

Minimizing Phosphorus Loss with 4R Nutrient Stewardship & Cover Crops

Nathan Nelson, Kraig Roozeboom, Peter Tomlinson, Gerard Kluitenberg, Phil Barnes, and Jeff Williams

Kansas State University

Maximizing returns and minimizing externalities

Phosphorus loss from agriculture can degrade water quality by promoting algal blooms.

Centralia Lake, KS. Photo courtesy Kevin Price, 2012

What is the right "place" for P?

Best management practices to reduce P loss

Reduce Erosion (no-till)

Best Management Practices to Reduce P Loss

> Sub-surface application of P

P loss from Grain Sorghum in 1998 (Kimmell et al., 2001)

Tillage effects on runoff

Increased runoff from no-till can confound effects of reduced erosion

4-yr average annual runoff in sorghum-soybean cropping systems (Zeimen et al., 2006)

Precipitation Trends for North-east Kansas

30-yr average monthly precipitation at Manhattan, KS

Can Cover crops reduce P loss?

Research Questions (Objectives)

- How does P loss from fall surface-applied fertilizer compare to spring injected P fertilizer (current recommended BMP)?
 - How does this impact crop production, nutrient use efficiency, and profitability?
- ➤ Will cover crops reduce P losses?
 - What are the agronomic, environmental, and economic effects of winter cover crops in corn-soybean rotations?
- Will cover crops reduce P losses from fall surface-applied fertilizer?

KAW Field Lab

Kansas Agricultural Watersheds Field Lab

Constructed a new waterway

Re-grade and rebuild terraces

Installed pipe outlets

Installed flumes

Installed flumes

Methods

- >Small watershed/field-scale study with natural rainfall
- ➤ No-till corn-soybean rotation (5 year duration)
- > Factorial treatment structure
 - P fertilizer
 - -0 lbs P_2O_5/ac
 - 50 lbs P₂O₅/ac applied in 2x2 placement
 - 50 lbs P₂O₅/ac broadcast in fall
 - With or without winter cover crop

Field Measurements

- > Grain Yield
- Water Loss (runoff)
- > Sediment loss
- > P loss
 - Dissolved
 - Total P
- > N loss
 - NO₃ & NH₄
 - Total N

Field Measurements

- > Biomass production (crop and cover crop)
 - Nutrient content of biomass and grain
- > Nutrient uptake (crop and cover crop)
 - Nutrient use efficiency various computations
 - Environmental efficiency (Nutrient loss/grain yield)
- > Economic profitability

Precipitation

Runoff data from May 5, 2015

Runoff data from May 5, 2015

10% reduction in total runoff

Total P concentration in runoff (5/5/15)

Total P load in runoff (5/5/15)

Summary

- >Too early for any conclusions (preliminary or otherwise)
- > Results are highly dependent on rainfall
 - Requires long-term studies to determine trends
- ➤ Data collection will continue for 5 years

Acknowledgements

Thanks to the following individuals for support

- David Abel (Graduate Student/RA)
- Undergraduate workers Gus Lamb, Egypt Edwards, Brett Bullinger and Tyler Royle
- Morgan Powell consulting

Funding

- > 4R Research Fund
- Kansas State Agricultural Experiment Station
- Kansas State Department of Agronomy
- Kansas Soybean Commission
- Kansas Corn Commission

