3.5 37.1

Central Stoneroller Campostoma anomalum 265 3.4 25.9

Suckermouth Minnow Phenacobius mirabilis 204 2.6 34.5

Bluntnose Minnow P. notatus 128 1.6 25.0

Fantail Darter Etheostoma flabellare 109 1.4 12.9

Bluntface Shiner C. camura 66 0.9 18.1

Longear Sunfish L. megalotis 44 0.6 25.0

Orangethroat Darter E. spectabile 11 < 0.3 5.2

Freckled Madtom Noturus nocturnus 5 < 0.3 3.4

Neosho Madtom N. placidus 4 < 0.3 1.7

Slender Madtom N. exilis 1 < 0.3 0.9

Stonecat N. flavus 1 < 0.3 0.9

Fathead Minnow P. promelas 8 < 0.3 4.3

Brook Silverside Labidesthes sicculus 6 < 0.3 2.6

White Crappie Pomoxis annularis 5 < 0.3 3.4

Gizzard Shad Dorosoma cepedianum 4 < 0.3 3.4

Redfin Shiner Lythrurus umbratilis 4 < 0.3 2.6

Largemouth Bass Micropterus salmoides 3 < 0.3 2.6

Flathead Catfish Pylodictis olivaris 3 < 0.3 2.6

Channel Darter P. copelandi 3 < 0.3 2.6

Spotted Bass M. punctulatus 2 < 0.3 1.7

Bluegill Sunfish L. macrochirus 1 < 0.3 0.9

Green Sunfish L. cyanellus 1 < 0.3 0.9

Smallmouth Bass M. dolomieu 1 < 0.3 0.9

Ghost Shiner N. buchanani 22 < 0.3 1.7

Channel Catfish Ictalurus punctatus 20 < 0.3 2.6

Logperch P. caprodes 15 < 0.3 3.4

Carmine Shiner N. percobromus 10 < 0.3 1.7

Slim Minnow P. tenellus 8 < 0.3 0.9

Golden Redhorse Moxostoma erythrurum 4 < 0.3 0.9

TOTAL 7791 100

B. Uncommon Fish

Abundance

A. Common Fish
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Appendix B - Fish Habitat Guilds 

 Table B.1 

Guilds of species collected at 10 sampling sites located within the Neosho and Cottonwood 

Rivers, KS based upon total abundance, proportion of abundance within each habitat (pool, 

riffle, run), and site occurrence of total abundance. Common fish were captured at ≥ 85% of total 

sites sampled. Uncommon fish (< 15% occurrence) were placed into guilds based upon the 

current literature. 
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 Table B.2 

SIMPER results for fish data sets on A) abundance, B) presence/absence, and C) guilds including 

habitat specific abundance and cumulative sum explained (>0.05). 
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 Figure B.1 

Bar plots showing relative proportion (primary Y-axis – black bar) and mean abundance 

(secondary Y-axis- gray bar) within each habitat (pool, riffle, and run). Empirically derived 

habitat guilds are shown for each species. Data are mean and SE. Fish examples include (a) 

Suckermouth Minnow, (b) Orangespotted Sunfish, (c) Bluntnose Minnow, (d) Longear Sunfish, 

(e) Red Shiner, (f) Sand Shiner, and (g) Bullhead Minnow. We used a hierarchical agglomerative 

cluster analysis (h) with average linkage and Euclidean distance matrix of the proportions as an 

alternate way to create guild classifications. 
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 Figure B.2 

Plot of SIMPER results for influential fish species from fish-habitat guilds based on (A-E) mean 

abundance (Y axis) for the abundance data set and (F-J) proportion (Y axis) for the presence-

absence datasets. Data are means. Guilds include (a, f) Riffle specialist, (b, g) Pool specialist, (c) 

Riffle-run generalist, (d, i) Pool-run generalist, (e, j) Generalist, and (h) Pool generalist. Numbers 

indicate the cumulative sum explained per fish species between each set of habitats. 
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Appendix C - Correlation Table for Landscape Metrics 

 Table C.1 

Correlation table for landscape metrics used in Chapter 3. Correlations were examined between 

each habitat type (pool = P, riffle = Ri, Glide = G, Run = Ru) and landscape metric (mean patch 

size = AREA, perimeter-area ratio = PARA, patch density = PD). Significant correlations (> 

0.70) are shown in bold. 
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