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A B S T R A C T   

Understanding porous media properties and their scale dependence have been an active subject of research in the 
past several decades in hydrology, geosciences and petroleum engineering. The scale dependence of flow in 
porous media is attributed to small- and large-scale heterogeneities, such as pore size distribution, pore con-
nectivity, long-range correlations, fractures and faults orientations, and spatial and temporal variations. The 
main objective of this study was to investigate how permeability (k) and formation factor (F) vary with sample 
dimension at small scales by means of a combination of pore-network modeling and percolation theory. For this 
purpose, the permeability and formation factor were simulated in twelve three-dimensional pore networks with 
different levels of pore-scale heterogeneities. Simulations were carried out at five different network sizes, i.e., 
1130, 2250, 3380, 4510 and 6770 µm. Four theoretical models were developed based on percolation theory to 
estimate the scale dependence of permeability and formation factor from the pore-throat radius distribution. In 
addition, two other theoretical scale-dependent permeability models were proposed to estimate permeability at 
different scales from the pore-throat radius distribution and/or formation factor. Comparing theoretical esti-
mations with numerical simulations showed that the proposed models estimated the scale dependence of 
permeability and formation factor reasonably. The calculated relative error (RE) ranged between − 3.7 and 3.8% 
for the permeability and between 0.21 and 4.04% for the formation factor in the studied pore-networks.   

1. Introduction 

Modeling flow and transport in porous media has been an active 
subject of research in various disciplines, such as groundwater hydrol-
ogy, petroleum and chemical engineering, soil physics, and geoscience. 
Since properties of porous media are measured at various scales, e.g., 
pore, core and reservoir/aquifer, understanding the effect of scale is 
essential, particularly for relating a property’s value at a larger scale (e. 
g., reservoir) to its value at a smaller one (e.g., core). For this purpose, 
applying scaling techniques is necessary to transfer knowledge from one 
scale to another. This can happen by identifying governing mechanisms 
at smaller scales and then portraying their manifestation at larger scales 
[1]. 

The influence of measurement scale (or sample volume) on physical 
and hydraulic properties of porous media has been known for decades 
[2–7], and various scaling approaches have been proposed to study the 
scale dependence of flow and transport in porous media. One of the 
pioneer models is the Miller-Miller similar-media theory [8] in which all 

regions in a porous medium are assumed to be structurally identical 
magnifications of a reference location. This approach has been widely 
used to classify porous media based on their hydraulic properties, such 
as capillary pressure and hydraulic conductivity curves. Generally 
speaking, the Miller-Miller theory is valid as long as media are similar 
either with respect to their pore space characteristics or their hydraulic 
properties. Recently, Sadeghi et al. [9] discussed that similarity is not 
the only required condition. They demonstrated that the interrelation 
between the capillary pressure and unsaturated hydraulic conductivity 
curves is also required for scaling purposes and classifying porous 
media. 

Experimental measurements [10–12] and numerical simulations on 
rock images [13–15] indicate that permeability, k, should increase with 
the increase in sample volume (or scale). However, beyond a critical 
volume, interpreted as the minimum scale of an equivalent homoge-
neous medium [16], k remains approximately constant. The critical size 
or volume is known as the representative elementary volume (REV), the 
smallest sample size above which k does not vary with size [17]. 
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Schulze-Makuch et al. [10] conducted a comprehensive study of scale- 
dependent permeability by analyzing experimental measurements 
from 39 different media. They suggested a power-law scaling relation-
ship to correlate the increase in k with the sample volume Vs as follows: 

k = CVm
s (1)  

where the constant C and scaling exponent m characterizing medium’s 
heterogeneity are empirical. It is not known whether the scaling expo-
nent m in soils depends on the texture [11]. It has been noted that the 
structure of media affects the value of m. For example, Schulze-Makuch 
et al. [10] found m = 0.51 in heterogeneous fractured media and 0.55 <
m < 0.83 in double-porosity media. However, Fallico et al. [18] reported 
a substantially smaller value (m = 0.029) for a tank filled by sand with a 
high percentage (76%) of grains between 0.063 and 0.125 mm. Negative 
exponents, i.e., m = − 0.06 and − 0.05 were also reported in soils [19]. 
Although Eq. (1) has been frequently used in the literature, it is 
empirical. 

Ghanbarian et al. [20,71] applied a machine-learning method called 
the contrast pattern aided regression (CPXR) and proposed scale- 
dependent functions to estimate permeability from other porous 
media properties using samples from the UNSODA database. They 
showed that by including sample dimensions, i.e., sample internal 
diameter and height (or length), k estimations were substantially 
improved. However, such functions and the power-law model given in 
Eq. (1) are purely empirical, and because of their empiricism the 
interpretation of the parameters (i.e., C and m) and their variations from 
one soil/rock sample to another is not clear. 

Hopmans et al. [21] stated that the inherent complexity of flow in 
heterogeneous media and the need to integrate theory with experiment 
demand innovative and multidisciplinary research efforts to overcome 
restrictions imposed by current understanding of scale dependence of 
flow and transport. For example, Hyun et al. [7] treated a rock as a 
truncated random fractal and studied the scale dependence of perme-
ability using a stochastic scaling theory. 

An explicit theoretical expression for the scale dependence of k can 
be derived in the context of percolation theory [22,23]. Hunt [24] 
considered an anisotropic medium whose horizontal connectivity was 
greater than its vertical one and rescaled the medium’s axes to have 
equal conductances in each direction. The transformed medium, 
accordingly, turned into an isotropic system with elongated volume. 
Hunt [24] then combined concepts of percolation theory with the 
power-law pore-throat size distribution and proposed the following 
theoretical relationship to characterize the scale dependence of perme-
ability across scales: 

k(L) = kREV

[

1 −

(

1 −

(
rtmin

rtmax

)3− Dp
)(

lt0

lt0 + L

)1
ν
] 2

3− Dp

(2)  

where Dp is the pore space fractal dimension characterizing the size 
distribution of pore throats, kREV is the REV value of permeability, rtmin 
and rtmax are the minimum and maximum pore-throat radii in the me-
dium, lt0 is the typical pore-throat length, L is the system size, and ν is the 
correlation length scaling exponent whose universal value is 0.88 in 
three dimensions [25]. Hunt [24] set rtmax/rtmin = 5000, Dp = 2.95, lt0 =

1, and kREV = 8.2× 10-10 m2 (REV hydraulic conductivity = 0.008 m/s), 
compared theoretical estimations from Eq. (2) with experimental data of 
Schulze-Makuch [26] collected from various sites within a carbonate- 
rock aquifer in southeastern Wisconsin and found generally well 
agreement. 

More recently, Daigle [27] combined the scale dependence of 
percolation threshold with a permeability model based on the Katz and 
Thompson [28] approach and fractal properties of porous media. 
Similar approach was applied by Davudov and Moghanloo [29] to study 
the scale dependence of permeability in shales. However, both models 
assume that porous media are fractal, and their pore-throat size 

distributions follow the power-law probability density function. 

2. Objectives 

In the ingenious scale-dependent permeability model of Hunt [24], 
Eq. (2), the pore-throat size distribution was approximated by the 
power-law probability density function. However, lognormal [30,31], 
Weibull [32,33], or mixed Gaussian [34] distribution might be a more 
accurate representation in some porous media. There are also some 
rocks whose pore-throat size distributions do not conform to any type of 
probability density functions [35–39]. In addition, Eq. (2) scales down 
permeability using its REV value, while typically upscaling permeability 
is desired. In the Hunt [24] article, Eq. (2) was compared with experi-
mental measurements whose pore space properties were not available. 
Therefore, the main objectives of this study are to: (1) generalize the 
Hunt [24] approach to be independent of the shape of pore-throat size 
distribution, (2) compare the proposed generalized model with indi-
vidual pore networks whose pore structures are known, and (3) extend 
the percolation-based model to formation factor and its scale depen-
dence in porous media. 

3. Pore-network modeling 

Pore-scale numerical simulations and pore-network modeling have 
been successfully used to study flow and transport in porous media 
[35,40–42]. In what follows, we first explain three-dimensional pore- 
networks generation and then describe flow simulations in such 
networks. 

3.1. Generating pore networks 

Porous media are typically spatially and temporally heterogeneous. 
At small scales e.g., pore and core, spatial heterogeneity is defined as 
spatial variation in pore size, pore connectivity, surface roughness, and 
mineralogy [43]. To investigate the effect of scale on permeability and 
formation factor in porous media with different levels of heterogeneity, 
three different pore-throat radius ranges, i.e., 0.1–10, 1–50 and 10–75 
μm were considered. Within each range, four random (uncorrelated) 
networks were constructed using different values of the Weibull distri-
bution parameters, as described in detail below. Overall, twelve pore 
networks were generated using the open-access code developed by 
Valvatne [44]. For this purpose, we generated cubic lattices with fixed 
coordination number Z = 6 and pore-throat length lt = 100 μm. Each 
pore network was composed of cylindrical pore throats with uniform 
cross-sectional areas and spherical pore bodies. 

The size distribution of pore throats conformed to the following 
truncated Weibull probability density function 

rt = (rtmax − rtmin)(− δln(x(1 − e(1/δ)) + e(1/δ)))
1/γ

+ rtmin (3)  

where δ and γ are the Weibull distribution shape factors, x is a randomly 
generated number between 0 and 1, rt is the pore-throat radius, and rtmin 
and rtmax are the smallest and largest pore-throat radii, respectively, in 
the network. 

The pore-body radius was accordingly determined based on the 
following relationship [44]: 

rb = max
(

ζ
∑n

i=1rti

n
,max(rti)

)

(4)  

in which n is the number of pore throats connected to the same pore 
body and ζ is an aspect ratio whose distribution follows the truncated 
Weibull probability density function. In this study, we set ζ = 0 meaning 
that the pore-body radius has the same size as the largest connected pore 
throat. 

To generate pore networks of various pore-scale heterogeneities, we 
used different values of the rtmax/rtmin ratio and Weibull distribution 
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shape factors δ and γ. The summary of properties of all the generated 
pore-networks is presented in Table 1. To study the scale dependence of 
permeability and formation factor, we used pore networks of sizes 1130, 
2250, 3380, 4510 and 6770 μm, which indicate the length of each side of 
the pore-network cube. Pore networks of sizes 1130, 2250, 3380, 4510 
and 6770 μm were constructed of 103and 3×103, 203 and 3× 103, 303 

and 3× 103, 403 and 3× 403, and 603 and 3 × 603 pore bodies and pore 
throats, respectively. 

3.2. Simulating flow in pore networks 

Permeability and formation factor were simulated using the “pore-
flow” pore-scale simulator, also developed by Valvatne [44]. The value 
of permeability was determined using Darcy’s law 

k =
μqtL

At(Pinlet − Poutlet)
(5)  

where μ is the fluid viscosity, At is the medium cross-sectional area, L is 
the length, qt is the total flow rate, and Pinlet − Poutlet indicates a pressure 
difference between the inlet and outlet. 

The total flow rate was calculated by solving for pressure throughout 
the network under the steady state flow condition while mass conser-
vation was taking place at each pore body as follows 
∑

j
qij = 0 (6)  

in which i represents each of the pore bodies and j denotes all the pore 
throats connecting to pore body i. For this equation to be in effect we 
should suppose that viscous pressure drops are negligible compared to 
capillary pressure. In Eq. (6), qij is the flow rate between two pore bodies 
and depends on the hydraulic conductance ghij, the distance between the 
centers of the two pore bodies lij, and the pressure difference ΔPij as 
follows 

qij =
ghij

lij
ΔPij (7) 

The fluid conductance between two pore bodies was determined 
using the harmonic mean of contributing conductances 

lij

ghij
=

lbi

ghi
+

lt

ght
+

lbj

ghj
(8)  

where lbi and lbj indicate the distance in between the center of pore body 
to the interface where pore body and pore throat meet, and lt is the pore- 
throat length [44]. 

Under the laminar flow conditions, the hydraulic conductance of a 
pore with irregular cross section is given by 

gh = c
A2

pG
μ (9)  

in which c is a constant whose value is 0.6, 0.5623 and 0.5 for equilateral 
triangle, square, and circular pores, respectively, G is the shape factor, 
and Ap is the pore cross section. In this study, cylindrical pore throats 
and spherical pore bodies were used to construct random (uncorrelated) 
pore networks. 

Formation factor F in the context of electrical flow is analogous to 
absolute permeability and hydraulic flow [44]. It is defined as the ratio 
of saturated medium resistivity, Ro, to brine resistivity, Rw (F =

Ro/Rw).Ro can be determined using Ohm’s law as follows: 

Ro =
AtΔV
atL

(10)  

where ΔV is the voltage drop and at is the total current flow. Accord-
ingly, the electrical conductance ge is given by 

ge =
Aw

Rw
(11)  

where Aw is the cross-sectional area that is occupied by the brine in the 
pore. From Eq. (11) and Ohms’ law we can write [44] 

at = geΔV (12) 

thenRo and eventually formation factor F are computed. 

4. Theoretical modeling 

4.1. Percolation theory 

Percolation theory from statistical physics provides a theoretic 
framework to study connections between macroscopic quantities and 
underlying microscopic properties in homogeneous and heterogeneous 
networks [45,46]. Although initial models were proposed based on bond 
and site percolation classes and regular lattices [25], more realistic and 
representative models were developed using irregular and disorder lat-
tices [47,48] and the continuum percolation class [49,50]. In what 
follows, we apply concepts of percolation theory to generalize the 

Fig. 1. The schematic plot of the scale dependence of permeability as well as the 
representative elementary volume (REV), the smallest size above which 
permeability does not vary with length. The correlation length, χ, provides a 
measure of the largest length scale above which the system is macroscopically 
homogeneous, and the geometry is Euclidean (L > χ). However, when the 
system size L is less than the correlation length (L < χ), the system is hetero-
geneous and statistically self-similar fractal. For transport through a system to 
be truly 3D, all dimensions of the system should be greater than the correlation 
length χ. 

Table 1 
Salient properties of the twelve pore networks constructed in this study.  

Network rb (μm) rt (μm) γ  δ  lt (μm) Z rtc (μm) ϕ (%)   

1.1 0.1–10 0.1–10 12  0.2 100 6 8.7 4.3  
1.2 0.1–10 0.1–10 18  0.2 100 6 9.1 4.7  
1.3 0.1–10 0.1–10 24  0.2 100 6 9.35 4.9  
1.4 0.1–10 0.1–10 30  0.2 100 6 9.5 5.1  
2.1 1–50 1–50 12  0.2 100 6 44.2 32.1  
2.2 1–50 1–50 18  0.2 100 6 46 34.2  
2.3 1–50 1–50 24  0.2 100 6 47 35.4  
2.4 1–50 1–50 30  0.2 100 6 47.5 36.1  
3.1 10–75 10–75 12  0.2 100 6 67.6 43.9  
3.2 10–75 10–75 18  0.2 100 6 69.7 46  
3.3 10–75 10–75 24  0.2 100 6 70.7 47.1  
3.4 10–75 10–75 30  0.2 100 6 71.5 47.8 

* rb is pore-body radius, rt is pore-throat radius, γ and δ are Weibull distribution 
parameters, lt is pore-throat length, Z is pore coordination number, rtc is critical 
pore-throat radius, and ϕ is porosity. 
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methodology proposed first by Hunt [24] and establish a general rela-
tionship between the critical pore-throat radius and pore space charac-
teristics, such as pore-throat radius distribution and typical pore-throat 
length as well as the system size. 

The fractal nature of clusters in a percolating system underlies 
interesting scale-dependent transport modes e.g., permeability and 
formation factor. Within the percolation theory framework, correlation 
length gives a measure of the largest length scale at which non- 
Euclidean or fractal geometry effects are observed. In an infinite sys-
tem, excluding the percolating (infinite) cluster, the mean distance be-
tween any two sites on the same finite cluster, known as the correlation 
length χ, is given by [25,46] 

χ = χ0(p − pc)
− ν
, p > pc (13)  

where p is the fraction of bonds (or sites) that are occupied or present, pc 
is the percolation threshold, ν is the critical scaling exponent whose 
value is 0.88 in three dimensions [25], and χ0 is the typical bond length. 
For length scales smaller than the correlation length (L < χ), the system 
is heterogeneous and statistically self-similar fractal, while for length 
scales larger than χ the system is macroscopically homogeneous and 
follows Euclidean geometry (Fig. 1). 

Let us map a porous medium into a network of cylindrical pore tubes. 
To apply the concept of correlation length and percolation theory to 
porous media with irregular pore networks, one may rewrite Eq. (13) as 
follows [51] 

χ = lt0(f − fc)
− ν (14)  

in which f = V
Vt 

is the volume fraction, and fc = Vc
Vt 

is the critical volume 
fraction of pores. V represents the pore volume, Vc is the critical volume, 
and Vt is the total volume of pores. lt0 in Eq. (14) represents the typical 
pore-throat length in the medium. 

Rearranging Eq. (14) gives 

f = fc +

(
lt0

χ

)1
v

(15) 

Eq. (15) gives f = fc for a system of infinite size. However, for χ < lt0, 
Eq. (15) returns f > 1, which is an unphysical limit. Following Hunt [24], 
Eq. (15) can be approximately corrected as follows: 

f = fc +

(
lt0

χ + lt0

)1
v

(16) 

Such a modification was successfully evaluated by Hunt [24] to 
compare scale-dependent permeability estimations with experiments 
and by Ghanbarian et al. [52] to estimate scale-dependent tortuosity in 
porous media. 

Replacing the correlation length χ with the system length L in Eq. 
(16) gives 

f = fc+
(

lt0

L + lt0

)1
v

(17) 

In percolation theory, the critical volume of pores Vc can be deter-
mined by integrating ltr2

t f(rt) between rtc and rtmax as follows [45] 

Vc∝
∫ rtmax

rtc

ltr2
t f (rt)drt (18)  

where rt is the pore-throat radius, lt is the pore-throat length, and f(rt)

represents the pore-throat radius distribution. 
Similarly, the total volume of pores is given by 

Vt∝
∫ rtmax

rtmin

ltr2
t f (rt)drt (19) 

Accordingly, the critical fractional pore volume can be determined 
from the ratio Vc/Vt 

fc = Vc
Vt 

=

∫ rtmax
rtc

lt r2
t f(rt)drt

∫ rtmax
rtmin

lt r2
t f(rt)drt 

(20) 

Following Neuman and his coworkers [53,54], Hunt [24] argued 
that the axes of an anisotropic system can be rescaled to give equal 
conductances in each direction. Imagine a rectangular system with equal 
horizontal dimensions but a vertical dimension shorter than the hori-
zontal ones. If the horizontal permeability is 100 times greater than the 
vertical permeability, the vertical dimension should be 10 times shorter 
than the horizontal dimensions to have equal conductances in all di-
rections. In such a case, the correlation length would be greater than the 
horizontal dimension but smaller than the vertical dimension. However, 
for transport through a system to be truly 3D, all dimensions of the 
system should be greater than the correlation length χ. This means that 
such a transformed medium would be quasi one-dimensional with 
percolation threshold near 1 [24,45]. 

Following Hunt [24], to determine the scale dependence of the 
critical pore-throat radius as the critical volume fraction approaches 1 
(the fully 1D limit), we replace f in Eq. (17) with fc from Eq. (20) and let 
fc→0 in Eq. (17) to have 
∫ rtmax

rtc
ltr2

t f (rt)drt
∫ rtmax

rtmin
ltr2

t f (rt)drt
=

(
lt0

L + lt0

)1
v

(21) 

Eq. (21) is the general relationship implicitly linking the critical 
pore-throat radius to the pore-throat size distribution, typical pore- 
throat length, and system size. Since rtc in Eq. (21) is not an explicit 
function of L, we numerically determine its value. Determination of 
percolation threshold in porous media is challenging because its value 
depends on several factors, such as pore structure and pore connectivity, 
fluid properties, and wettability. Following Hunt [24], the original fc in 
Eq. (17) was set equal to 0 for convenience and simplicity. 

In the following, we propose different models based on the rela-
tionship between permeability and/or formation factor and the critical 
pore-throat radius to estimate their scale dependency. 

4.2. Estimating the scale dependence of permeability from pore-throat size 
distribution 

A long-standing problem in petroleum engineering and many other 
research disciplines has been estimating permeability at a larger scale 
from its value measured and/or determined at a smaller scale. To 
address the effect of scale on the permeability, we invoke the critical 
path analysis (CPA) approach and percolation theory. Katz and 
Thompson [28] were first to apply concepts of CPA to estimate perme-
ability from formation factor and critical pore-throat radius in porous 
media. They proposed 

k =
r2

tc

CCPAF
(22)  

where CCPA is a constant whose value depends on geometrical properties 
of the pore space [55]. Eq. (22), similar to the model of Johnson et al. 
[56], is based on the fact that both permeability k and formation factor F 
are functions of the same characteristics pore size (e.g., rtc). We combine 
Eq. (21) with Eq. (22), propose two different scale-dependent perme-
ability models, and compare theoretical estimations with pore-network 
simulations. 

Following Hunt [24], we assume that the critical pore-throat radius 
varies with the scale via Eq. (21). We further presume that permeability 
is dominantly controlled by the critical pore-throat radius. Accordingly, 
we set k(L)∝r2

tc(L) and normalize permeability using its value at the 
smallest scale Lmin (i.e., L = 1130 μm) as follows 

k(L) = k(Lmin)

[
rtc(L)

rtc(Lmin)

]2

(23) 

Recall that rtc(L) can be numerically computed by solving Eq. (21) 
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given that f(rt), lt0, and L are known for the pore networks studied here. 
Following Katz and Thompson [28], we determine the value of rtc(Lmin)

from the mode of the pore-throat size distribution (see Table 1). 
The power-law relationship between k and rtc may not follow the 

quadratic relationship given in Eq. (23). Reanalyzing experimental data 
reported by Katz and Thompson [28] revealed an exponent equal to 2.36 
(results not shown). Ghanbarian et al. [57] also found an exponent <2 (i. 
e., 1.90). We accordingly generalize Eq. (23) to have 

k(L) = k(Lmin)

[
rtc(L)

rtc(Lmin)

]α

(24)  

where the value of α can be determined from the simulations by fitting a 
power law to the permeability values simulated at L = 1130 μm versus 
the critical pore-throat radius derived from the mode of the pore-throat 
radius distributions. 

4.3. Estimating the scale dependence of formation factor from pore-throat 
size distribution 

Formation factor F is another important porous medium’s property 
that has been widely investigated. However, the theoretical modeling of 
its scale dependence has remained as an open question in the literature. 
In the following, we propose two scale-dependent F models using the 
CPA approach and percolation theory. 

Following Ewing and Hunt [58], one may invoke concepts of CPA to 
establish a theoretical relationship between the formation factor and the 
critical pore-throat radius i.e., F∝r− 1

tc . Applying this relationship in 
combination with Eq. (17) provides the following scale-dependent F 

model 

F(L) = F(Lmin)

[
rtc(L)

rtc(Lmin)

]− 1

(25) 

Similar to the scale-dependent permeability, the relationship be-
tween F and rtc may not conform to an inverse linear equation and Eq. 
(25). Reanalyzing experimental measurements reported by Katz and 
Thompson [28] revealed an exponent equal to − 0.44 (results not 
shown). We, therefore, propose the following model for the scale 
dependence of the formation factor 

F(L) = F(Lmin)

[
rtc(L)

rtc(Lmin)

]− β

(26)  

in which the value of the exponent β can be determined from the sim-
ulations and by directly fitting a power law to the formation factors 
plotted against their corresponding rtc values. 

4.4. Estimating the scale dependence of permeability from formation 
factor and pore-throat size distribution 

In the Hunt [24] model, it is assumed that the value of critical pore- 
throat radius varies with the scale. In this section, we propose two other 
models based on the Katz and Thompson [28] relationship, Eq. (22), to 
estimate k(L) from either F(L) or pore-throat radius distribution and 
formation factor. 

If pore-throat radius distribution does not significantly change with 
scale, one may set k(L)∝1/F(L) [59]. Accordingly, normalizing perme-
ability using its value at the smallest scale gives 

Fig. 2. Pore-throat radius distributions for twelve pore networks constructed in this study.  
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k(L) = k(Lmin)
F(Lmin)

F(L)
(27) 

Eq. (27) provides a simple relationship to determine the scale 
dependence of permeability from permeability measured/simulated at 
the smallest scale, k(Lmin), and the formation factor measured/simulated 
at both scales. Although such a linear proportionality is valid in pore- 
network simulations where pore-throat radius distributions do not 
change from one scale to another, it may not be held in real rocks [60]. 

If the value of k(Lmin) is not available, one may estimate it via the 
Katz and Thompson [28] model, Eq. (22). Combining Eq. (27) with Eq. 
(22) yields 

k(L) =
r2

tc(Lmin)

CCPAF(L)
(28) 

To estimate the scale dependence of permeability via Eq. (28), one 
needs the formation factor measured/simulated at that scale and the 
critical pore-throat radius at the smallest scale. The latter can be 
determined from the pore-throat radius distribution. In this study, we set 
CCPA = 32, following Friedman and Seaton [61]. 

4.5. Models evaluation criteria 

To evaluate the accuracy of the proposed scale-dependent models, 
the root mean square log-transformed error (RMSLE) and the relative 
error (RE) values were calculated as follows 

RMSLE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(log(xest) − log(xsim))

2

√
√
√
√ (29)  

RE =
xest − xsim

xsim
× 100 (30)  

where N is the number of samples, and xest and xsim are, respectively, the 
estimated and simulated values. 

5. Results 

In this section, we present the results of comparing the pore-scale 
numerical simulations with the proposed theoretical models from 
percolation theory. Fig. 2 shows the pore-throat radius distributions for 
all the twelve pore networks studied here. As can be seen from Fig. 2 
(also indicated in Table 1), Networks 1, 2, and 3 have three distinct 
ranges of pore-throat radius to study the scale dependence of perme-
ability and formation factor in porous media of different levels of het-
erogeneity. Network 1 has the narrowest pore-throat radius distribution 
among all the networks (Fig. 2) and represents the most homogeneous 
medium, while Networks 2 and 3 represent respectively the intermedi-
ate and the most heterogeneous media in this study. We should also 
point out that as the parameter γ in the Weibull distribution, Eq. (3), 
increases (Table 1), the average value of rt increases as well. However, 
the pore-throat radius distribution becomes narrower (Fig. 2). Accord-
ingly, the level of heterogeneity decreases from Networks 1.1, 2.1, and 
3.1 to Networks 1.4, 2.4, and 3.4. 

Fig. 3. Pore-body radius distributions for twelve pore networks constructed in this study.  
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The pore-body radius distributions of all the networks are presented 
in Fig. 3. Since we set ζ = 0 in Eq. (4), the pore-body radius has the same 
size as the largest connected pore throat. As a result, the pore-body 
radius distributions of the networks resembled probability density 
functions similar to the pore-throat radius distributions. 

To determine the exponents α in Eq. (24) and β in Eq. (26), we 
plotted the permeability and formation factor values simulated at the 
smallest network with L = 1130 μm versus the critical pore-throat radius 
and fitted the power-law function to the data. Results shown in Fig. 4 
indicate α = 3.03 and β = -1.37 with R2 > 0.94. We reanalyzed the 
experimental data of Katz and Thompson [62] and numerical simula-
tions of Berg [63] and found α = 2.34 and 4.71 and β = -0.44 and − 2.66, 
respectively (results not shown). Our α = 3.03 and β = -1.37 are in 
accord with the range obtained from the literature. β = -1.37 in Eq. (26), 
is not greatly different from the exponent − 1 in Eq. (25). Accordingly, 
the scale-dependent formation factor estimations by these two equations 
should not be substantially different, as we show in what follows. For 
permeability, α = 3.03 in Eq. (24), however, is greater, by a factor of 1.5, 
than the exponent 2 in Eq. (23). 

5.1. Estimating the scale dependency of permeability and formation from 
pore-throat radius distribution 

- Network 1 
Fig. 5 presents the results of pore-scale numerical simulations of k 

and F and the theoretical estimations by the proposed models, Eqs. (23)- 
(26). As reported in Table 1, the value of rtc increases from Network 1.1 
to 1.4. Therefore, based on the CPA and Eq. (22) one should expect the 
value of permeability to increase from Network 1.1 to 1.4 as well, as 
shown in Fig. 5. Using the same terminology and given that the rela-
tionship between F and rtc is inverse, one should expect the value of 
formation factor to decrease from Network 1.1 to 1.4. 

Fig. 5 also shows that the simulated permeability increases with in-
crease in the network size, although the pore-throat radius distribution 
does not statistically vary with the scale. The theoretical estimations of 
the scale-dependent permeability are also presented in Fig. 5, and the 
corresponding RMSLE value for each model is also reported. For the 
permeability, the RMSLE value ranged from 0.0075 to 0.0187, and 
0.0032 to 0.0156 for the estimations based on Eq. (23), and Eq. (24), 
respectively. For the formation factor, we found 0.0141 < RMSLE <
0.0194 for Eq. (25) and 0.0112 < RMSLE < 0.0185 for Eq. (26), as 

reported in Fig. 5. 
We also report the values of relative error (RE) and relative absolute 

error (RAE) as well as their averages in Table 2. Generally speaking, Eq. 
(23) and Eq. (24) underestimated the scale-dependent permeability. 
This is confirmed via the negative RE values reported in Table 2. Results 
from Network 1 show that Eq. (24) with average RE = -1.67% estimated 
k(L) more accurately than Eq. (23) with average RE = -2.85%. For the 
formation factor, both models overestimated the scale-dependent F in 
the studied networks. However, Eq. (26) with average RE = 3.24% 
estimated F(L) slightly more precisely than Eq. (25) with average RE =
3.6% (Table 2). 

Comparing the scale-dependent permeability and formation factor 
estimations shown in Fig. 5 indicate that overall the scale dependence of 
permeability was more precisely estimated than that of formation factor. 
This can be due to the fact that the hydraulic conductance of a cylin-
drical pore is proportional to its radius to the fourth power, while the 
electrical conductance proportional to the second power. As the expo-
nent increases, flow is increasingly concentrated in fewer pathways, 
which become increasingly tortuous. This means that permeability is 
affected by the pore space structure and its heterogeneity more than 
formation factor. 

- Network 2 
Results of Network 2 are shown in Fig. 6. Similar to Network 1, 

permeability increases, while formation factor decreases with increase 
in the network size. Compared to Network 1, the value of permeability is 
nearly two orders of magnitude greater and the value of formation factor 
is one order of magnitude smaller in Network 2. Based on the perme-
ability plots shown in Fig. 6, it seems that Network 2 has a greater REV 
value than Network 1. Although the permeability in Network 1 does not 
vary with the scale at network size of 6770 μm(Fig. 5), its value tends to 
keep increasing with the scale in Network 2. This clearly shows that 
Network 2 is more heterogeneous than Network 1. This pore-scale het-
erogeneity is because the pore-throat radius distribution in the former is 
broader than that in the latter (Fig. 2). 

As can be seen in Fig. 6, the proposed theoretical models estimated 
the scale-dependent permeability in Network 2 reasonably well. The 
value of RMSLE ranged from 0.0022 to 0.0103 for the estimations by Eq. 
(23) and from 0.0014 to 0.0077 for those by Eq. (24). We found the 
average RE value for Eqs. (23) and (24) equal to − 1.42 and − 0.42%, 
respectively. These values are less than those reported for Network 1 
(see Table 2). This is most probably because Eqs. (23)-(26) were 

Fig. 4. Permeability (left) and formation factor (right) versus critical pore-throat radius. Blue lines are the best power-law function fitted to the simulations results. 
Both permeability and formation factor simulations are from the smallest network with L = 1130 μm. The critical pore-throat radius was determined from the mode of 
the pore-throat radius distribution that does not vary with network size. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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developed based on concepts of CPA, a theory that works best in het-
erogeneous media with broad pore-throat radius distributions [22,45]. 
The average RAE values reported for Eqs. (23) and (24) also indicate that 
Eq. (24) estimated the scale dependence of permeability more accu-
rately than Eq. (23). 

Similar to the results of Network 1, both Eqs. (25) and (26) over-
estimated the scale dependence of formation factor in Network 2. We 
found that, on average, Eq. (25) estimated F(L) with RE = 2.14% and Eq. 
(26) with RE = 1.84%. Since both models overestimated F, the values of 
RE and RAE are the same (Table 2). Eq. (26) estimates F(L) more pre-
cisely than Eq. (25) because the value of the exponent β in Eq. (26) was 
optimized from the simulations at the smallest network size (i.e., 1130 
μm). 

- Network 3 
The pore-throat radius distributions in Network 3 is broader than 

those in Networks 1 and 2 and, thus, it is the most heterogeneous 
network among these three cases. The increasing trend in the perme-
ability at larger network sizes (e.g., 6770 μm) indicates that the REV has 

not reached (Fig. 7), which is similar to the results of Network 2 (Fig. 6). 
As reported in Fig. 7, we found 0.0022 < RMSLE < 0.0065 for Eq. (23) 
and 0.0013 < RMSLE < 0.014 for Eq. (24) in the estimation of the scale 
dependence of permeability in Network 3. Eq. (24) estimated k(L) more 
accurately than Eq. (23) in Networks 3.3 and 3.4. However, the source of 
error in Networks 3.1 and 3.2 is not clear yet. 

Based on the average RE values reported in Table 2, overall Eq. (23) 
estimated the scale dependence of permeability in Network 3 more 
precisely than Eq. (24). More specifically, we found RE = -0.53 and 0.7% 
and RAE = 0.9 and 1.15%, respectively, for Eqs. (23) and (24). Although 
Eq. (24) estimated the scale dependence of permeability more accu-
rately than Eq. (23) in Networks 1 and 2, Eq. (23) has higher accuracy 
than Eq. (24) in Network 3. The reason is yet not clear and requires 
further investigations. 

Results of the formation factor and its scale-dependent estimations 
are also presented in Fig. 7. Similar to Networks 1 and 2, Eq. (26) pro-
vided more accurate estimations of F(L) than Eq. (25) (see the RMSLE 
values reported in Fig. 7). The average RE and RAE values reported in 

Fig. 5. Simulated and estimated permeability and formation factor for Network 1. Black filled circles indicate simulation values. Black and blue lines represent 
estimations by Eqs. (23) and (24) for the permeability and by Eqs. (25) and (26) for the formation factor, respectively. The calculated RMSLE value for each model is 
given adjacent to each line using the same color code. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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Table 2 confirmed the obtained results. 

5.2. Estimating the scale dependency of permeability from formation 
factor and pore-throat radius distribution 

In this section, we present the results of k(L) estimated by Eq. (27) 
from k(Lmin) and F(L) as well as by Eq. (28) from the pore-throat radius 
distribution and the simulated formation factor. Fig. 8 shows the results 
of k(L) estimations via Eqs. (27) and (28). The RMSLE values for 
Network 1 ranged from 0.0020 to 0.0024 and from 0.0106 to 0.0163 for 
Eqs. (27) and (28), respectively. As can be seen in Table 3, for Eq. (27) 
and Network 1 we found the average RE = -0.38%, which is consider-
ably less than those reported for Eqs. (23) and (24) in Table 2. For Eq. 
(28) and Network 1 the average RE value is 2.84%, greater than that for 
Eq. (27). The source of uncertainty in the estimations by Eq. (28) is most 
probably due to error in the estimation of k(Lmin). Recall that Eqs. (23), 
(24), and (27) estimate k(L) from k(Lmin) as well as the pore-throat 
radius distribution and/or formation factor, while in Eq. (28) k(Lmin) 
is estimated from the pore-throat radius distribution and F(Lmin). 

Results of the scale-dependent permeability estimations using Eqs. 
(27) and (28) for Network 2 are also shown in Fig. 8. We found 0.0005 <
RMSLE < 0.0007 for Eq. (27) and 0.0013 < RMSLE < 0.0117 for Eq. 
(28). Similar to the results of Network 1, Eq. (27) provided more accu-
rate estimations of k(L) than Eq. (28). This is confirmed through the 
average RE and RAE values reported in Table 3. Comparing the RE 
values obtained from Eqs. (27) and (28) indicates that the error in the k 
(L) estimation decreased from Network 1 to Network 2. As stated earlier, 
Network 2 is more heterogeneous, and its pore-throat radius distribution 
is broader compared to Network 1 (see Fig. 2). Since both Eqs. (27) and 
(28) are based on the CPA, one should expect the improvement of k(L) 
estimations as the pore-throat radius distribution becomes broader. 

The scale-dependent permeability estimations using Eq. (27) and Eq. 
(28) for Network 3 showed results similar to Networks 1 and 2. The 
RMSLE values for Network 3 ranged between 0.0003 and 0.0006 for Eq. 
(27) and between 0.0008 and 0.006 for Eq. (28). In Network 3, Eq. (28) 
underestimated k(L) in all pore-networks except Network 3.1 (see 
negative RE values in Table 3). We found that the average RAE = 0.09 
and 0.91% (Table 3), which clearly demonstrate that Eq. (27) provided 
more accurate estimations compared to Eq. (28). 

6. Discussion 

6.1. Models accuracy 

The RE and RAE values as well as their averages over all the networks 
for Eqs. (23)-(28) are reported in Tables 2 and 3. As can be seen, the RE 
value was found to be <5%, which indicates all the proposed models 
estimated the scale dependence of permeability and formation factor 
with high accuracy. Comparing the overall average RE and RAE values 
reported in Tables 2 and 3 demonstrates that Eq. (27) estimated k(L) 
more accurately than other models developed in this study. More spe-
cifically, in the estimation of k(L) we found the average RE = -1.6, 
− 0.46, − 0.19, and 1.2% for Eqs. (23), (24), (27), and (28), respectively. 
In fact, although Eq. (27) provides a simple relationship, it yielded the 
most accurate estimations among all the models for the networks studied 
here. After Eq. (27), Eq. (24) provided the most accurate estimations of k 
(L). 

For the formation factor, our results showed that Eq. (26) with the 
average RE = 2.04% estimated F(L) slightly better than Eq. (25) with the 
average RE = 2.38%. In the estimation of the scale dependence of the 
formation factor the average RE and RAE values decreased from 
Network 1 to 3 (Table 2). In the estimation of k(L), the same trend was 
observed for Networks 1 and 2. However, from Network 2 to 3, the 
average RE and RAE increased for Eq. (24). Further investigations are 
required to evaluate the proposed models using a broader range of pore 
networks with broader levels of heterogeneity. 

6.2. Limitations 

The proposed theoretical scale-dependent models for the perme-
ability and formation factor were developed based on several funda-
mental assumptions one of which is that the pore-throat radius 
distribution does not greatly vary from one scale (or sample volume) to 
another. This presumption may be valid in pore-network simulations in 
which pore-throat radius distributions from different scales are statis-
tically the same. However, it is not necessarily observed in natural 
porous media such as rocks that are heterogeneous in terms of pore 
space across scales [12,64,65]. 

Our proposed models are limited to experiments and/or simulations 
showing increasing trend in the permeability and decreasing trend in the 
formation factor with scale increase. That is because, based on Eq. (21), 
as the system size L increases, the critical pore-throat radius rtc increases 
as well and approaches rtmax for L →∞. Since permeability is directly 
proportional and formation factor is inversely proportional to rtc, k is 
expected to increase and F is expected to decrease as the system length 
increases according to Eqs. (23) to (26). Although the increasing trend in 
k(L) has been widely observed in experiments [10–12,66] and numerical 
simulations on 3D images [13–15,67], there exist evidence in the liter-
ature [68–70] that k may decrease as scale increases in certain cases. 

In fact, the value of permeability depends on pore space character-
istics, such as porosity, pore connectivity (coordination number), sur-
face area, etc. If such properties vary across scales, depending on their 
trend and overall interactions, permeability may increase or decrease 
with increase in system size. Cui et al. [66] studied the scale dependency 
of permeability in shales of particles of sizes from nearly 0.2 to 20 mm 
(see their Fig. 10). They stated that shales crushed into particles of 
millimeter scale showed strong dual-pore structures. Cui et al. [66] 
argued that permeability in smaller particles most probably represents 
intact matrix properties in fractured reservoir rocks. However, at larger 
field scales fractures on scales from micrometers to meters may 
contribute to flow, and fractures and their networks have different 
transport properties than pores in the intact matrix. In another study, 
Tinni et al. [12] measured GRI permeability on crushed shale samples 
with particle sizes ranged from 0.7 to 6 mm. They reported permeability 
increase with particle size increase. Tinni et al. [12] argued that such an 
increase in GRI permeability was due to change in pore structure from 

Table 2 
Calculated values of relative error (RE) and relative absolute error (RAE) for 
theoretical models developed to estimate the scale dependence of permeability 
and formation factor in twelve pore networks using Eq. (23), Eq. (24), Eq. (25), 
and Eq. (26).  

Pore network Permeability k Formation factor F 

Eq. (23) Eq. (24) Eq. (25) Eq. (26) 

RE RAE RE RAE RE RAE RE RAE 

1.1 − 1.45  1.45  0.61  0.61  2.92  2.92  2.31  2.31 
1.2 − 2.95  2.95  − 1.74  1.74  3.62  3.62  3.25  3.25 
1.3 − 3.29  3.29  − 2.43  2.43  3.81  3.81  3.54  3.54 
1.4 − 3.70  3.70  − 3.10  3.10  4.04  4.04  3.85  3.85 
Average − 2.85  2.85  − 1.67  1.97  3.60  3.60  3.24  3.24 
2.1 − 0.45  0.45  1.26  1.26  1.68  1.68  1.19  1.19 
2.2 − 1.36  1.36  − 0.28  0.28  2.10  2.10  1.78  1.78 
2.3 − 1.81  1.81  − 1.10  1.10  2.32  2.32  2.11  2.11 
2.4 − 2.07  2.07  − 1.54  1.54  2.44  2.44  2.29  2.29 
Average − 1.42  1.42  − 0.42  1.05  2.14  2.14  1.84  1.84 
3.1 0.74  0.74  2.86  2.86  0.80  0.80  0.21  0.21 
3.2 − 0.46  0.46  0.84  0.84  1.36  1.36  0.98  0.98 
3.3 − 1.11  1.11  − 0.27  0.27  1.68  1.68  1.43  1.43 
3.4 − 1.30  1.30  − 0.64  0.64  1.77  1.77  1.57  1.57 
Average − 0.53  0.90  0.70  1.15  1.40  1.40  1.05  1.05 
Overall 

average 
− 1.60  1.72  − 0.46  1.39  2.38  2.38  2.04  2.04 

*values are in percentage. 
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one particle size to another and supported their statement using mercury 
porosimetry measurements. 

7. Conclusion 

Modeling the scale dependency of transport modes in porous media 
have been an active challenge in various research areas e.g., hydrology, 
geosciences and petroleum engineering. The scale dependence of flow 
and transport is attributed to small- and large-scale heterogeneities, such 
as pores and their size distribution, pore connectivity, long-range cor-
relations, fractures and faults orientations, and spatial and temporal 
variations. In this study, we investigated the effect of scale on perme-
ability and formation factor via pore-scale numerical simulations. Based 
on percolation theory and by extending the Hunt [24] approach, scale- 
dependent models were developed for permeability and formation fac-
tor. Comparing with pore-network simulations showed that all the 
proposed theoretical models estimated k and F accurately with relative 
errors <5%. Further investigations are required to evaluate the proposed 

models using a broader range of pore networks with broader levels of 
heterogeneity as well as experimental measurements. 
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Fig. 6. Simulated and estimated permeability and formation factor for network 2. Black filled circles indicate simulation values. Black and blue lines represent 
estimations by Eqs. (23) and (24) for the permeability and by Eqs. (25) and (26) for the formation factor, respectively. The calculated RMSLE value for each model is 
given adjacent to each line using the same color code. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 7. Simulated and estimated permeability and formation factor for network 3. Black filled circles indicate simulation values. Black and blue lines represent 
estimations by Eqs. (23) and (24) for the permeability and by Eqs. (25) and (26) for the formation factor, respectively. The calculated RMSLE value for each model is 
given adjacent to each line using the same color code. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 8. Simulated and estimated permeability for the twelve pore-networks. Black filled circles indicate simulation values. Black and blue lines represent estimations 
by Eqs. (27) and (28), respectively. The calculated RMSLE value for each model is given adjacent to each line using the same color code. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Eq. (27) Eq. (28) 

RE RAE RE RAE 

1.1 − 0.42  0.42  3.80  3.80 
1.2 − 0.42  0.42  2.45  2.45 
1.3 − 0.33  0.33  2.57  2.57 
1.4 − 0.34  0.34  2.53  2.53 
Average − 0.38  0.38  2.84  2.84 
2.1 − 0.10  0.10  2.72  2.72 
2.2 − 0.13  0.13  1.27  1.27 
2.3 − 0.10  0.10  0.93  0.93 
2.4 − 0.10  0.10  0.30  0.30 
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3.1 − 0.07  0.07  1.38  1.38 
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Overall Average − 0.19  0.19  1.20  1.69 

*values are in percentage. 
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