Small mammal contact zones and evolutionary cascades: Methods for genomic investigations within complex hostparasite systems

Andrew Hope (Kansas State) Vasyl Tkach (University of North Dakota) Stephen Greiman (Georgia Southern) Sandra Talbot (USGS, Alaska Science Center) Joseph A Cook (University of New Mexico)

Regarding myself...

- Fundamentally: Biogeographer
 - Processes that influence distributions
 - Individuals → populations → lineages → species
- Functionally: Molecular Ecologist
 - Interpret evolutionary history to understand ecology
 - Phylogenetic trees
- Purpose: Conservation of functional wild systems
 - Inform policy and management
 - Reveal connections
 - Hosts and parasites

Hantavirus Mammal Crew New Mexico Ecology of Emerging Disease

"Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States" – Glass et al. 2002, *PNAS*

Host-virus co-phylogeny

- Paradigm lost..
- Shrews, not rodents, as primordial reservoirs for hantavirus
- Tree-based methods reveal relationships
- Specimen archives are critical

Major Host

Switching Events

Arai et al. 2008, *AmJTropMedHyg*; Kang et al. 2009, *PLoSOne*, 2009 *VirolJ*; Kang et al. 2010, *VectorBorneZoonoticDis*; Kang et al. 2011, *JVirol*.

Impacts of environmental change

- Anthropocene trends
 - Increased rates of warming/development
 - More extreme events/disturbances
 - Elevated risk of extinction
 - Increased intensity of biological interactions
- Mitigation (from a phylogeographic perspective)
 - Resolve evolutionary complexity
 - Across landscapes
 - Across layers of biodiversity

Hope Lab Questions:

How are functional biodiversity connections influenced by changes in:
1) Ecological associations within local communities; and 2) Genetic backgrounds of species, across space and through time?

Most genomic assessments of wild organisms are specimen-based!

e.g., Dunnum et al. 2017, PLoS negl.trop.dis.

rescaled weighted average rate 2.0 **Evolutionary Rate Variation** 1.8 1.6 1.4 1.2 1.0 0.8 Cataloged Host Voucher 0.6 0.4 Joseph A Cook 1967 (lactating) NE Getsemme COSTA RICA: HOREPIA, 04'N, 84 05'u 100178 1011-20-16 Ecto & endo parasites Geo-referenced locality 0.98 Virus isolates Virolom 180 190 1 TCTCTTGGCTCCAGCATCGATGAAGAACGCA CATTTAGAGGAAGTAAAAGTCGTAACAAGGT Prevalence and Geographic Genetic Variation of Hantaviruses of New World Harvest Mice (Reithrodontomys): Identification of AACTTTTAACAACGGATCTCTT a Divergent Genotype from a Costa Rican Reit mexicanus GCGGCGCCCGCAAGGG' GCCTGCCGTGGCAGATCCCCAACGCCGGGCC **CTC** GGCTCCAGCATCGATGAAGAACGCAG CAGCATCGATGAAGAACGCAGCGA ACGCGAT Improved phylogenies CGATACTTCTGAGTGT7 CGGATCTCTTGGCTCCAGCATCGA ACAACGGATCTCTTGGCTCCAGCA 0.80 CGGATCTCTTGGCTCCAGCATCGA 0.60 GATGAAGAACGCAGCGAAACGCGA Field notes, ecological data 0.40 Genomic data 0.20 0.00

Host hybridization and speciation

Metagenomics

Metagenomics

Host hybridization and speciation

Parasite Metagenomics

Resolving generalizable processes of change

Shrews, genus Sorex ~80 Holarctic species

- Tiny, abundant, ubiquitous
- High metabolism, turnover \rightarrow rapid evolution
- Insectivorous \rightarrow complex parasite life cycles

Masked shrew complex

- 13 described species
 - Closely related
 - Complex geographic distribution

- Diverse macro- and micro-parasite faunas
 - Communities within communities
 - Cascading change
- Multiple contact zones
 - Hybridization, competition, speciation
 - Naturally replicated experiment:
 - Evolutionary, geographic, ecological, temporal...

Present distributions: Beringia

Interdependent communities

Urocystis sp. n.

Staphylocystoides asketus

Shrew endoparasites - helminths

- Highly diverse with complex life cycles
- Variable levels of host specificity
- Woefully underexplored!

Tkach et al. *in prep (x3)*

Goals

1. Investigate species limits within *cinereus* group

- Phylogeographic history
- Phylogenomics
- Selection/Drift
- 2. Characterize **shrew** hybridization
 - Are dynamics repeatable across multiple hybrid zones?
 - Function of conserved vs. introgressed genome regions
 - Role in continued diversification
- 3. Understand changes in associated **parasite** diversity
 - Evolutionary, geographic, ecological, temporal...
 - Relative host specificity across hybrid zones
 - Cascading impacts of change
 - Shrew \rightarrow helminths \rightarrow microbiome

1. Shrew species limits

- Shotgun sequencing of mitogenomes
 - 12 shrews on Illumina MiSeq
 - High coverage (10-350x /bp)
- Expanded mitogenome sequencing (in progress)
 - Long-range PCR of 190 shrews
 - Selection on metabolic genes across environmental gradients
- Nuclear reduced representation sequencing (in development)
 - Selection on nuclear genes (e.g. immune function)
 - Genomics of hybridization

Mitogenomes – adaptation to local environments

- Masked shrews extremely high metabolism
- Two major clades mesic or xeric habitats
- Expectations:
 - selection across environmental gradients
 - intensified in harsher environments
 - purifying or diversifying selection

Xeric

Mesic

1

Mitogenomes - selection

- REL (random effects likelihood) tests HyPhy
- dN/dS ratios
- By site, by branch, by clade
- Only individual sites significant

Mitogenomes - selection

- Zoomed out...
- Overall very low dN/dS ratios (very low sample size)
- Positive selection in two genes

Mitogenomes to nuclear genomes...

200

of State Geographer 2016 Google Indsat / Copernicus A, U.S. Navy, NGA, GEBCO Google Earth

2. Shrew Hybridization

- Shotgun sequencing (MiSeq) to develop >20 microsatellites
- Rigorous sampling across boreal-tundra contact zone
 - S. cinereus vs. S. ugyunak
 - ~400 archived specimens

3. Variation in Intestinal Biodiversity

- Metagenomic methods 12S, 16S, 28S; MiSeq
 - Spatial gradients across host contact zones
 - In-situ temporal change using museum specimens
- Parasite (helminths)
 - Biodiversity discovery
 - Host-parasite co-evolution and phylogeography
 - Parasite hybridization, host switching
- Microbiomes
 - Fluctuating pathogens, commensals, symbionts
 - Temporal, spatial, host variability

Rarefaction curves

18

16

Parasite OTUs from 25
 shrew specimens

16S mtDNA (120bp)

Major genera

1.00

0.75-

0.50

0.25

0.00

NK213643 NK153868 NK151517 AF51992

Museum

70% EtOH

NK216528

- NK261932 - NK261917 - NK261916 - NK261915 - NK216541

NK261937 NK261936 NK261935 NK261934 NK261933

Fresh

Liquid Nitrogen

- NK261921LN2 - NK261921EtOH

- NK261939 - NK261938

NK261920LN2 NK261920EtOH NK261948 NK261947 NK261946 NK261940

Abundance

 Parasites from old and new shrews

Greiman et al., 2018. J. Parasitol.

St. Paul Island, Alaska.

Predictions for island biodiversity

- 1. Low species richness faunal relaxation
 - Species interdependence → cascades (more extreme in north)
 - Low host richness \rightarrow low parasite richness
- 2. Low genetic diversity
 - Small populations \rightarrow periodic bottlenecks
 - Loss of diversity through rapid fixation of alleles (purging)
 - Lowered fitness?
- 3. High endemism
 - Divergence following fragmentation (high drift)
- 4. Host parasite evolutionary concordance?

Mammals of St. Paul Island

Mammals of St. Paul Island

Results – parasite diversity

- Very low Richness 2 species of endoparasite
 - Cestode *Lineolepis pribilofensis*
 - Trematode Maritrema sp. → Normally in birds!!
- Very high parasite loads
 - Multiple hundreds of worms per shrew

Results – shrew genetic diversity

- Cytochrome b gene (1140bp) for 22 shrews
- Virtually no genetic variability on St. Paul.

Species	Pi	Hd
Sorex pribilofensis	0.0001	0.22
Sorex cinereus (AK)	0.0039	0.95
Sorex cinereus (Southwest)	0.0059	0.89
Sorex portenkoi (Siberia)	0.0005	0.51
Sorex jacksoni (St. Lawrence Is.)	0.0016	0.52
Sorex haydeni (Mid-west)	0.0031	0.86
Sorex preblei (West)	0.0014	0.85

Shrew morphology – PCA

Results – co-evolution?

• Shrew cestode with North American origin.

Results – co-evolution?

 Shrew trematode normally parasitizes birds!

Natural History

Hope et al. 2016, NOAA Arctic Report Card

Implications

- 1. Host switching and emerging disease
 - Bird to mammalian
 - Marine to terrestrial
 - Intercontinental movement

2. Low parasite diversity

- High parasite loads
- "Missing biodiversity" dynamics

3. Low shrew genetic diversity

- Loss of adaptive capacity
- Future environmental impacts (raised sea levels!)

Summary

- Genomic methods allow for highly integrated ecoevolutionary framework
 - Hybridization, speciation, coevolution, community assembly

- Combined host-parasite analyses provide greater resolution of generalizable landscape processes
- Understanding interdependency among species...
 - Requires extensive diagnosis of existing biodiversity
 - Requires temporally deep, spatially broad, site intensive, and taxonomically comprehensive sampling

Thanks!

USGS, Alaska Science Center National Science Foundation - Beringian Co-evolution Project Numerous Field Crews!!

American Society of Mammalogists

