
1. Introduction
Soil classification is a routine approach for grouping soils based on their intrinsic property, behavior, or 
genesis with broad applications to soil science, particularly pedometry, soil survey, and soil mapping. In the 
literature, grouping soils has been performed on the basis of similarities in taxonomic (Devine et al., 2021; 
Pachepsky & Rawls, 1999), textural (García-Gutiérrez et al., 2018; Pachepsky & Park, 2015), and structural 
(Nguyen et al., 2015; Rawls & Pachepsky, 2002a) properties. For example, the Natural Resource Conserva-
tion Service (NRCS, 1986) classified soils into four hydrologic groups based on the soil's runoff potential. 
The four Hydrologic Soils Groups are A, B, C, and D where Soil Groups A and D generally have the smallest 
and greatest runoff potentials, respectively.

Soil classification has been a long-standing challenge that recently became even more important, particu-
larly for global-scale studies where (a) spatial and temporal variations in soil hydraulic properties exceed the 
field sampling capabilities (Twarakavi et al., 2010) and (b) a huge amount of data collected on a short-time 
period basis should be analyzed and interpreted (Dennis & Berbery, 2021). In the literature, properties such 
as textural classes and particle size distributions were widely used to group soils based on their textural sim-
ilarities (García-Gutiérrez et al., 2018; Pachepsky & Rawls, 1999; Pachepsky et al., 2006; Rawls & Pachep-
sky, 2002b). For example, Pachepsky and Rawls (1999) investigated if soil grouping based on their taxonom-
ic unit, moisture and temperature regime, and textural class would improve the accuracy and reliability of 
pedotransfer functions using 447 soil samples from the Oklahoma National Resource Conservation Service 
database. They applied the Group Method of Data Handling (GMDH) approach to develop regression-based 
relationships and found that grouping improved the accuracy of pedotransfer functions in most cases. They 
stated that, “Although PTFs [pedotransfer functions] developed from the groups were more accurate than 
the PTFs developed from the whole database, they were not more reliable. Improving PTF reliability may be 
an issue distinctly different from improving PTF accuracy.”

Twarakavi et al. (2010), however, questioned the validity of texture-based classification from a hydraulic 
point of view. Those authors applied the k-means clustering method in combination with the ROSETTA 
pedotransfer functions to determine soil hydraulic classes. They found that the texture-based classification 
did not group soils satisfactorily when there was a considerable impact of capillary forces.

One of the pioneering approaches in classifying soils is using the Miller-Miller similar-media theory (Miller 
& Miller, 1956) in which all regions in a soil are assumed to be structurally identical magnifications of a ref-
erence location. This theory has been widely used to classify porous media based on their hydraulic proper-
ties, such as capillary pressure and hydraulic conductivity curves (Vereecken et al., 2007). In the Miller-Mill-
er theory, two soils are similar when scale factors can be found that transform the behavior of one to that of 
the other one (Nielsen et al., 1998). Generally, the Miller-Miller theory is valid as long as media are similar 
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either with respect to their pore space characteristics or their hydraulic properties. Miller and Miller (1956) 
stated that, “in practice, the occurrence of detailed similarity throughout the microscopic geometries of two 
media has zero probability.” However, there is no exact methodology to explore such a geometric similarity 
within a microscopic domain (Sadeghi et al., 2016). Accordingly, most studies investigated the similarity of 
macroscopic and/or measurable characteristics, such as average grain size (Klute & Wilkinson, 1958).

There is experimental evidence showing that rigorous criteria for the Miller-Miller similarity may be held in 
sand packs (Klute & Wilkinson, 1958; Schroth et al., 1996). Although similarity is required for the validity of 
the Miller-Miller theory, Sadeghi et al. (2016) recently discussed that similarity is not the only required crite-
rion. They demonstrated that the interrelation between water retention and hydraulic conductivity curves is 
also essential to scale and classify porous media. They argued that the interrelation depends not only on the 
pore space geometry, but also on solid-liquid interactions, and, thus, similar interrelation cannot be drawn 
from the similarity of microscopic pore space geometry. Sadeghi et al. (2016) proposed a joint scaling factor, 
a parameter that is, a function of air entry value and saturated hydraulic conductivity (see their Table 1), to 
evaluate the interrelation among 26 soils and found six groups of similar soils.

The portion of the subsurface above the groundwater is the unsaturated zone. Proper investigation of the 
unsaturated zone requires characterizing hydraulic properties of soils under variably saturated conditions. 
Therefore, the main objective of this study is to develop a new approach that classifies soils based on simi-
larities in their hydraulic properties and two-phase flow characteristics. Our theoretic methodology is based 
on concepts from critical path analysis that has been successfully applied to estimate unsaturated hydraulic 
conductivity from soil water retention curve (Ghanbarian & Hunt, 2017; Ghanbarian, Hunt, & Daigle, 2016; 
Ghanbarian-Alavijeh & Hunt, 2012; Hunt, 2001). We aim to perform soil classification using a large data set 
including 102 soil samples from the UNSODA database and assess the practical applications of the proposed 
theoretic method in soil classification and grouping.

2. Critical Path Analysis
Critical path analysis (CPA) is a promising approach from statistical physics (Ambegaokar et al., 1971; Pol-
lak, 1972) that have been successfully used to model flow and transport in porous media, such as soils and 
rocks (Hunt & Sahimi, 2017; Hunt et al., 2014). Based on CPA, fluid flow in a network of pores of a wide 
range in size is controlled by larger pores whose magnitudes are greater than some critical pore size, which 
is defined as the smallest pore size required to let a fluid percolate through the network. In other words, 
pores with conductances greater than the critical value significantly contribute to flow, while low-conduct-
ance pores make trivial contribution to the overall transport, and, thus, they can be removed from flow 
analysis.

Let us map a soil into a network of pores of various sizes. To determine the critical pore conductance or 
size, one should first remove all pores and then replace them in their original locations in a decreasing order 
from the largest to the smallest size. As the first largest pores are replaced, there is still no percolating clus-
ter. However, after a sufficiently large fraction of pores is replaced within the network, a sample-spanning 
cluster forms and the system starts percolating. That size resulting in the percolating cluster is the critical 
pore size.

CPA provides a theoretical framework to link hydraulic conductivity to critical pore size (Katz & Thomp-
son, 1986). Under partially saturated conditions, as water saturation decreases the value of critical pore size 
and, consequently, hydraulic conductivity decrease as well. Hunt (2001) was first to apply concepts from 
CPA to model unsaturated hydraulic conductivity, K(Sw). He estimated K(Sw) from water retention curve 
and showed good agreement with experiments from the Hanford site, particularly at high water saturations. 
His approach was later generalized by Ghanbarian-Alavijeh and Hunt (2012) and Hunt et al. (2013) to be 
applicable to a broader range of porous media. A comprehensive review of CPA-based K(Sw) models can be 
found in Ghanbarian et al. (2015) and Ghanbarian and Hunt (2017).
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3. Theory of Soil Classification
Recently, Ghanbarian et al. (2019) developed a method to classify rocks based on their hydraulic properties 
under fully saturated conditions using saturated hydraulic conductivity and electrical conductivity data. 
In their approach, rocks with similar characteristic pore sizes are grouped into the same type using the 
hydraulic conductivity model of Johnson et al. (1986). In this study, we generalize their approach to unsatu-
rated conditions by applying concepts from CPA. More specifically, we group soils that have similar critical 
pore radius, rc, at the same effective water saturation Se. To calculate rc values, we use the unsaturated 
hydraulic conductivity measurements and convert them into critical pore radii using concepts from CPA 
(Ghanbarian, 2020; Hunt, 2001). For this purpose, one may utilize the following relationship (Ghanbarian 
& Hunt, 2017; Hunt, 2001)

   
 

w c w
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where K(Sw) and Ks are respectively the unsaturated and saturated hydraulic conductivities, Sw is the water 
saturation, and rc(Sw) and rc(Sw = 1) are the critical pore radii under partially and fully saturated conditions, 
respectively. Ghanbarian, Hunt, and Daigle (2016) linked the exponent E   in Equation 1 to the surface fractal 
dimension, Ds, whose value can be determined by fitting the following pore-solid fractal (PSF) model to the 
soil water retention curve (Bird et al., 2000)
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in which h is the suction head, ha is the air entry value, Ds is the surface fractal dimension, E  is the porosity, 
and 1E     is the PSF model parameter.

Ghanbarian, Hunt, and Daigle (2016) theoretically showed that in isotropic media, one has
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In natural porous media, one has s2 3E D  . Such a range leads to 2 3E   . In fact, as surface fractal 
dimension increases from 2 to 3, the value of E   decreases from ∼3 to 2.

The value of effective water saturation can be determined from the following equation
w wc

e
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where Swc is the critical water saturation at which the hydraulic conductivity vanishes. The value of Swc may 
be approximated from the dry end of either soil water retention curve or unsaturated hydraulic conductivity.

4. Materials and Methods
4.1. Experiments

To assess the proposed soil classification approach, we used the data that Ghanbarian-Alavijeh and 
Hunt  (2012) and Ghanbarian and Hunt  (2017) analyzed in their studies. The selected data set from the 
UNSODA database (Nemes et al., 2001) included 102 soil samples from nine soil texture classes. For the 
distribution of these samples within the soil texture triangle; see Figure  1 in Ghanbarian-Alavijeh and 
Hunt (2012). For each soil sample both the water retention and unsaturated hydraulic conductivity curves 
were available shown in Figure 1. Most of the water retention curves contained more than 10 measured 
data points from full saturation to 15,000 cm H2O. The PSF water retention model, Equation 2, was fitted 
by Ghanbarian-Alavijeh and Hunt (2012) who reported the optimized values of Ds, E  , and ha for each soil 
sample (see Table 1). We calculated the value of the exponent E   from Ds via Equation 3. Accurate determi-
nation of Swc requires precise measurements of water retention or unsaturated hydraulic conductivity curve 
at the dry end (or high suction heads). However, measuring the unsaturated hydraulic conductivity curve 
near the critical water saturation is time-consuming, particularly in fine-textured soils. Because of very 
low hydraulic conductivity, experiment time might be not adequately long enough to reach equilibrium 
conditions. Following Ghanbarian-Alavijeh and Hunt (2012), the critical water saturation, Swc, was roughly 
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approximated from the water saturation at the maximum suction head (in most cases at 15,000 cm H2O). 
We consequently calculated the effective water saturation, Se, from Equation 4.

The critical pore radii at different water saturations were determined from the measured unsaturated hy-
draulic conductivity values using Equation 1. To compare the values of rc(Sw) and rc(Sw = 1) from different 
soils at the same Se value, the K(Sw)/Ks−Sw curves were accordingly converted into the rc(Sw)/rc(Sw = 1)−Se 
ones.

Figure 1. (a) The water retention and (b) the unsaturated hydraulic conductivity curves for the 102 soil samples from 
the UNSODA database studied here.
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4.2. Curve Clustering

Various clustering approaches have been developed in the literature, 
such as k-means, single linkage, and simulated annealing (Maulik & 
Bandyopadhyay, 2002). Most, however, classifies data based on individu-
al measurements represented by single values. For example, the k-means 
clustering method partitions observations into k clusters in each of which 
samples belong to the same cluster with the nearest mean. However, it is 
known that the k-means approach has the limitation of getting stuck at 
suboptimal configurations, depending on the choice of the initial clus-
ter centers. However, the simulated annealing method can overcome 
this limitation because it is capable of handling local optima (Maulik & 
Bandyopadhyay, 2002).

Curve clustering is a probabilistic framework that allows for the joint 
clustering and continuous alignment of sets of curves in curve space 
(Gaffney, 2004). It integrates probabilistic alignment models with mod-
el-based curve clustering algorithms. The latter allows for the derivation 
of consistent learning algorithms for the joint clustering-alignment prob-
lem. More specifically, the curve clustering approach uses two regression 
mixing models: (a) polynomial regression (lrm) and (b) spline regression 
(srm) to insert similar curves in the same cluster. It is based on a regres-
sion mixture equation with up to four transformations, given by

y c ax b B d e      (5)

where the values within the square brackets represent the transformed regression matrix, c is related to the 
scaling in the measurement space, d is linked to translation in the measurement space, a is related to the 
scaling in time, and b is related to translation in time. In the present study, we assumed that Se played the 
role of time, while rc(Sw)/rc(Sw = 1) was the measurement space, or Se and rc(Sw)/rc(Sw = 1) were represent-
ed by the horizontal and vertical axes of a plot. Using these transformation parameters, we attempted to 
cluster all the data into representative soil classes as discussed earlier. We applied the open-source toolbox 
developed by Gaffney (2004). It is a MATLAB toolbox for clustering curve data using various probabilistic 
curve-based mixture models. We attempted different regression models (e.g., lrm and srm), transformation 
models (i.e., Equation 5 with different parameters), polynomial orders (between 1 and 4), and the number 
of clusters within the curve clustering method in this study.

5. Results and Discussion
Figure 1b shows the unsaturated hydraulic conductivity curves, on the log-log scale, measured on 102 soil 
samples from the UNSODA database. As can be seen, the hydraulic conductivity spans nearly eight orders 
of magnitude, while the water saturation mainly ranges between 0.1 and 1. This indicates the soil samples 
studied here cover a wide range of the unsaturated hydraulic conductivity measurements. On one hand, 
there are fine-textured soils for which the hydraulic conductivity varies mildly with the water saturation. On 
the other hand, there exist coarse-textured samples with sharp decrease in K(Sw) when Sw drops from 1 to 
0.7 probably due to the presence of macropores (Jarvis, 2008). From experimental viewpoint, reaching equi-
librium at very low water saturations near Swc where K(Sw) tends to vanish is time-consuming. Figure 1b 
clearly shows that most hydraulic conductivity measurements are far above the critical water saturation 
justifying Swc estimation from the water retention curves.

Figure 2 displays the histograms of Ds and E  . The average values of Ds and E   reported in Table 1 for each soil 
texture indicate a relatively wide range. We found the smallest and greatest average Ds = 2.649 and 2.965, 
respectively in the sand and clay textural classes. The obtained results show a clear trend between Ds and 
soil texture; Ds value increases with an increase of clay content. This is in accord with earlier results reported 
by Huang and Zhang (2005), Wang et al. (2005), Ghanbarian-Alavijeh and Millán (2009), and many others. 
Since E   is linked to Ds via Equation 3, one should expect E   to be greater in coarse-textured soils than that in 

Soil texture No. of samples ha (cm) β Ds γ R2

Sand 24 18.7 0.45 2.649 2.55 0.97

Loamy sand 5 20.6 0.44 2.659 2.53 0.95

sandy loam 18 21.0 0.73 2.906 2.15 0.97

Loam 10 18.0 0.82 2.939 2.10 0.97

Silt loam 41 27.3 0.93 2.932 2.11 0.95

Sandy clay loam 7 10.7 0.90 2.963 2.06 0.99

Silty clay loam 3 52.1 0.96 2.962 2.06 0.98

Silty clay 4 55.2 0.95 2.949 2.08 0.98

Clay 3 28.8 0.96 2.965 2.06 0.94

Note. The optimized parameters aE h , E  , and Ds were reported by 
Ghanbarian-Alavijeh and Hunt  (2012). The value of E   was determined 
from the Ds via Equation 3.

Table 1 
The Average Values of the Pore-Solid Fractal Model Parameters for Each 
Soil Texture Class
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fine-textured ones (see Table 1). We found the average E   = 2.55 for the sand and E   = 2.06 for the clay textural 
classes.

We show the normalized critical pore radius, rc(Sw)/rc(Sw = 1), against the effective water saturation, Se, on 
the logarithmic scale in Figure 3. The rc(Sw)/rc(Sw = 1) spans near three orders of magnitude. This is because 
K(Sw) is linked to rc(Sw) through the power law given in Equation 1. The exponent E   in Equation 1 controls 
variations in K(Sw). For example, if rc(Sw)/rc(Sw = 1) spans two orders of magnitude, one should expect 
K(Sw)/Ks to span four orders of magnitude, if E   = 2.

For curve clustering, we attempted both the polynomial regression (lrm) and the spline regression (srm) 
models with each available transformation parameters along with different polynomial orders (between 1 
and 4) and the number of clusters. We found the most reliable and consistent results were obtained using 
a polynomial regression with the E y x B d     transformation as well as an order of three and eight clus-
ters. Other polynomial orders produced inconsistent results for example, grouping all soil samples into a 
singular group regardless of the number of clusters specified. Cluster numbers smaller than eight grouped 
unlike curves into similar classes, while numbers greater than eight resulted in grouping similar curves into 
different groups.

Results of the curve clustering method and soil classification are presented in Figure 4. As can be seen, 
soils with similar rc(Sw)/rc(Sw = 1)−Se curves were grouped into the same class. The ratio rc(Sw)/rc(Sw = 1), 
indicating the normalized critical pore radius at different effective water saturations, represents some hy-
draulic characteristic that controls fluid flow based on the CPA. We found eight main soil classes using the 
proposed approach in combination with the curve clustering method (Figure 4). This means in the entire 
database analyzed here, there exists eight main classes that are substantially different in terms of pore space 
and contact angle properties.

Interestingly, our results and the number of soil classes are not greatly different from those of Twarakavi 
et al. (2010) who investigated the numbers of soil hydraulic classes. They used the ROSETTA software pack-
age to determine the optimal soil hydraulic classifications and their associated uncertainties. Twarakavi 
et al. (2010) varied the number of soil hydraulic classes from 2 to 30 and concluded that the optimal number 
of soil hydraulic classes was twelve.

Figure 2. The histograms of the Ds and E   values for the 102 soil samples from the UNSODA database used in this 
study.
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Figure 3. The r S r S S
c w c w e    / 1  curves for the 102 soil samples from the UNSODA database studied here.

Figure 4. Eight different soil groups detected by the curve clustering method and using the r S r S S
c w c w e    / 1  

curves.
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Soils included in each detected class, denoted by their UNSODA database code, and their textural classes 
based on the USDA classification are listed in Table 2. For classes 5 and 7, we only found five and four 
samples, respectively, while for class 3, there exist 32 samples. We compared our soil classification results 
with those from Sadeghi et al. (2016) who classified 26 soils from the UNSODA database using a joint scal-
ing factor based on air entry value, ha, and saturated hydraulic conductivity, Ks. As we show in Table 2, we 
found that soil samples 3,120, 4,030, and 4,870 belonged to classes 3, 6, and 2, respectively, whereas based 
on Sadeghi et al. (2016) analyses those samples grouped into the same class (their class 3). Similarly, soils 
with codes 3,360, 3,380, and 3,395 belonged respectively to classes 8, 3, and 6. However, Sadeghi et al. (2016) 
grouped them in their class 6. The main reason for discrepancies between our results and those reported by 
Sadeghi et al. (2016) is that those authors used one data point from the water retention curve that is, ha and 
another data point from the unsaturated hydraulic conductivity curve that is, Ks to define their joint factor 
and scale water retention and unsaturated hydraulic conductivity curves. However, we use the entire water 
retention and unsaturated hydraulic conductivity curves to classify soils.

In the literature, grouping has been widely used as a strategy to develop more accurate pedotransfer func-
tions by identifying soils with similar characteristics (Bruand, 2004). As stated earlier, soil textural proper-
ties along with bulk density have been widely applied to group soils. However, such classifications do not 
take into account the effect of solid-fluid characteristics, such as contact angle, that might influence hydrau-
lic properties of soils. It has been well documented that the unsaturated hydraulic conductivity depends on 
wettability and contact angle (Diamantopoulos & Durner, 2013; Sahimi, 2011). Because the contact angle 
affects the unsaturated hydraulic conductivity measurements, the soil classification method proposed in 

Soil class UNSODA soil code

1 1,463, 1,464, 4,000, 4,001, 4,020, 4,021, 4,050, 4,060, 4,061, 4,161, 4,523, 4,590, 4,610, 4,612, 4,651, 4,660

2 1,280, 1,281, 1,380, 1,391, 1,465, 2,530, 2,550, 4,602, 4,870

3 1,392, 1,467, 2,551, 2,552, 3,120, 3,361, 3,370, 3,371, 3,380, 3,390, 3,392, 3,393, 4,011, 4,031, 4,041, 4,052, 4,070, 4,081, 
4,092, 4,100, 4,111, 4,120, 4,121, 4,140, 4,151, 4,170, 4,171, 4,181, 4,670, 4,671, 4,672, 4,673

4 4,032, 4,033, 4,101, 4,172, 4,182, 4,183, 4,680, 4,681

5 1,461, 1,462, 1,466, 4,592, 4,661

6 3,395, 4,030, 4,080, 4,110, 4,160, 4,450, 4,620, 4,621, 4,622, 4,650

7 4,010, 4,130, 4,141, 4,162

8 1,360, 1,361, 1,362, 1,370, 1,381, 1,383, 1,390, 1,400, 1,490, 2,531, 2,532, 2,540, 2,541, 3,360, 4,062, 4,071, 4,510, 4,530

USDA soil texture

Class

1 2 3 4 5 6 7 8

Sand 9 0 4 0 4 1 1 0

Sandy Loam 1 2 8 1 0 2 2 3

Loamy Sand 1 1 0 0 0 0 0 1

Loam 3 3 1 1 1 3 0 4

Silt Loam 2 3 15 4 0 4 1 5

Silt 0 0 1 0 0 0 0 0

Sandy Clay Loam 0 0 0 0 0 0 0 0

Clay Loam 0 0 0 0 0 0 0 1

Silty Clay Loam 0 0 0 0 0 0 0 0

Sandy Clay 0 0 0 0 0 0 0 0

Silty Clay 0 0 1 0 0 0 0 2

Clay 0 0 2 2 0 0 0 2

Table 2 
Soil Samples With Their Corresponding UNSODA Soil Codes Detected in Each Soil Class Using the Proposed Approach
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this study indirectly incorporates the effect of wettability on grouping soils through converting the K(Sw)/
Ks−Sw curves into the rc(Sw)/rc(Sw = 1)−Se ones.

Under hydrophilic conditions, water as the wetting and air as the non-wetting fluids occupy the smallest 
and largest pores, respectively. The smallest pores are, however, ignored within the CPA framework, where-
as the largest pores are taken into account. Consequently, our proposed soil classification approach cannot 
be used to classify soils using air permeability curves under hydrophilic conditions or using unsaturated 
hydraulic conductivity curves under hydrophobic circumstances. Alternatively, one may apply another up-
scaling technique from statistical physics, such as the effective-medium approximation (Ghanbarian, Sahi-
mi, & Daigle, 2016; Levine & Cuthiell, 1986) for soil classification purposes.

In the past several years, machine learning has become a widely used tool to analyze data in science and 
engineering. Grouping soils has practical applications to data classification- and regression-type problems 
in machine learning (Aggarwal, 2014; Matloff, 2017), particularly when a large number of data is available. 
Unlike the existing soil classification methods, the proposed approach is on the basis of soil hydraulic con-
ductivity and its saturation-dependent curve, which indirectly takes the effect of contact angle into account. 
This makes our approach an appropriate classification method for the unsaturated zone, which is critical in 
the partitioning of precipitation to runoff, evaporation, storage, or recharge.

6. Conclusion
Grouping soils has broad practical applications in hydrology and soil science. Accordingly, we proposed a 
new theoretic approach using concepts from critical path analysis to classify soils based on similarities in 
the critical pore radius at the same effective water saturation. To evaluate our approach, we selected 102 soil 
samples for which both the water retention and unsaturated hydraulic conductivity curves were available. 
We first converted the measured K(Sw)/Ks−Sw curves into the rc(Sw)/rc(Sw = 1)−Se ones, then applied the 
curve clustering method to group soils, and found eight soil classes. Results also demonstrated discrepan-
cies among different soil classification methods, and the importance of hydraulic flow characteristics when 
classifying soils. Our number of soil classes align closely with previously determined soil hydraulic classes. 
This indicates that CPA can be an effective tool in classifying soil classes when the water retention and 
unsaturated hydraulic conductivity curves are available. Further investigations are required to expand the 
developed soil classification approach for air permeability measurements.

Data Availability Statement
The data used in this studied are available at: http://www.hydroshare.org/resource/53be7b9e275746c 
0868956bc46781204.
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