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INTRODUCTION 
Remote sensing (RS) techniques have been used to identify crops grown during different seasons 
and to estimate crop bio-physical characteristics and water use. Images from satellites such as 
Landsat 5, 7, and 8 have been used extensively to map crop evapotranspiration rates (ET) using a 
suite of algorithms. However, Landsat satellites have a fixed revisit frequency (e.g., 16 days) and 
pixel spatial resolution of 30 m for the visible (VIS) and mid-infra-red (MIR) bands while the thermal 
infra-red (TIR) band pixel size is 100-120 m. Furthermore, some RS of ET algorithms require that the 
TIR band be corrected for atmospheric effects (not trivial). These characteristics limit the 
application of satellites to generate frequent ET maps (every three or four days) to be used in soil 
water balance methods to help manage scarce water resources more efficiently. Therefore, there is 
a need to investigate alternatives to produce higher spatial and temporal resolution maps. With the 
advent of Unmanned Aerial Systems (UASs) capable of carrying multispectral (i.e., VIS, TIR) cameras 
it may be possible to monitor ET more effectively. Thus, this study evaluates the use of ET 
techniques that can be used with an UAS to estimate soil water content.  
 

MATERIALS AND METHODS 
Experimental Site 
The experiment was conducted on two maize (Zea mays L.) fields. One field deficit irrigated 
(Treatment 1, TrT 1) and the other fully irrigated (Treatment 2, TrT2) during 2017 at the USDA-ARS 
Limited Irrigation Research Farm (LIRF), in Greeley, Colorado, USA (40°26'57''N, 104°38'12''W, 
elevation 1427 m). The alluvial soils of the study field are predominantly sandy and fine sandy loam 
of Olney and Otero series. The fields were drip irrigated through buried laterals/emitters (sub-
surface drip irrigation, SDI). The size of each field is 110 m (width) by 190 m (length). These fields 
were commonly referred as the “Bowen Ratio” fields because Dr. Walter Bausch (retired) did 
extensive research on those fields using Bowen Ratio Energy Balance systems. Figure 1 shows the 
fields.  
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Figure 1. Research fields at USDA ARS LIRF near Greeley, CO. 
 
Corn variety was Dekalb 51-20. It was planted late on June 2nd of 2017. Emergence occurred around 
June 8th. Effective full cover was attained around August 9th for TrT2 and August 15th for TrT1.  
 
UAS (Unmanned Aircraft System) Description 
The remote sensing system acquired multispectral and thermal data on seven days during the crop 
cycle. Flights were planned as to coincide as much as possible with the overpass time of Landsat 7 
and 8. In this study we present data from July 3rd (MSR), July 19th, July 27th, and August 13th. The 
nearest Landsat overpass for the August mission was on the 12th. We used an actual crop 
coefficient (explained later) to convert the August UAS data from the 13th to the 12th. 

The airframe used was a DJI Spreading Wings S900 hexacopter (Da-Jiang Innovations Science and 
Technology Co., LTD, Shenzhen, China).  The S900 frame weights 3kg and has a max takeoff weight 
of 8.2kg.  The system is powered by a MaxAmps 13500XL 6S 22.2v 13500mAh LiPo battery 
(MaxAmps, Spokane, WA, USA).  All in all with airframe, battery, land payload the S900 weights 
5.8kg and flies safely for about 13 mins.   

A 3DR Pixhawk PX4 flight controller (3D Robotics, Berkley, CA, USA) was installed on the UAS.  
Managing, and coordinating the output of 6 motors manually would be impossible task, as such a 
flight controller is a necessity.  The flight controller translates control inputs from the user and data 
of current orientation from onboard sensors, and sends the appropriate signal to the motors.  The 
Pixhawk PX4 also acts as an autopilot, allowing for, under supervision, fully autonomous control of 
the UAS.  The PX4 features a 168Mhz Cortex M4f CPU with 256KB of RAM and 2MB of flash 
memory.  The PX4 also features 3d accelerometer, magnetometer, gyroscope, and barometer 
sensors.  The PX4 is also paired with a 3DR/Ublox GPS and compass module, and a LightWare SF11-
C 120m laser rangefinder.  The accelerometer, magnetometer, compass, and gyroscope make up 
the inertial measurement unit (IMU) which calculates UAS pitch, yaw, and roll data.  The GPS, 
compass, barometer and laser rangefinder calculates UAS positional data. 

The UAS has 2 radios installed; a 3DR SiK 915MHz telemetry radio, and a Sanwa (Sanwa Electronic 
Instrument Co., Ltd., Higashi-osaka, Japan) RX-861, 2.4GHz FHSS-3 8Channel receiver.  The 
telemetry radio communicates with a second 3DR SiK 915MHz radio attached via USB to the ground 
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control station.  The ground control station, a Panasonic Toughbook CF-31 with ArduPilot’s open 
source Mission Planner software, handles autonomous/semi-autonomous control of the UAS.  The 
RX-861 receiver pairs to a Sanwa SD10GS 10 channel 2.4GHz FHSS transmitter for manual/semi-
autonomous control of the UAS.  

The payload for the UAS consists of a FLIR Tau2 LWIR (FLIR Systems, Inc., Wilsonville, OR, USA), and 
a Tetracam Mini-MCA6 multispectral cameras (Tetracam Inc., Chatsworth, CA, USA).  The custom 
carbon fiber mounting tray for the payload was designed and built by UASUSA (UASUSA, Longmont, 
CO, USA). 

The Tau2 contains a 640 x 480 pixel (0.3 mega pixel) image sensor and has a spectral range from 7.5 
to 13.5µm. The Mini-MCA6 features a 6 camera array, with each camera containing 1280 x 1024 
pixel (1.3 mega pixel) image sensor.  A band-pass filter is fitted to each of the 6 camera with 10nm 
bandwidth.  The center wavelengths of filters used in the study were 860nm, 720nm, 680nm, 
570nm, 530nm, and 490nm. 

Missions were flown at 95m AGL with a 90% overlap and 70% sidelap, which gives a pixel resolution 
of 5.2cm and 8.5cm for the Mini-MCA6 and Tau2, respectively.  The study site was large to fly on 
one battery, so the field was split into 2 missions.  At the beginning and end of each mission images 
of a Blackbody and reflectance targets were taken.  The blackbody (Omega BB701 Portable 
blackbody) was set to 100°F.  Images of reflectance targets (Labsphere Spectralon targets, 99%, 
50% and 10%) were taken at 95m, and ground truth measurements of the targets were taken using 
a spectroradiometer PSR-1100 (Spectral Evolution Lawrence, MA 01840, USA).  Images and mission 
telemetry logs were downloaded after flights, and a separate GPS file was created from the mission 
telemetry log.  Spectroradiometer data were downloaded and processed using DARWin SP Data 
Acquisition and Analysis software.   

Imagery Pre-Processing 
Below is presented a summary of all the steps required to create an ortho-rectified mosaic from the 
raw images acquired from the UAS.  
 
Steps for preparing multispectral imagery:  
Raw imagery from the UAS system is converted to “.tif” (8-bit) format using PixelWrench 2. NIR, 
Red, and Green bands are stacked together by using a python script, which exploits ArcMap’s 
“CompositeBands_management” function. Where the red band is used as a master band and the 
NIR and Green bands are aligned to it by using polynomial 2nd order warp. Then, a 3-band false 
color composite is created. 

 
Steps for preparing FLIR thermal imagery:  
Initially, the images are in png (16-bit) format, which is very difficult to visualize and work with, in 
the software. Therefore, all images are re-scaled to the minimum and maximum digital numbers for 
the whole flight.  

 
AgiSoft Photoscan project:  

• Two different projects are created, one for the Multispectral camera and another one for 
the Thermal camera. All images are imported in AgiSoft Photoscan (The mention of trade 
names or commercial products in this article is solely for the purpose of providing specific 
information and does not imply a recommendation or endorsement by the U.S. Department 
of Agriculture), along with the orientation data. 
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• All photos are aligned in the software based on the orientation file and the features 
detected in adjacent images. 

• An ortho-rectified mosaic is generated in the software along with the cut-lines polygon 
showing the overlapping areas for each image. 

 
Geo-referencing Multispectral (MS) and Thermal mosaics:  

• The MS mosaic created is aligned to a basemap using ESRI ArcMap GIS software (geo-
referencing module).  

• Once the MS mosaic is aligned to the basemap, it is used as a basemap for Thermal mosaic 
alignment using ArcMap. 

 
Absolute Radiometric Calibration: 
Finally, the MS mosaic was calibrated using surface reflectance values collected in-situ at at several 
locations along the field (treatments). These ground-truth RS data were collected with a 
multispectral scanner MSR5 from CropScan; which also incorporated a thermal infra-red 
thermometer (IRT) from Exergen.  Furthermore, the thermal mosaic was rescaled back to the 
original 16-bit values and then a linear transformation was performed to obtain surface 
temperature values in degrees Celsius. The Exergen IRT was used to check and calibrate the 
thermal image. 
 
ET Algorithms  
The FAO Paper-56 (Allen et al., 1998) procedure was followed to calculate “potential” crop ET (ETc) 
for conditions of now water stress. Weather data needed for the calculation of hourly and daily 
reference ET (ETref, both alfalfa and grass based) were download from COAGMET station Greeley 
04 which is located at the USDA ARS LIRF. Corn crop coefficients were alfalfa based developed in 
Idaho as published in Hoffman et al. (2007). ETref was calculated using the 2005 ASCE-EWRI 
standardized Penman-Monteith (PM) equation.    

Actual basal crop coefficients were obtained applying the so-called reflectance based coefficients. 
This is, reflectance data from the RS systems are used to produce vegetation indices that are 
inserted in linear equations to estimate the actual vegetation coefficient (ratio of actual to 
potential transpiration). Below the different methods used are listed. 

 
Fractional Cover:   
The method proposed by Trout et al. (2008) and Johnson and Trout (2012) was used to calculate 
actual basal crop coefficient based on surface reflectance (Kcb_ref). 
 
Kcb_ref = 1.13 x fc + 0.14        (1) 
 
Where, fc is fractional vegetation cover; estimated using the Normalized Difference Vegetation 
Index [NDVI = ((reflectance in the NIR band – reflectance in the Red band)/ ((reflectance in the NIR 
band + reflectance in the Red band)); as shown in Eq. (2). 
 
fc = 1.26 x NDVI – 0.18        (2) 
 
Then, actual corn transpiration (ETa) is calculated as: 
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ETa = Kcb_ref x ETref        (3) 
Where, ETref is grass based (ETo) in this case. 
 
Scaled NDVI: 
Similar to the method described above only that fractional cover (fc) is estimated using the Brunsell 
and Gillies (2002) method. 
 
fc = N* = [(NDVI – NDVIo) / (NDVIm – NDVIo)]^2     (4) 
 
where, NDVIo is the minimum value (bare soil) set to 0.15 and NDVIm is the maximum value for 
fully vegetated pixels, set to 0.92 for our radiometer. 
 
Soil Adjusted Vegetation Index (SAVI) based: 
The third RS method adopted was the SAVI based model from Bausch (1993), where: 
 
Kcb_ref = 1.416 x SAVI + 0.017       (5) 
 
SAVI L-factor was set to 0.1. 
ETa was calculated as in Eq. (3). However, ETref was that of alfalfa. 
 
NDVI-based: 
The fourth method was from Neale et al. (1989), developed for corn near Greeley, CO.  
 
Kcb_ref = 1.181 x NDVI – 0.026       (6) 
 
As in the SAVI method, ETa was calculated as in Eq. (3) using ETref for alfalfa. 
 
 
Estimating Soil Water Content (SWC) 
 
Chávez (2015) proposed using a relationship between the crop water stress index CWSI (Idso, 1982) 
and the level of soil water content (depletion) beyond (below) a set threshold (VWCt) that was 
called “Soil Water Stress Index” (SWSI). The SWSI (%) was parameterized using a sigmoidal model, 
for this study, as defined below. 
 

1 exp o

aSWSI
x x

b

=
−  + −    

        (7) 

 
Where, x = CWSI (%), xo= 17.8737, a = 72.6468, and b = 3.7753. 
 
CWSI was estimated as: 
 
CWSI = (1 – ETa/ETc) x 100        (8) 
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Once the SWSI has been computed, Eq. (9) is inverted to solve it for actual soil volumetric water 
content (VWCa). If CWSI is zero then SWSI is zero and the soil VWC is at field capacity or above it 
(no stress). 
 

t a

t WP

VWC VWCSWSI
VWC VWC

−
=

−         (9) 
 
Where, VWCa is the estimated actual soil water level (%). The SWSI scales VWCa between a 
volumetric soil water threshold (VWCt) and the wilting point VWC (VWCWP). Thus, the range is [0, 1]. 
This is, a SWSI of zero (0) would mean that the soil moisture level was at the threshold level or 
above and was defined as no soil water stress (in relation to a selected soil management/maximum 
allowed depletion (MAD). This is, MAD is the fraction that one is allowed to deplete (total) available 
water (Eq. 11) in the soil before causing water stress in the plant. In this study a MAD of 0.5 (50%) 
was chosen for corn. On the other hand, a SWSI value of one (1 or 100 %) would mean that all 
moisture in the soil was used up by the plant and the plant is reaching the wilting point. VWCt was 
computed as follows: 
 
VWCt = VWCFC – (MAD × AV)       (10)  
 
AV = VWCFC – VWCWP         (11) 
 
where, VWCFC is the VWC at field capacity. AV is available water in the soil, VWCWP is the volumetric 
water content at wilting point.  

Evaluating Estimates of ETa and SWC 
Estimates of ETa using Kcb_ref derived from surface reflectance acquired with the UAS and ground 
based multispectral radiometry were evaluated with ETa values computed using Landsat images 
and the land surface energy balance known as METRIC (Allen et al., 2007). METRIC uses the TIR 
band besides VIS and NIR bands and is considered a robust and accurate procedure to compute 
ETa. 

Three sites per treatment were selected to extract pixels for the comparison. These sites were 
located at 25, 50 and 75% of the length of the field. At these locations and at the center of the 
plot/treatment (along the width of the field) two neutron probe access tubes (aluminum) were 
installed (per site).  

A neutron probe (NP) was used, on a weekly basis, to measure soil volumetric water content every 
30 cm from 0.3 m to a depth of 2.0 m. The NP data were used to evaluate remote sensing estimates 
of VWCa.  

RESULTS AND DISCUSSION 
Figure 2 below shows side by side the level of detail obtained for pixels from the UAS image (left) 
and from the Landsat (right) satellite image. The UAS produce 0.05 m pixels (approximately) while 
Landsat VIS and NIR pixel size is 30 x 30 m. 
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Figure 2. UAS (left red colored image) vs. Landsat satellite (right gray scale image) pixels. Imagery 
acquired on 19 July 2017 at USDA ARS LIRF near Greeley, CO. 
 
In Fig. (2), the effect of both irrigation treatments is clear. Treatment 1 (west side of the Bowen 
ratio fields) shows less corn biomass as less red color is seen. In the false color composite (NIR, Red, 
Green), the brighter (more intense) the red color the larger the vegetation fractional cover (fc) and 
the leaf area index (LAI). This left field shows much less vegetation than the fully irrigated 
treatment (east Bowen ratio field). In 19 July 2017, corn had reached V8 at TrT1 and V9 at TrT2.  
Tables 1 and 2 list the derived ETa values for each method applied for both irrigation treatments, 1 
and 2, respectively. 
 
Table 1. Treatment 1 (limited irrigation) actual crop transpiration (mm/d). 

  TrT 1 ETa ETa ETa ETa ETa 

 
Lim. irrig. mm/d mm/d mm/d mm/d mm/d 

  
Kcb_ref Kcb_ref Kcb_ref Kcb_ref EB 

Dates Station N* fc SAVI NDVI METRIC 
7/3/2017 1.1 1.07 2.04 2.78 1.86 3.28 

 1.2 1.13 2.23 2.99 2.02 2.86 

 1.3 1.52 2.81 3.62 2.50 3.57 
7/19/2017 1.1 2.03 3.86 5.23 3.67 6.61 

 1.2 2.21 4.08 5.48 3.86 6.37 

 1.3 1.86 3.69 5.16 3.59 6.37 
7/27/2017 1.1 2.13 3.38 4.33 3.10 4.61 

 1.2 1.67 2.93 3.81 2.70 4.55 

 1.3 2.04 3.30 4.24 3.04 4.37 
8/13/2017 1.1 4.32 5.10 6.39 4.67 4.83 

 1.2 4.58 5.26 6.57 4.80 4.73 
  1.3 4.55 5.24 6.55 4.79 4.53 
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Table 2. Treatment 2 (fully irrigated) actual crop transpiration (mm/d). 
  TrT 2 ETa ETa ETa ETa ETa 

 
Full irrig. mm/d mm/d mm/d mm/d mm/d 

  
Kcb_ref Kcb_ref Kcb_ref Kcb_ref EB 

Dates Station N* fc SAVI NDVI METRIC 
7/3/2017 2.1 1.31 2.63 3.42 2.35 3.29 

 2.2 1.30 2.61 3.40 2.34 3.31 

 2.3 1.99 3.69 4.58 3.23 3.57 

7/19/2017 2.1 1.63 3.26 4.27 2.92 7.00 

 2.2 1.67 3.34 4.34 2.98 7.16 

 2.3 1.71 3.44 4.46 3.07 7.24 

7/27/2017 2.1 5.52 5.57 6.87 5.03 5.74 

 2.2 5.41 5.51 6.80 4.98 5.26 

 2.3 5.13 5.37 6.64 4.86 4.91 

8/13/2017 2.1 4.88 5.33 6.89 5.04 4.63 

 2.2 5.03 5.41 6.98 5.12 4.73 

  2.3 5.21 5.51 7.10 5.20 4.63 

 
The mean bias error (MBE) and root mean squared error (RMSE) statistical measured were applied 
to the data reported in tables 1 and 2. Results of the errors in the estimation of ETa (mm/d) are 
shown below. Statistics align with columns of methods reported above. 
 

MBE = 
 

-2.0 -0.9 0.2 -1.3 

RMSE = 
 

2.1 1.6 1.7 1.5 
 
Initially, the method by Neale et al. (1989) shown above as Kcb_ref NDVI resulted with the lowest 
error (i.e., -1.3±1.5 mm/d or -23±23%) which is considered a large error. However, by looking at the 
ETa values of the table it can be seen that some methods perform better at certain level of crop 
fractional cover. Furthermore, it was found that Landsat TIR image for the west side of the Bowen 
ratio field (TrT2) was contaminated with radiation from the adjacent airport runway (see Fig. (2) 
black pixels) because the TIR pixel size is 100-120 m and therefore some thermal pixels covered 
part of the experiment field and some of the runway. The pixel size of the thermal image provided 
had been re-sampled to the size of the VIS – NIR bands, which is 30 m. Thus, a new analysis was 
performed including only treatment 2 (west field) and separating the data in two groups (i.e., 
acquired at effective full cover and before reaching full cover). Results for this new analysis are 
presented in Tables 3 and 4, for fractional cover between 15 and 60% and for fc ranging from 70-
92%, respectively. 

For the corn vegetative growth period (water stressed) showing low biomass percent cover (Table 
3), the lowest error was for the SAVI based Kcb_ref method. This method’s error was -9.8±9.3%; 
which is more acceptable. This result is not surprising since SAVI was developed to improve NDVI 
for conditions of soil background effects as in the case of low biomass percent cover. 

In the case of the analysis for the full cover condition (Table 4), the NDVI based Kcb_ref method 
developed by Neale et al. was superior with the lowest error of 1.2±4.5%. 
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Table 3. ETa errors for treatment 1 for fractional cover between 15 and 60%. 

 
Lim irrg 15<fc<60% 

 
%Error 

 
N* fc SAVI NDVI 

MBE = -62.4 -31.9 -9.8 -37.1 

RMSE = 6.5 8.4 9.3 6.4 

range from: -68.8 -40.3 -19.1 -43.5 

range to: -55.9 -23.6 -0.5 -30.7 

amplitude 13.0 16.7 18.6 12.8 
 
 
Table 4. ETa errors for treatment 1 for fractional cover at 70-92%. 

 
Lim irrg fc ~ 92% 

 
%Error 

 
N* fc SAVI NDVI 

MBE = -4.5 10.7 38.6 1.2 

RMSE = 5.5 4.9 6.1 4.5 

range from: -10.0 5.8 32.5 -3.2 

range to: 1.0 15.7 44.6 5.7 

amplitude 11.0 21.5 77.2 8.9 

      
In the case of the evaluation of estimated VWC with NP data, the first analysis presented below is 
for fc less than or equal to 60. All data from all stations were used in the analysis. The lowest error 
was for the SAVI based Kcb_ref method with an error of 6.6±15.7% (absolute error and not 
volumetric). 
 

MBE = -18.2 -9.7 6.6 -13.0 

RMSE = 16.0 19.7 15.7 18.6 
 
Now, considering estimated VWC for fractional cover between 70 and 92%, the lowest error was 
that of the NDVI based Kcb_ref method developed by Neale et al. with an error of 13.5±11.7% 
(show below). 
 

MBE = 4.5 21.5 21.5 13.5 

RMSE = 15.3 14.4 14.4 11.7 
 
It is expected to have a somewhat larger error in the volumetric water content estimation since it is 
difficult to accurately represent field capacity and wilting point (and MAD) for all six stations 
considered. We used different field capacity (FC) and wilting point (WP) values for each station 
based on observing NP VWC data. However, some stations presented a larger VWC at the 30 or 60 
cm depth; indicating a change in soil texture. Rigorously, one should determine the soil FC and WP 
for each textural class presented in the field and for all layers through the crop root zone. 
Nevertheless, results encountered during this study are encouraging. 
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CONCLUSIONS 
In this study, it was shown that using high resolution remote sensing imagery, paired with a 
reflectance based crop coefficient, it is possible to estimate actual crop transpiration for corn with 
good accuracy. Furthermore, there is evidence that using the estimated ETa and a proposed soil 
water stress index, it is possible to estimate actual soil volumetric water content through the crop 
root zone. The methodology presented could be used to improve irrigation water management as 
in the case of center pivot variable rate irrigation for instance and when deficit irrigation is 
practiced since actual crop coefficients are needed instead of tabulated coefficients for full 
irrigation.  
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