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A B S T R A C T   

Determining the effective permeability (keff) of geological formations has broad applications to site remediation, 
aquifer discharge or recharge, hydrocarbon production, and enhanced oil recovery. The objectives of this study 
are: (1) to explore an approach to estimating keff at the reservoir scale using the critical path analysis (CPA), (2) 
to evaluate the accuracy of this new approach by comparing the estimated keff to the numerically simulated 
effective permeability, and (3) to compare the performance of CPA estimates of keff with estimates by three other 
models i.e., perturbation theory (PT), effective-medium approximation (EMA), and renormalization group theory 
(RGT). We construct two- and three-dimensional random (uncorrelated) geologic formations based on perme-
ability measurements from the Borden site and assume that the permeability distribution conforms to the log- 
normal probability density function over a wide range of means and standard deviations. Comparing keff esti-
mated via CPA to keff values derived from numerical flow simulations indicates that CPA provides accurate es-
timations in both two and three dimensions over a wide range of heterogeneity levels, similar to RGT. Inter- 
model comparisons show that although PT and EMA provide reasonable keff estimations in rather homoge-
neous formations, they substantially overestimate the effective permeability in highly heterogeneous formations.   

1. Introduction 

Investigating flow and transport in geological formations, such as 
aquifers and reservoirs, is essential in numerous areas of geology and 
engineering: for CO2 sequestration, site remediation, groundwater hy-
drology, and enhanced oil recovery. Under fully saturated conditions, 
one key parameter is effective permeability (keff), which indicates the 
overall capability of a formation to allow the passage of fluid through it. 
Geological formations are heterogeneous and typically composed of 
zones of various materials with different permeabilities spanning several 
orders of magnitude (Freeze and Cherry, 1979; Akpoji and De Smedt, 
1993; Oladele et al., 2019). Due to the presence of heterogeneity across 
scales, accurate calculation of keff requires precise characterization of 
reservoirs. However, detailed field observations of local reservoir 
characteristics are typically not available, which puts a premium on 
analysis based upon realistic theoretical and computational models. 

Experimental studies (Bjerg et al., 1992; Rehfeld et al., 1992; Sud-
icky, 1986) show that the histogram of permeability values measured on 
core samples approximately follows the log-normal probability density 

function. In fact, the log-normal permeability distribution has been 
widely used to study flow and transport at large scales (Colecchio et al., 
2020; Edery et al., 2014; Hristopulos, 2003; Zarlenga et al., 2018). This 
implies that the spatial heterogeneity of a formation can be captured by 
truncated log-normal distribution parameters, i.e., mean and standard 
deviation as well as its lower and upper cutoffs. 

An active subject of research in geosciences has been determining the 
effective value of permeability at the continuum scale (Dagan, 1993; 
Masihi et al., 2016; Rasaei and Sahimi, 2009). Various techniques, 
including theoretical (Renard and de Marsily, 1997; Sanchez-Vila et al., 
2006), numerical (Akai et al., 2019; Vu et al., 2018), and machine 
learning-based (Da Wang et al., 2021; Mudunuru et al., 2020) methods, 
have been proposed to calculate the value of keff in geological forma-
tions. Although numerical methods are suitable for any type of aquifers 
and reservoirs, they are computationally demanding, particularly for 
three-dimensional (3D) reservoirs. As a result, theoretical models and 
more recently machine learning approaches have been frequently uti-
lized for the estimation of keff. Theoretical models include the simple 
averaging techniques (Deutsch, 1989), perturbation theory (King, 
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1987), self-consistent approximation (Dagan, 1979), effective medium 
approximation (Fokker, 2001), renormalization group theory (King, 
1989), wavelet transformation (Rasaei and Sahimi, 2009), and infor-
mation theory (Wood and Taghizadeh, 2020). Because many models in 
the hydrology literature are based on perturbative methods (San-
chez-Vila et al., 2006), we briefly review them in what follows. 

The organization of the paper is as follows. We first describe concepts 
of perturbation theory, critical path analysis, renormalization group 
theory, and effective-medium approximation. In Section 3, objectives of 
this study are explained. In Section 4, generation of geologic formations 
and numerical simulations of flow are described. Section 4 presents the 
results, and Section 5 discusses model performances. 

2. Theoretical upscaling approaches 

2.1. Perturbation theory 

Within the framework of PT, the pressure head in the Darcy equation 
is first expanded in a power series in terms of permeability fluctuations 
(Sanchez-Vila et al., 2006) after which a solution for velocity is con-
structed by applying Darcy’s law (Sanchez-Vila et al., 2006; Renard and 
de Marsily, 1996; Stepanyants and Teodorovich, 2003). Using these 
methods, Matheron (1967) and Gutjahr (1978) proved that the quanti-
ties of the equation popularly known in hydrogeology as the Matheron’s 
conjecture are the first two terms of the Taylor series expansion of an 
exponential function. Although not generally proven to be exact in 3D 
flow, the conjecture is known to give the effective permeability in 
log-normally distributed permeability fields as the harmonic mean (keff 
= kh) in one-dimensional (1D) flow and geometric mean (keff = kg) in 
two-dimensional (2D) flow (De Wit, 1995). 

Indelman and Abramovich (1994) showed that for an anisotropic 
permeability field keff depends not only on the anisotropic ratios, vari-
ance, and space dimensions but also on the shape of the permeability 
distribution function. Importantly, their work highlighted major in-
consistencies in Matheron’s conjecture for anisotropic and 3D systems. 
Their expression, which we denote here as the anisotropic perturbation 
theory (ANPT), is 

keff = kg
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where σY is the standard deviation of the natural logarithm of the 
permeability (Y = ln(k)), i indicates the principal hydraulic conductivity 
direction (i = 1,2,3 in three dimensions), and α1 = α2 = (1 − χ)/2 and α3 
= χ. χ depends on the anisotropic ratio of the permeability field and γi 
depends on the permeability correlation function. In the case of isotropy, 
χ = 1/3 and γi = 0. 

De Wit (1995) derived another expression for the keff that exposed 
some of the underlying inaccuracies of Matheron’s conjecture as the σ6

Y 
order terms in his derivation contained parameters and factors that are 
not available in the σ6

Y order terms of the Matheron’s conjecture 
expansion. The expression, here referred to as the simple perturbation 
theory (SPT), is: 
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where d is the system dimensionality (d = 3 in three dimensions), and ε 
is a term that depends on the permeability distribution function and 
vanishes for d = 1 and 2. For three-dimensional flow, however, it was 
numerically found that ε is approximately equal to − 0.0014σ6

Y for a 
Gaussian log permeability field (De Wit, 1995; Sanchez-Vila et al., 
2006). 

More recently, Stepanyants and Teodorovich (2003) used a different 

perturbative approach to construct a perturbation series and calculate 
the effective permeability. Their approach led to a solution presented in 
the form of a power series for the inverse coefficient of permeability, 
which we refer to as the alternative perturbation theory (ALPT), is given 
by 

keff = kg exp
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Although the derivation of most perturbative models requires 
advanced mathematical and computational skills, the inability of these 
methods to accurately estimate keff in heterogeneous formations where 
permeability fluctuations become very large (King, 1989; Sanchez-Vila 
et al., 2006; Dagan et al., 2012) is well known in the literature, as we 
also show in this study. Such results demonstrate the inability of per-
turbative methods to accurately estimate the effective permeability in 
statistically heterogeneous formations. 

2.2. Critical path analysis 

Critical path analysis (CPA) was originally proposed in the physics 
literature to scale up conductivity in random (uncorrelated) and het-
erogeneous systems with large fluctuations in local conductivity 
(Ambegaokar et al., 1971; Pollak, 1972). Based on the CPA, fluid flow in 
a heterogeneous formation with a broad distribution of permeabilities is 
controlled by permeabilities whose magnitudes are greater than some 
critical permeability (Hunt et al., 2014). In other words, transport is 
dominated by high-permeability zones, while low-permeability ones 
have trivial contribution to the overall transport (Černý, 2004; Hunt, 
2001). 

Imagine a reservoir constructed of grid blocks of various perme-
abilities. To calculate the value of critical permeability, one should first 
remove all the grid blocks from the reservoir. one should then replace 
them sequentially in their original locations in a decreasing order from 
the largest to the smallest permeability. As the first largest permeabil-
ities are replaced, there is still no percolating cluster. However, after a 
sufficiently large fraction of grid blocks is replaced within the reservoir, 
a sample-spanning cluster forms and the system starts percolating. The 
critical permeability is defined as the smallest permeability required to 
form a conducting sample-spanning cluster. Fluid flow and transport 
take place through the sample-spanning cluster which is composed of 
two components: (1) the dead-end part that does not participate to flow, 
and (2) the backbone, the multiply-connected part of the cluster, 
through which fluid flow occurs. Close to the percolation threshold, the 
grid blocks in the backbone can be divided to two groups: (i) those in the 
blobs that are multiply connected and make flow paths tortuous, and (ii) 
those that would split the backbone into two parts, if removed, that are 
called red grid blocks (Pike and Stanley, 1981). 

At the core scale, Katz and Thompson (1986) argued that the effec-
tive permeability is controlled by the critical pore-throat radius corre-
sponding to the mode of the probability density function of pore throats. 
Analogously, one may postulate that critical permeability corresponding 
to the mode of permeability distribution should represent the effective 
permeability (keff) of a formation. By comparison with numerical sim-
ulations at the reservoir scale, we demonstrate that the mode of 
permeability distribution accurately estimates the effective permeability 
in geologic formations with different levels of heterogeneity. 

2.3. Renormalization group theory 

Renormalization group theory (RGT) is another upscaling technique 
from statistical physics (Reynolds et al., 1977; Stinchcombe and Wat-
son, 1976). Using the analogy between fluid flow through a porous 
medium and flow of current through an electric circuit, King (1989) 
mapped a block of cells of different permeabilities into an equivalent 
resistor network and ultimately to a single resistor. Using this 
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terminology, the effective permeability of a 2 × 2 block of isotropic cells 
was obtained in two dimensions as follows (King, 1989):  

where k1, k2, k3, k4 are permeability values of neighbouring cells used in 
the 2D renormalization. 

In three dimensions, the process of renormalization is more 
complicated. The fundamental structure is now a 2 × 2 × 2 cube, with 
uniform pressure on two parallel faces and no flow boundary conditions 
on the remaining four faces. Several transformations should be per-
formed in order to obtain an equivalent resistance. Green and Patterson 
(2007) used the idea of splitting a 2 × 2 × 2 cube into four components, 
treated each component as a two-dimensional block and calculated the 
effective permeability as follows:   

Eq. (5) is only an approximation, and the exact solution is much more 
complicated (King, 1989). 

2.4. Effective medium approximation 

In the effective medium approximation (EMA), developed by Kirk-
patrick (1973), a heterogeneous formation is replaced by a homoge-
neous one of permeability keff, which is the same as the permeability of 
the actual heterogeneous formation. The spatial dependence of perme-
ability in the heterogeneous formation results in local perturbations 
about the effective permeability of the homogeneous formation. The 
effective permeability can then be calculated by setting the average 
perturbation to be zero (Kirkpatrick, 1973) 
∫

k − keff

k +
(

z
2 − 1

)
keff

f (k)dk = 0 (6)  

where f(k) is the probability density function of permeability, and z is 
the coordination number equal to 4 and 6 respectively in two and three 
dimensions. We should note that Eq. (6) with z = 4 in two dimensions 
and 6 in three dimensions reduces to the self-consistent approximation. 
However, the identification of the coordination number with dimension 
is more complex. For non-Cartesian grids, one should expect different 
results. 

3. Objectives 

Critical path analysis (CPA) is an upscaling technique from statistical 
physics. Although CPA has been widely applied to estimate the keff at the 
core (or discrete) scale (Katz and Thompson, 1986; Ghanbarian et al., 
2016; Ghanbarian, 2020), to the best of the authors’ knowledge its ap-
plications at the reservoir (or continuum) scale are very limited (Hunt 
and Idriss, 2009; Shah and Yortsos, 1996). Therefore, the objectives of 
this study are to: (1) develop a novel approach for applying the concept 
of CPA to the estimation of effective permeability at the reservoir scale, 

(2) evaluate CPA by comparing the effective permeability estimated by 
this approach with that determined from numerical simulations, and (3) 

compare the accuracy of the CPA estimations to that of other theoretic 
models, such as perturbation theory, effective-medium approximation, 
and renormalization group theory. To achieve our objectives, we focus 
this research on a wide range of aquifers/reservoirs with different levels 
of heterogeneity. 

4. Methodology 

4.1. Heterogeneity due to spatial variation in permeability 

In geological formations and reservoirs, permeability varies 

spatially. Measurements on cores sampled at different points in geologic 
formations from various studies indicate that permeability measure-
ments should approximately conform to the log-normal distribution 
(Haneberg, 2012; Wainwright and Mulligan, 2013) 
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where A is a normalizing factor, σ is the standard deviation of log- 
permeability, kg is the geometric mean, and kmin and kmaxare the mini-
mum and maximum permeability values in the formation, respectively. 
According to Fogg (2010), σ2 value can be as large as 10 to 15 in natural 
geological formations. Moreno and Tsang (1994) also numerically 
studied effective permeability in media with σ as large as 6. 

In Fig. 1, we show Eq. (7) and its fit to permeability measurements 
from the Borden site (Sudicky, 1986). As can be seen, the log-normal 
distribution with kg = 1.5 × 10− 11m2, σ = 0.56, kmin = 6.1 × 10− 14 

m2, and kmax = 3.2 × 10− 11 m2 characterizes the permeability histogram 

keff 2D =
4(k1 + k3)(k2 + k4)[k2k4(k1 + k3) + k1k3(k2 + k4)]

[k2k4(k1 + k3) + k1k3(k2 + k4)][k1 + k2 + k3 + k4] + 3(k1 + k2)(k3 + k4)(k1 + k3)(k2 + k4)
(4)   

keff 3D(k1, k2, k3, k4, k5, k6, k7, k8) =
1
4
[
keff 2D(k1, k2, k3, k4)+ keff 2D(k5, k6, k7, k8)+ keff 2D(k5, k6, k1, k2)+ keff 2D(k7, k8, k3, k4)

]
(5)   

Fig. 1. The log-normal distribution, Eq. (8), with kg = 1.5 × 10− 11 m2, σ =
0.56, kmin = 6.1 × 10− 14 m2, and kmax = 3.2 × 10− 11 m2 fitted with R2 = 0.80 to 
the permeability histogram. Permeability measurements are from the Borden 
site (Sudicky, 1986). 
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reasonably well with R2 = 0.80. 
Based on the results shown in Fig. 1, we generated nine other for-

mations using the same truncated log-normal distribution but different 
values of kg, σ, kmin, and kmax as reported in Table 1. Formation 1 is based 
on the actual measurements from Sudicky (1986) with kg = 1.5 ×
10− 11m2 and σ = 0.56 presented in Fig. 1. Formation 2 is similar to 
Formation 1, however, its kg value is one order of magnitude smaller. All 
other formations were designed so that a wide range of kg, σ, kmin, and 
kmax values can be examined. By designed, we mean that we generated 
random fields on a domain with the given statistics. As can be deduced 
from Table 1, kg and σ values span nearly 21 and 2 orders of magnitude, 
respectively, covering a wide range of formations with various levels of 
heterogeneity. Furthermore, the value of permeability ranges between 
6.1 × 10− 14 and 3.2 × 10− 11 m2 in Formations 1 to 5 and from 6.1 ×
10− 14 to 3.2 × 10− 5 m2 in Formations 6 to 10, which indicates broader 
permeability distributions and, thus, higher levels of heterogeneity and 
fluctuations in the latter. In Table 1, we also present the value of σY and 
(lnk)ave, the standard deviation and mean of the Normal distribution 
fitted to the natural logarithm of permeability values (lnk) in each for-
mation. As expected, σ and σY are identical (Table 1). In Formations 1 to 
5, the natural logarithm of kg is very close to (lnk)ave. However, the effect 
of truncation in the permeability distribution is more profound in For-
mations 6 to 10 causing differences between the natural logarithm of kg 
and (lnk)ave values. The values σY = 0.56 and (lnk)ave = − 25.24 reported 
for Formation 1 in Table 1 are very close to σY = 0.585 and (lnk)ave =

− 25.67 found by Turcke and Kueper (1996) who also fitted the 
log-normal distribution to experimental data from the Borden site. 

4.2. Numerical simulations in uncorrelated geologic formations 

COMSOL provides a powerful computational finite element-based 
platform for simulations of flow and transport. The Multiphysics 

package of COMSOL is capable of generating both two- and three- 
dimensional geometries on which the simulations can be performed. 
Fig. 2 shows a 3D domain composed of cells of the same size, where the 
number of cells along each side of the domain represents the domain 
size. For example, Fig. 2 (left plan) shows a domain of size 20. 

It is well documented in the literature that numerical simulations are 
scale-dependent (Sahimi, 2011), which means that the numerically 
simulated permeability is expected to vary with the domain size. 
Accordingly, the fluid flow simulations need to be carried out at various 
domain sizes to find the representative elementary volume (REV), the 
smallest domain size above which the effective permeability does not 
vary with size. There exist two approaches to study the scale dependence 
of permeability: (1) fixing the domain size and decreasing the cell size, 
or (2) increasing the domain size by increasing the number of cells of 
fixed size. In this study, we applied the first approach. For the 2 and 3D 
simulations of flow, respectively, square and cubic domains of length 10 
m were created. We should clarify that the cells refer to the grid blocks 
used to represent the permeability field. The physical length of 10 m is 
arbitrary, and any other value can be used without affecting our simu-
lations and results since we determine the REV value of permeability. 
Each cell in the domain was then randomly assigned a specific value of 
permeability from the log-normal probability density function. Fig. 2 
(right plan) presents the spatial distribution of permeability for the same 
domain depicted in the same figure. We should point out that our focus 
is on geologic formations with an uncorrelated distribution of 
permeability. 

Using the finite element analysis, flow was simulated through the 2 
and 3D formations by COMSOL, which solves the pressure form of 
Darcy’s law together with the mass conservation equation. To discretize 
the pressure within the domain, we used the second order of elements. 
The effect of mesh size on the simulated permeability was investigated 
based on which the mesh size was selected to be the same as the grid 
block (normal mesh size in COMSOL). Although finer meshing might be 
more suitable, we found that smaller mesh sizes resulted in highly 
computationally demanding simulations (results not shown). For all the 
simulations, hydraulic head boundary conditions were applied along the 
flow direction with no-flow conditions applied in the perpendicular di-
rections. The hydraulic head was set equal to 2 m at one side of the flow 
direction and to 0 at the other side to obtain the hydraulic gradient of 0.2 
(Cullen et al., 2010; San and Rowe, 1993). The dynamic viscosity and 
the water density were set equal to 8.9 × 10− 4Pa.s and 1000kg/m3, 
respectively. 

To find the REV, different domain sizes were used. At each domain 
size, the effective permeability was computed by running simulations 60 
times and then averaging over all the iterations to remove the bias in the 
simulations. The effective permeability was plotted against the domain 
size to determine the keff above the REV. 

Table 1 
Ten different geological formations constructed in this research study. kg is the geometric mean and σ is the standard deviation from the log-normal permeability 
distribution. kmin and kmax are the minimum and maximum permeability values in each formation. (lnk)avg is the average of the natural logarithm of permeability and 
σY is the standard deviation of log-transformed permeability distribution (Y = ln(k)). keff represents the effective permeability simulated by COMSOL in two and three 
dimensions.  

Formation kg(m2) σ kmin–kmax (lnk)avg σY keff (m2) 2D keff (m2) 3D 

1 1.5 × 10− 11 0.56 6.1 × 10− 14–3.2 × 10− 11 − 25.24 0.56 1.05 × 10− 11 1.12 × 10− 11 

2 1.5 × 10− 12 0.56 6.1 × 10− 14–3.2 × 10− 11 − 27.54 0.56 1.11 × 10− 12 1.16 × 10− 12 

3 1.9 × 10− 11 0.25 6.1 × 10− 14–3.2 × 10− 11 − 24.76 0.25 1.73 × 10− 11 1.76 × 10− 11 

4 4.5 × 10− 12 0.40 6.1 × 10− 14–3.2 × 10− 11 − 26.29 0.40 3.92 × 10− 12 4.02 × 10− 12 

5 2.6 × 10− 11 0.05 6.1 × 10− 14–3.2 × 10− 11 − 24.37 0.05 2.62 × 10− 11 2.61 × 10− 11 

6 5.0 × 10− 11 2.0 6.1 × 10− 14–3.2 × 10− 5 − 27.72 2.0 1.26 × 10− 12 2.28 × 10− 12 

7 1.0 × 10− 6 3.0 6.1 × 10− 14–3.2 × 10− 5 − 22.81 3.0 1.67 × 10− 10 5.13 × 10− 10 

8 1.0 × 10− 3 4.0 6.1 × 10− 14–3.2 × 10− 5 − 22.9 4.0 2.03 × 10− 10 1.20 × 10− 09 

9 1.0 × 103 5.0 6.1 × 10− 14–3.2 × 10− 5 − 18.10 5.0 1.46 × 10− 8 1.09 × 10− 07 

10 1.0 × 109 6.0 6.1 × 10− 14–3.2 × 10− 5 − 15.25 6.0 5.81 × 10− 8 3.94 × 10− 07  

Fig. 2. (left) A 3D domain of size of 10 m with 20 cells along each side (domain 
size = 20), and (right) random spatial distribution of permeability values in the 
same domain. 

B. Adeyemi et al.                                                                                                                                                                                                                                



Advances in Water Resources 159 (2022) 104096

5

4.3. Estimating keff via theoretical models 

In this study, we evaluate several theoretic models for estimating the 
effective permeability from the permeability distributions for 10 for-
mations with different levels of heterogeneity (Table 1). To estimate the 
keff via the perturbative methods i.e., ANPT, Eq. (1), SPT, Eq. (2), and 
ALPT, Eq. (3), we used the log-normal permeability distribution pa-
rameters given in Table 1. For the ANPT model, we set χ = 1/3 and γi =

0 for isotropic formations as described by Sanchez-Vila et al. (2006) and 
Indelman and Abramovich (1994). For detailed discussion of the as-
sumptions, strengths, and limitations of perturbative-based models, the 
interested reader is referred to the review paper of Sanchez-Vila et al. 
(2006). 

To estimate the keff using the CPA, we determined the value of 
effective permeability corresponding to the mode of the log-normal 
permeability distribution using the expression keff = exp[ln(kg) − σ2]. 

For the RGT, we constructed two- and three-dimensional matrices in 
MATLAB whose elements were randomly selected from the log-normal 
permeability distribution. The dimensions of such matrices were deter-
mined based on the REVs. To compute the effective permeability in two 
and three dimensions, permeability was scaled up at the 2 × 2 block and 
2 × 2 × 2 cube levels using Eqs. (4) and (5), respectively. For each 
geologic formation, we iterated these computations 1000 times and 
averaged over all to calculate the keff. 

To estimate the effective permeability within the EMA framework, 
we numerically solved Eq. (6) in MATLAB. For this purpose, we used the 

Fig. 3. Comparison of effective permeabilities calculated from 2D numerical simulations and those estimated from models including (a) ANPT, Eq. (1), (b) SPT, Eq. 
(2), (c) ALPT, Eq. (3), (d) CPA, (e) RGT, Eq. (4), and (f) EMA, Eq. (6).. 
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trapezoidal numerical integration, which approximately computes an 
integral via the trapezoidal method with unit spacing. By trial and error, 
we found that the integral in Eq. (6) could be well approximated using 
1000 trapezoids. In two and three dimensions, we set z = 4 and 6, 
respectively. All the MATLAB codes used in this study can be found in 
Adeyemi (2021). 

4.4. Models evaluation criteria 

To evaluate the accuracy of each model, we used the root mean 
square log-transformed error (RMSLE) because the estimated effective 
permeability may vary over a wide range. We also computed the relative 
error (RE) values. The two statistical parameters were calculated as 

follows 

RMSLE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
[loge(xest) − loge(xsim)]

2

√
√
√
√ (8)  

RE =
xest − xsim

xsim
× 100 (9)  

where N is the number of samples, xest and xsim are, respectively, the 
estimated and simulated values, and loge represents the natural 
logarithm. 

Fig. 4. Comparison of effective permeabilities calculated from 3D numerical simulations and those estimated from models including (a) ANPT, Eq. (1), (b) SPT, Eq. 
(2), (c) ALPT, Eq. (3), (d) CPA, (e) RGT, Eq. (4), and (f) EMA, Eq. (6). 
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5. Results 

In this section, we compare the estimated effective permeability 
values by different models including the ANPT, Eq. (1), SPT, Eq. (2), 
ALPT, Eq. (3), CPA, RGT, Eqs. (4) and (5), and EMA, Eq. (6), with the 
numerically simulated values from COMSOL in Figs. 3 and 4 for the two- 
and three- dimensional geologic formations, respectively. In Formations 
1 through 5, permeability spans about three orders of magnitude (6.1 ×
10− 14 ≤ k ≤ 3.2 × 10− 11), and σ ranges from 0.05 to 0.56. In Formations 
6 to 10, however, permeability spans nearly eight orders of magnitude 
(6.1 × 10− 14≤ k ≤ 3.2 × 10− 5), and σ varies between 2 and 6 (Table 1). 
Formations 1 to 5 represent relatively heterogeneous reservoirs, while 
Formations 6 to 10 denote heterogeneous systems. 

In our study, Formation 1 statistically represents the isotropic 
version of the Borden site. Using the horizontal and vertical permeability 
values of 0.84 × 10− 11 m2 (8.2 × 10− 3 cm/s) and 0.65 × 10− 11 m2 (6.33 
× 10− 3 cm/s), respectively, Sudicky (1986) found that the anisotropy 
ratio was about 1.3 in the Borden site. Interestingly, the two- and 
three-dimensional simulated effective permeability values presented in 
Table 1 are only 25 and 34% greater than the horizontal permeability 
reported by Sudicky (1986). This shows reasonable agreement between 
our numerical simulations and the experimental measurements. 

In what follows, we address the reliability and accuracy of each 
model based on its performance in this study. The REV plots, based on 
which the representative permeability value for each formation was 
determined, are presented in Figs. (1A) and (2A) in Appendix A for both 
two and three dimensions. 

5.1. Perturbative methods 

In two dimensions, all of the perturbative models i.e., ANPT, SPT, 
and ALPT estimated the effective permeability accurately in Formations 
1 to 5 (with σ ≤ 0.56). However, they substantially overestimated the 
keff in Formations 6 to 10 (with σ ≥ 2) as shown in Figs. 3a-3c. The RE 
values of the keff estimations by each model are reported in Table 2. We 
found RMSLE = 15.32, 15.32, and 5.49 respectively for the ANPT, Eq. 
(1), SPT, Eq. (2), and ALPT, Eq. (3), models. We should note that, in two 
dimensions, both the ANPT, Eq. (1), with γi = 0 and ε = 0, and SPT, Eq. 

(2), reduce to Matheron’s conjecture (Matheron, 1967) in which keff =

kg. As a result, the ANPT and SPT models resulted in the same estima-
tions with RMSLE and average RE values of 15.32 and 1.72 × 1017% for 
all the formations. We also investigated models’ accuracy within For-
mations 1 to 5 and 6 to 10. For the ANPT model, we found RMSLE = 0.22 
and 21.66. Same results were obtained for the SPT model. For the ALPT 
model RMSLE = 0.22 and 7.76 were found respectively for Formations 1 
to 5 and 6 to 10. 

Similar results were obtained in three dimensions; the three pertur-
bative methods overestimated the effective permeability in Formations 
6 to 10, while they provided accurate estimations in Formations 1 to 5 
(Figs. 4a-4c). Table 3 lists the RE values for the estimated keff values by 
each model. We found RMSLE values of 15.77, 14.30, and 4.21 for the 
ANPT, Eq. (1), SPT, Eq. (2), and ALPT, Eq. (3), models respectively. 
While the performance of the ANPT model in three dimensions deteri-
orated compared to its performance in two dimensions, the SPT model 
performed slightly better. The accuracy of the ALPT also improved from 
two to three dimensions (RMSLE = 5.49 and 4.21 respectively). 

We also compared the performance of the perturbative methods 
within Formations 1 to 5 and 6 to 10. Comparison of the ANPT esti-
mations with COMSOL simulations in Formations 1 to 5 and 6 to 10 
showed that this model reasonably estimated keff in the former (rela-
tively heterogeneous formations) with RMSLE of 0.22, while it over-
estimated the keff with RMSLE = 20.18 in the latter (heterogeneous 
formations). 

For the SPT model, we found RMSLE = 0.18 and 20.18 and average 
RE values = 16 and 5 × 1016% in Formations 1 to 5 and 6 to 10, 
respectively. For the ALPT model, however, RMSLE = 0.22 and 5.94, 
values were less, particularly in Formations 6 to 10, compared to the SPT 
and ANPT models. The ALPT model underestimated keff with an average 
RE of 19.9% in Formations 1 to 5 and overestimated the effective 
permeability with an average RE of 2.93 × 106%, about ten orders of 
magnitude smaller than that obtained from the SPT model in Formations 
6 to 10. Our results demonstrated that the ALPT model estimates the 
effective permeability accurately in three-dimensional formations with 
σ ≤ 4. 

Table 2 
Relative error (%) calculated in the estimation of keff by each model and for the 2D Formations.  

Formation kg(m2) σ ANPT SPT ALPT CPA RGT EMA 

1 1.5 × 10− 11 0.56 43.47 43.47 43.40 4.41 − 0.81 35.70 
2 1.5 × 10− 12 0.56 35.35 35.35 35.30 − 1.49 − 2.08 34.40 
3 1.9 × 10− 11 0.25 8.04 8.04 8.04 1.49 0.1 7.36 
4 4.5 × 10− 12 0.40 14.63 14.63 14.60 − 2.32 − 1.45 14.80 
5 2.6 × 10− 11 0.05 0.14 0.14 0.14 − 0.11 − 0.30 0.02 
6 5.0 × 10− 11 2.0 3858 3858 437 − 27.50 − 12.88 − 95.2 
7 1.0 × 10− 6 3.0 6.00 × 105 6.00 × 105 904 − 25.97 − 49.92 4.96 × 105 

8 1.0 × 10− 3 4.0 4.93 × 108 4.93 × 108 6510 − 44.51 − 63.48 2.23 × 106 

9 1.0 × 103 5.0 6.83 × 1012 6.83 × 1012 3.83 × 1012 − 5.20 − 71.71 6.80 × 104 

10 1.0 × 109 6.0 1.72 × 1018 1.72 × 1018 1.81 × 108 299.21 − 68.66 2.00 × 104  

Table 3 
Relative error (%) calculated in the estimation of keff by each model and for the 3D Formations.  

Formation kg(m2) σ ANPT SPT ALPT CPA RGT EMA 

1 1.5 × 10− 11 0.56 41.6 34 41.40 − 2.18 4.72 26.30 
2 1.5 × 10− 12 0.56 36.2 29 35.90 − 5.94 4.54 36.50 
3 1.9 × 10− 11 0.25 7.3 6 7.30 − 0.24 1.07 58.80 
4 4.5 × 10− 12 0.40 14.8 12 14.80 − 4.76 2.675 15.00 
5 2.6 × 10− 11 0.05 0.37 0.33 0.37 0.08 0.06 0.21 
6 5.0 × 10− 11 2.0 2090 2095 57.20 − 59.80 36.05 − 97.30 
7 1.0 × 10− 6 3.0 1.95 × 105 1.95 × 105 66.50 − 75.96 63.54 2.66 × 105 

8 1.0 × 10− 3 4.0 8.37 × 107 8.37 × 107 495.00 − 90.58 78.17 5.03 × 105 

9 1.0 × 103 5.0 9.13 × 1011 9.13 × 1011 2.75 × 104 − 87.32 80.03 1.03 × 104 

10 1.0 × 109 6.0 2.54 × 1017 2.54 × 1017 1.46 × 107 − 41.05 74.80 3.20 × 103  
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5.2. Critical path analysis 

Two-dimensional results from the CPA are presented in Fig. 3d. As 
can be seen, the CPA with RMSLE = 0.50 estimated the keff in all for-
mations accurately (with data points around the 1:1 line indicating good 
agreement between the numerical simulations and the CPA estima-
tions). We found an average RE value of 19.8% for all formations. 
Although in most formations the CPA slightly underestimated the 
effective permeability, it overestimated keff in Formation 10 with RE =
299.21% (Table 2). Further analysis showed that the CPA estimated keff 
with RMSLE = 0.02 and 0.70 within Formations 1 to 5 and 6 to 10, with 
average RE values of 0.4% and 39.21%, respectively. It is worth pointing 
out that the RE values calculated from the keff estimations for the rela-
tively heterogenous formations are all less than 5%, with the highest 
relative error of 4.41% in Formation 1 (Table 2). 

In three dimensions, CPA also estimated keff accurately with RMSLE 
= 1.14 and average RE = − 36.8%. Fig. 4d shows the estimated effective 
permeability values against the simulated ones in three dimensions. We 
should point out that the CPA estimations in two and three dimensions 
are the same since the mode of the permeability distribution does not 
vary with formation dimensionality. Generally speaking, the CPA ten-
ded to underestimate the keff in most 3D formations (Table 3). The CPA 
estimated keff within Formations 1 to 5 with RMSLE = 0.04 and average 
RE = − 2.61%. Within Formations 6 to 10, the values of RMSLE and 
average RE were 1.61 and − 70.94%, respectively. 

5.3. Renormalization group theory 

The RGT estimated the effective permeability in 2D formations 
accurately with RMSLE = 0.67 (Fig. 3e) and average RE of − 27%. It can 
be deduced from the average RE value that the RGT model, Eq. (5), on 
average, underestimated the keff. Similar to the CPA, the RGT estimated 
keff in Formations 1 to 5 more precisely with RMSLE = 0.012 and 
average RE = − 0.9%. These values, however, were 0.94 and − 53% in 
Formations 6 to 10. 

In three dimensions, the RGT estimated the effective permeability in 
all ten formations with RMSLE = 0.90 (Fig. 4e) and average RE of − 35% 
(slightly more accurate than the CPA). Comparison of the estimated keff 
values with the simulated ones resulted in RMSLE = 0.03 and 1.27, and 
average RE = − 3% and − 67% in Formations 1 to 5 and 6 to 10, 
respectively. The lowest and highest relative error belong respectively to 
Formations 5 and 9 (Table 3). Similar to the results of CPA, the RGT 
model tended to underestimate the effective permeability in most for-
mations studied here. 

5.4. Effective medium approximation 

The keff estimations via the EMA against the keff simulations by 
COMSOL are shown in Fig. 3f for two-dimensional formations. We found 
RMSLE = 5.03 and average RE = 2.81 × 105%. As can be seen from 
Fig. 3f, the EMA accurately estimated the effective permeability in 
Formations 1 to 5 with RMSLE = 0.20 (similar to the perturbative 
methods) and average RE = 18%. This can be visually confirmed from 
the data points that lay on the 1:1 line in Fig. 3f. Although the EMA 
underestimated keff in Formation 6 (σ = 2), it overestimated the effective 
permeability in Formations 7 to 10 with σ ≥ 3. For Formations 6 to 10, 
however, we found RMSLE = 7.11 with an average relative error value 
of 5.6 × 105%. 

Results of the keff estimations by the EMA and the numerically 
simulated keff values by COMSOL in three dimensions are presented in 
Fig. 4f. We found RMSLE = 4.27 and average RE = 7.8 × 104% for all 
formations. The EMA estimated the keff in Formations 1 to 5 accurately. 
However, it underestimated the effective permeability in Formation 6 
and overestimated that in Formations 7 to 10. Comparing the RMSLE 
values from 2 to 3D results (5.03 vs. 4.27 respectively) shows that the 
EMA provided more accurate estimations in three dimensions. Further 

comparison rendered RMSLE = 0.19 in Formations 1 to 5 (similar to the 
perturbative methods) and RMSLE = 6.03 in Formations 6 to 10. The 
average relative errors were 17% and 1.6 × 105% in Formations 1 to 5 
and Formations 6 to 10 respectively. 

6. Discussion 

6.1. Models performance 

King (1989), Renard and de Marsily (1997), Sanchez-Vila et al. 
(2006) and many others pointed out that perturbative methods provide 
accurate estimations of the effective permeability only in media with 
small variations in permeability. More specifically, results by Hristo-
pulos and Christakos (1999) and Dykaar and Kitanidis (1992) showed 
that Matheron’s conjecture and other perturbative methods can be 
successfully applied to formations with σ = 2.65 and smaller. Similarly, 
evidence from this study showed substantial effective permeability 
overestimations by several perturbative methods in formations with σ ≥
2. 

Many perturbative methods reduce to the exact form of Matheron’s 
conjecture (keff= kg) in two dimensions. Although the ANPT and SPT 
models include terms in their expressions other than the permeability 
standard deviation, these models reduce to keff= kg when applied to two- 
dimensional isotropic geologic formations. Therefore, it is not surprising 
that the perturbative methods used in this study largely overestimated 
the effective permeability in the heterogenous geologic formations with 
σ ≥ 2. However, the ALPT model does not reduce to the exact form of the 
conjecture, and this, in addition to the inverse form of its keff expression, 
is likely the reason for the higher accuracy of this model. 

The CPA approach has been successfully applied to estimate the keff 
at the core scale (Katz and Thompson, 1986; Ghanbarian et al., 2017; 
Ghanbarian, 2020). However, its applications at the field scale are very 
limited in the literature. Hunt and Idriss (2009) applied concepts from 
CPA to determine the effective permeability in correlated and random 
systems with bimodal permeability distributions in terms of the arith-
metic mean of kmin < k < kmax and harmonic mean of kc < k < kmax in 
which kc is the critical permeability (see their Eq. (8)). They showed that 
the CPA provided reasonable estimations above the percolation 
threshold in correlated systems. 

Recently, Masihi et al. (2016) determined the connected cluster of 
cells with high permeabilities in a permeability field to calculate a 
threshold value. For this purpose, they started with a high permeability 
value from its distribution and evaluated whether the cells with per-
meabilities greater than the selected permeability resulted in a con-
nected path along their domain. If not, a smaller permeability value was 
selected, and the process was repeated until the sample-spanning cluster 
formed. The permeability value corresponded to the presence of the first 
percolating cluster was called the threshold permeability and compared 
with numerical simulations of the effective permeability. Masihi et al. 
(2016) reported that the threshold permeability did not estimate the 
effective permeability accurately (see their Fig. 8). They also found that 
the threshold permeability was less than the permeability corresponded 
to the mode of permeability distribution (their Fig. 2). Further in-
vestigations are still required to determine the threshold permeability 
and its relationship with the effective permeability for a wide range of 
formations with different levels of heterogeneities. 

Several studies in the literature have highlighted the reliability of the 
RGT for estimating the effective permeability in homogenous and het-
erogeneous formations (King, 1989; Hristopulos and Christakos, 1999; 
Green and Paterson, 2007). Nonetheless, real space renormalization 
does have some systematic errors. This is partly due to the small cell 
representation (one could use larger cells than 2 × 2 or use a different 
finite difference representation or boundary conditions for the small 
cell). Some of these errors may eliminate in three dimensions because of 
the greater freedom for flow, and the less impact by boundary condi-
tions, as our results demonstrated. It indeed depends a bit on the 

B. Adeyemi et al.                                                                                                                                                                                                                                



Advances in Water Resources 159 (2022) 104096

9

permeability distribution and, in particular, the correlation structure. 
One may find larger errors, if there are substantial contrasts between 
neighboring cells, especially if they are spatially extended. 

It is well documented in the literature that the EMA returns accurate 
estimations for small variances (Adler and Berkowitz, 2000; Ghanbarian 
and Daigle, 2016). For example, Adler and Berkowitz (2000) evaluated 
the accuracy of the EMA in the estimation of electrical conductivity in 
two- and three-dimensional media with local conductances that fol-
lowed the log-normal distribution of various standard deviations. They 
concluded that, “… the analytical expressions [the effective-medium 
approximations] provide good agreement to the simulations in 2D sys-
tems, but are in significant error in 3D systems when the standard de-
viation of the local conductivities is large.” 

The CPA and RGT models provided the most accurate estimations of 
keff in the two- and three-dimensional formations studied here. Both 
models precisely estimated the effective permeability in relatively het-
erogeneous (Formations 1 to 5) and heterogeneous (Formations 6 to 10) 
reservoirs. While the RGT approach requires coding and computations 
with realizations, the CPA model simply estimates the effective perme-
ability from the mode of the permeability distribution, which saves time 
and computations. 

6.2. 2D versus 3D simulations 

Results showed that the keff values from two- and three-dimensional 
simulations were highly correlated, with the relation (keff )3D =

Fig. 1A. Plots of effective permeability against domain size to determine the representative elementary volume (REV) for each of the 2D formations.  
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234.14(keff )
1.2
2D and R2 = 0.99. In all formations except Formation 5, the 

value of keff in three dimensions was greater than that in two dimensions 
(Table 1). This is consistent with the results of King (1989) and Adler 
and Berkowitz (2000). More specifically, King (1989) simulated the keff 
in two- and three-dimensional systems with uniform and log-normal 
permeability distributions and reported keff in three dimensions to be 
greater than that in two dimensions. 

6.3. Long-range correlation and anisotropy 

It is well documented in the literature that there might exist long- 
range correlation at the aquifer/reservoir scale (Clark et al., 2020; 
Sahimi, 2011; Sahimi and Mukhopadhyay, 1996). Correlation means 
that heterogeneity e.g., permeability in one zone of a geologic formation 

is not fully independent of that in other zones. Sahimi (1994) stated that 
natural porous media are not always random and may exhibit some 
correlation. For instance, core-scale porous media may contain only 
short-range correlations, while heterogeneous field-scale systems, such 
as aquifers and reservoirs, may be long-range correlated. By comparing 
simulations in correlated and random formations, Hunt and Idriss 
(2009) found effective permeability in correlated media greater than 
that in similar uncorrelated media. This is because the value of perco-
lation threshold in correlated formations is smaller than that in random 
media (Hunt and Idriss, 2009). We should point out that if there is 
finite-range correlation and the domain is much larger than the corre-
lation length there should be no change in the percolation threshold. 
However, if the domain is smaller than or comparable to the correlation 
length, then there should be a shift in the apparent threshold (Masihi 

Fig. 2A. Plots of effective permeability against domain size to determine the representative elementary volume (REV) for each of the 3D formations.  
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and King, 2007a, 2007b). If the correlation is not finite range (e.g., 
power law) then there is a consistent change in the percolation threshold 
(King and Masihi, 2018). 

Geologic formations might also be anisotropic at such scales. In 
general, there might be three types of anisotropy in geological struc-
tures: (I) anisotropy due to presence of randomly oriented anisotropic 
permeability blocks, (II) anisotropy due to a direction-dependent 
permeability distribution, and (III) anisotropy due to the presence of 
permeability zones of different orientations with different probabilities 
of flow availability (Mukhopadhyay and Sahimi, 2000). In type I, the 
effective permeability of such formations is always isotropic. In type II, 
the anisotropy may vanish under certain circumstances, while in type III 
anisotropy always remains (Mukhopadhyay and Sahimi, 2000). 

In this study, we evaluated the CPA approach in isotropic and un-
correlated (random) formations. Further investigations are required to 
assess the reliability and predictability of the CPA in anisotropic and 
correlated large-scale porous media. 

6.4. Unimodal versus multimodal permeability distributions 

The proposed CPA-based approach to determine the effective 
permeability in random geologic formations is based on unimodal 
permeability distribution. However, permeability field in aquifers or 
reservoirs may conform to multimodal distributions (Hunt and Idriss, 
2009; Massabó et al., 2008; Rubin, 1995; Tidwell and Wilson, 1999). 
Extending the proposed CPA to media with bimodal and multimodal 
permeability distributions is still required. 

7. Conclusion 

Using concepts from critical path analysis (CPA), we presented a 
novel approach for estimating the effective permeability of a geologic 
formation. Based on the CPA, low permeability zones in a formation 
contribute little to fluid flow, while the high permeability zones signif-
icantly influence the flow of fluids. Based on this principle, we postu-
lated that permeability at the mode of permeability density function 
should represent the effective permeability of a reservoir. The proposed 
CPA approach was evaluated by comparing its effective permeability 
estimations for the two- and three-dimensional formations in this study 
with numerically simulated effective permeability values for the for-
mations. The log-normal distribution with different geometric means 
(4.5 × 10− 12≤ kg ≤ 1.0 × 109 m2) and standard deviations (0.05≤ σ ≤ 6) 
was used to generate such formations. In addition to the CPA, other 
theoretic approaches, such as perturbative methods, renormalization 
group theory, and effective medium approximation, were applied to 
estimate the keff. Results showed that the CPA estimated the keff with 
RMSLE = 0.50 more accurate than the other approaches in two di-
mensions. However, the RGT with RMSLE = 0.90 estimated the keff 
slightly more accurately than the CPA with RMSLE = 1.14 in three di-
mensions. We also found that the perturbative methods and EMA pro-
vided reasonable estimations of keff in formations with σ ≤ 2. However, 
these approaches substantially overestimated the effective permeability 
in highly heterogeneous formations with σ > 2. The heterogeneity range 
tested in this work is large, and we find the CPA as a powerful platform 
to estimate the effective permeability at the reservoir scale in uncorre-
lated formations. However, further investigations are required to eval-
uate the reliability of this CPA approach in correlated and anisotropic 
geologic formations. 
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Appendix A 

In this appendix, the effective permeability numerically computed 
via COMSOL against the domain size are presented for the two- and 
three-dimensional simulations. The domain size indicates the number of 
cells along each side of domain. The representative elementary volume 
(REV) was accordingly determined for each formation based on these 
plots. 
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Černý, J., 2004. Critical path analysis for continuum percolation. Ann. l’IHP Probab. 
Stat. 40, 661–675. 

Clark, C.L., Winter, C.L., Corley, T., 2020. Effects of percolation on the effective 
conductivity of irregular composite porous media. Adv. Water Resour. 137, 103507. 

Colecchio, I., Boschan, A., Otero, A.D., Noetinger, B., 2020. On the multiscale 
characterization of effective hydraulic conductivity in random heterogeneous media: 
a historical survey and some new perspectives. Adv. Water Resour. 140, 103594. 

Cullen, E., O’Carroll, D.M., Yanful, E.K., Sleep, B., 2010. Simulation of the subsurface 
mobility of carbon nanoparticles at the field scale. Adv. Water Resour. 33, 361–371. 

Da Wang, Y., Chung, T., Armstrong, R.T., Mostaghimi, P., 2021. ML-LBM: predicting and 
accelerating steady state flow simulation in porous media with convolutional neural 
networks. Transp. Porous Media 138, 49–75. 

Dagan, G., 1993. Higher-order correction of effective permeability of heterogeneous 
isotropic formations of lognormal conductivity distribution. Transp. Porous Media 
12, 279–290. https://doi.org/10.1007/BF00624462. 

Dagan, G., 1979. Models of groundwater flow in statitically homogeneous porous 
formations. Water Resour. Res. 15, 47–63. 

Deutsch, C., 1989. Calculating effective absolute permeability in sandstone/shale 
sequences. SPE Form. Eval. 4, 343–348. 

Dykaar, B.B., Kitanidis, P.K., 1992. Determination of the effective hydraulic conductivity 
for heterogeneous porous media using a numerical spectral approach: 2. Results. 
Water Resour. Res. 28, 1167–1178. 

Edery, Y., Guadagnini, A., Scher, H., Berkowitz, B., 2014. Origins of anomalous transport 
in heterogeneous media: structural and dynamic controls. Water Resour. Res. 50, 
1490–1505. 

Fogg, G.E., 2010. Log-K variance, connectivity, Unconformities and Non-Fickian 
Transport. Geol. Soc. Am. Abstr. Programs, p. 42. 

Fokker, P.A., 2001. General anisotropic effective medium theory for the effective 
permeability of heterogeneous reservoirs. Transp. Porous Media 44, 205–218. 
https://doi.org/10.1023/A:1010770623874. 

Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall. 
Ghanbarian, B., 2020. Applications of critical path analysis to uniform grain packings 

with narrow conductance distributions: I. Single-phase permeability. Adv. Water 
Resour. 137, 103529 https://doi.org/10.1016/j.advwatres.2020.103529. 

Ghanbarian, B., Daigle, H., 2016. Permeability in two-component porous media: 
effective-medium approximation compared with lattice-Boltzmann simulations. 
Vadose Zo. J. 15 https://doi.org/10.2136/vzj2015.05.0071. 

Ghanbarian, B., Hunt, A.G., Skaggs, T.H., Jarvis, N., 2017. Upscaling soil saturated 
hydraulic conductivity from pore throat characteristics. Adv. Water Resour. 104, 
105–113. https://doi.org/10.1016/j.advwatres.2017.03.016. 

Ghanbarian, B., Torres-Verdín, C., Skaggs, T.H., 2016. Quantifying tight-gas sandstone 
permeability via critical path analysis. Adv. Water Resour. 92, 316–322. https://doi. 
org/10.1016/j.advwatres.2016.04.015. 

Green, C.P., Paterson, L., 2007. Analytical three-dimensional renormalization for 
calculating effective permeabilities. Transp. Porous Media 68, 237–248. https://doi. 
org/10.1007/s11242-006-9042-y. 

B. Adeyemi et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0001
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0001
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0001
https://doi.org/10.1023/A:1006611011600
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0003
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0003
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0003
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0004
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0004
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0005
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0005
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0006
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0006
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0006
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0007
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0007
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0008
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0008
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0009
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0009
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0009
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0010
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0010
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0011
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0011
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0011
https://doi.org/10.1007/BF00624462
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0013
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0013
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0014
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0014
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0015
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0015
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0015
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0016
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0016
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0016
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0017
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0017
https://doi.org/10.1023/A:1010770623874
http://refhub.elsevier.com/S0309-1708(21)00247-5/sbref0019
https://doi.org/10.1016/j.advwatres.2020.103529
https://doi.org/10.2136/vzj2015.05.0071
https://doi.org/10.1016/j.advwatres.2017.03.016
https://doi.org/10.1016/j.advwatres.2016.04.015
https://doi.org/10.1016/j.advwatres.2016.04.015
https://doi.org/10.1007/s11242-006-9042-y
https://doi.org/10.1007/s11242-006-9042-y


Advances in Water Resources 159 (2022) 104096

12

Haneberg, W., 2012. Computational Geosciences with Mathematica. Springer Science & 
Business Media. 

Hristopulos, D.T., 2003. Renormalization group methods in subsurface hydrology: 
overview and applications in hydraulic conductivity upscaling. Adv. Water Resour. 
26, 1279–1308. https://doi.org/10.1016/S0309-1708(03)00103-9. 

Hristopulos, D.T., Christakos, G., 1999. Renormalization group analysis of permeability 
upscaling. Stoch. Environ. Res. Risk Assess. 13, 131–161. https://doi.org/10.1007/ 
s004770050036. 

Hunt, A., Ewing, R., Ghanbarian, B., 2014. Percolation theory for flow in porous media. 
Hunt, A.G., 2001. Applications of percolation theory to porous media with distributed 

local conductances. Adv. Water Resour. 24, 279–307. https://doi.org/10.1016/ 
S0309-1708(00)00058-0. 

Hunt, A.G., Idriss, B., 2009. Percolation-based effective conductivity calculations for 
bimodal distributions of local conductances. Philos. Mag. 89, 1989–2007. https:// 
doi.org/10.1080/14786430802660431. 

Indelman, P., Abramovich, B., 1994. A higher-order approximation to effective 
conductivity in media of anisotropic random structure. Water Resour. Res. 30, 
1857–1864. 

Katz, A.J., Thompson, A.H., 1986. Quantitative prediction of permeability in porous 
rock. Phys. Rev. B 34, 8179–8181. 

King, P., Masihi, M., 2018. Percolation Theory in Reservoir Engineering. World 
Scientific. 

King, P.R., 1989. The use of renormalization for calculating effective permeability. 
Transp. Porous Media 4, 37–58. https://doi.org/10.1007/BF00134741. 

King, P.R., 1987. The use of field theoretic methods for the study of flow in a 
heterogeneous porous medium. J. Phys. A. Math. Gen. 20, 3935–3947. 

Kirkpatrick, S., 1973. Percolation and conduction. Rev. Mod. Phys. 45, 574–588. 
Masihi, M., Gago, P.A., King, P.R., 2016. Estimation of the Effective Permeability of 

Heterogeneous Porous Media by Using Percolation Concepts. Transp. Porous Media 
114, 169–199. https://doi.org/10.1007/s11242-016-0732-9. 

Masihi, M., King, P., 2007a. Connectivity of Spatially Correlated Fractures: simulation 
and Field Studies. Proc. Eur. Conf. Exhib. https://doi.org/10.2118/107132-MS. 

Masihi, M., King, P.R., 2007b. A correlated fracture network: modeling and percolation 
properties. Water Resour. Res. 43, 1–9. https://doi.org/10.1029/2006WR005331. 
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