Operational Amplifiers: Part 2

Non-ideal Behavior of Feedback Amplifiers
DC Errors and Large-Signal Operation

by

Tim J. Sobering

Analog Design Engineer
& Op Amp Addict
Summary of Ideal Op Amp Assumptions

- Zero input offset voltage (V_{os})
- Zero input bias current ($I_{Bias^+, I_{Bias^-}}$)
- Infinite slew rate
 - Infinite large-signal (or full-power) bandwidth
- Infinite output drive
- No voltage rail limits
- Zero output impedance (Z_o)
- Infinite input impedance (Z_i)
- Infinite small-signal bandwidth
- Infinite open-loop gain (A_{ol})
 - Actually, infinite gain for a differential input, zero gain for a common mode input
Op Amp Internals – TLV2721C (just for fun)
Op Amp Internals – TLV2721C (just for fun)
DC Errors
Input Offset Voltage

- **Input Offset Voltage** is the voltage that must be applied to the input to make the output equal to zero volts
- Polarity is not predictable as it is a manufacturing variance
- V_{os} ranges from a few μV to typ. around 5 mV
 - Chopper-stabilized are lowest ($< 1 \mu$V)
 - “Precision” Op Amps have low V_{os}
 - Untrimmed CMOS amps can reach 50 mV
- V_{os} will drift with temperature and time
 - As low as 0.1 μV/°C, typically 1 – 10 μV/°C
 - Aging is proportional to the square root of time
 - 1 μV/1000 hr \rightarrow 3 μV/year (9000 hours)
- Error due to Input Offset Voltage can be very large in Instrumentation Amplifiers

TVL2721 Spec:
0.5 mV typ, 3 mV max.
Errors resulting from Input Offset Voltage

- Modeled as a voltage source in series with the inverting terminal
- Note: Inverting or Non-inverting result is the same

\[
\frac{V_{\text{OUT}}}{R_f} = \frac{V_{\text{OS}}}{R_g} + \frac{V_{\text{OS}}}{R_f}
\]

\[
V_{\text{OUT}} = V_{\text{OS}} \left(1 + \frac{R_f}{R_g}\right)
\]

\[
V_{\text{OUT}} = V_{\text{OS}} \frac{1}{\beta}
\]
Nulling the Input Offset Voltage (internal)

- Null or trim pins
 - Only for removing Op Amp offset
 - Do not use to correct system level errors
 - Topology depends on specific Op Amp
 - Read the data sheet!
 - Direct connection to differential pair
 - May have more gain than inputs
 - Use a tight layout for low-noise

- Null pin connections increases Op Amp temperature drift

- Generally, I avoid this method
 - Pots are generally poor devices (temperature effects, stability)

- Pick a “better” Op Amp if offset is a problem
Nulling the Input Offset Voltage (external)

- Use a reference voltage (or a DAC), not the supply

\[\text{NOISE GAIN} = \frac{R_2}{1 + \frac{R_1}{R_3 + R_A || R_B}} \]

Assumes \(R_3 >> R_A || R_B \)

\[V_{\text{OUT}} = -\frac{R_2}{R_1} V_{\text{IN}} \pm \frac{R_2}{R_3} V_R \]

\[V_{\text{OUT}} = -\frac{R_2}{R_1} V_{\text{IN}} \pm \left[\frac{1}{R_P} \right] V_R \]

Assumes \(R_p = R_1 || R_2 \)

\[R_P \leq 50 \Omega \quad \text{IF} \quad I_b+ \approx I_b- \]

\[R_P \text{ not } \]

Preferred

Copyright 2014 Tim J. Sobering
Nulling the Input Offset Voltage (external) Non-inverting amplifier

- Pick components to minimize change in noise gain
- Pot/Reference can always be replaced by a DAC

\[V_{OUT} \approx 1 + \frac{R_2}{R_1} V_{IN} \pm \frac{R_2}{R_3} V_R \]

\[\text{NOISE GAIN} = 1 + \frac{R_2}{R_1||R_3 + R_A||R_B} \]

\(\text{MAX OFFSET} \) (Keeps pot from changing gain)
Input Bias Current

- As low as 60 fA to several µA
- Very variable
- Inputs can be well-matched...or not
- Can be stable with temperature or may double every 10 °C
- May flow in or out and can change direction with CM voltage
 - Depends on input structure and internal cancellation circuits
- Don’t assume that both inputs currents flow the same direction
 - Look at Input Offset Current specification
 - I_{os} is the difference between I_{bias+} and I_{bias-}
 - If $I_{os} << I_{bias}$ currents probably flow the same direction
 - I_{os} is meaningless for current feedback amplifiers
- Pick a “better” opamp
Errors resulting from Input Bias Current (I)

- I_{bias^+} contributes nothing because there is no resistance for it to flow through to convert it to a voltage
- I_{bias^-} flows through R_f so $V_{out} = R_f I_{bias^-}$
 - Note: direction of current flow is assumed – depends on internal structure
Errors resulting from Input Bias Current (II)

- Addition of \(R_s \) converts \(I_{bias^+} \) to a voltage that sees the amplifier’s non-inverting gain.
- \(I_{bias^-} \) still flows through \(R_f \).
- Again: direction of current flow is assumed.

\[
V_{OUT} = R_f I_{bias^-} - R_s I_{bias^+} \left(1 + \frac{R_f}{R_g} \right) + V_s \left(1 + \frac{R_f}{R_g} \right)
\]

DC error due to input bias currents.
Watch out for AC coupled circuits

- Op Amp inputs **must** have a DC part to ground
 - Applies to Instrumentation amps too!
- Without R, non-inverting node will drift until V_{out} saturates
 - For polarity shown, output will go to the negative rail
 - Time required: $dV/dt = I_{bias+}/C$

This resistor is critical
Cancelling the effects of Input Bias Current

- Recall the previous equation and set $V_s = 0$

$$V_{OUT} = R_f I_{bias-} - R_s I_{bias+} \left(1 + \frac{R_f}{R_g}\right)$$

- Proper selection of R_s will result in the cancellation of the errors caused by the Input Bias Currents

$$R_f I_{bias-} = R_s I_{bias+} \left(1 + \frac{R_f}{R_g}\right)$$

$$R_s = \frac{R_f}{1 + \frac{R_f}{R_g}} = \frac{R_f}{R_g + R_f} = \frac{R_f R_g}{R_f + R_g} = R_f \parallel R_g$$

- Lots of assumptions!
Requirements for Input Bias Current Cancellation

- Cancellation technique only works when Input Bias Currents are well matched
 - I_{bias^+} and I_{bias^-} must be (nearly) equal and flow in the same direction
- Key is to look at the Input Offset Current specification
 - Input Offset Current must be \ll Input Bias Current
 - Op Amps with internal bias current compensation have $I_{os} \approx I_{bias}$
 - Watch out for Rail-to-rail Op Amps
 - Direction can change with common-mode voltage
- If not well matched, this technique makes the error worse
- If you don’t know what you are doing…don’t try designing it
 - Or build the circuit and learn something!
Cancellation technique only works when Input Bias Currents are well matched

Pick $R_3 = R_1 || R_2$

C_1 is for noise reduction (discussed in a later lecture)

Circuit still has an error from V_{os}
Output Drive

- Op Amp output swing is limited by load
- Most Op Amps can output 10 mA
 - If you need more, look closely at specs or add a current booster
- Greater loading can change performance
 - Increased distortion
 - Higher temperature (due to power dissipation)

OPA177 SPECIFICATIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITION</th>
<th>OPA177F</th>
<th>OPA177G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
</tr>
<tr>
<td>INPUT VOLTAGE RANGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Mode Input Range<sup>(4)</sup></td>
<td>±13</td>
<td>±14</td>
<td>*</td>
</tr>
<tr>
<td>Common-Mode Rejection</td>
<td>130</td>
<td>140</td>
<td>115</td>
</tr>
<tr>
<td>OPEN-LOOP GAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>5110</td>
<td>12,000</td>
<td>2000</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>R<sub>L</sub> ≥ 10kΩ</td>
<td>±13.5</td>
<td>±14</td>
</tr>
<tr>
<td></td>
<td>R<sub>L</sub> ≥ 2kΩ</td>
<td>±12.5</td>
<td>±13</td>
</tr>
<tr>
<td></td>
<td>R<sub>L</sub> ≥ 1kΩ</td>
<td>±12</td>
<td>±12.5</td>
</tr>
<tr>
<td>Open-Loop Output Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁽⁴⁾ Common-Mode Input Range at V_{CM} = ±13V

⁽⁵⁾ Large Signal Voltage Gain at V₀ = ±10V

Copyright 2014 Tim J. Sobering
Slew Rate

- Large-signal AC parameter affecting output voltage
 - Maximum dV_{out}/dt the output can support
 - Dictated primarily by internal Miller compensation capacitor
- Differential input voltage can be large when slew-rate limited
- Full-power bandwidth ($FPBW$) is set by the SR specification
 - Maximum full-amplitude sinusoid ($\pm V_p$) that can be output without slew rate limiting

$$FPBW = \frac{SR}{2\pi V_p}$$

- $FPBW$ is typically much less than $f_\tau (A_v$ unity gain frequency)
 - OP-27 has 8 MHz small signal bandwidth and 32 kHz FPBW
 - “Small-signal” amplitude (output) can be as low as ± 100 mV
Input and Output Impedance

- Op Amp input impedance is typically a large resistance in parallel with a small capacitance
 - $10^5 - 10^{12} \Omega \parallel 3 - 25 \text{ pF}$
 - CM impedance is from each input to ground
 - DM impedance is between inputs
 - BJT input stages typically have lower capacitance
 - CM input voltage can modulate input capacitance in non-inverting amplifiers and cause distortion

- Op Amp output impedance is typically treated as a resistance
 - $10 - 100 \Omega$ is typical, can be $1 \text{ k}\Omega$
 - Reduced by $(1 + A_v \beta)^{-1}$ in closed loop designs
 - Can be an issue at high frequencies when $A_v \beta$ craps out
 - Can be an issue with capacitive loads
Input and Output Common Mode Range

- Input Common Mode Voltage is defined as:
 \[V_{ICM} = \frac{V_{IN+} + V_{IN-}}{2} \]

- More important is the input and output common mode range
 - The common-mode range is specified w.r.t the supply voltage
 - Defines how close the input or output can get to the rail before saturating

- Watch out for rail-to-rail
 - Last 50 mV is often nonlinear

- Single supply design!
Interesting Common Mode Issue

- Op Amps have differential mode and common mode gain
 - High DM Gain (A_v)
 - Low CM gain, aka high CM rejection (CMR)
- Instrumentation amplifiers and difference amplifiers are designed for very high CMR
 - 80 dB to 140 dB rejection is possible
- Not all amplifier configurations are created equal
 - Non-inverting amp sees large CM voltage → distortion due to CM gain
Op Amp Model (up to this point)

- Superposition allows you to analyze individual effects
- R_i and R_o are actually complex impedances

Full Op Amp Model (inc. noise sources)
No such thing as single supply…sort of
- Op Amps do not have a ground terminal
 - LM324 has a ground pin! (not really)
- Any Op Amp can be operated with a single-supply

Single supply operation requires proper input biasing and output interfacing
- Avoid common mode range violations
- Don’t accidentally amplify DC levels
 - Multi-stage DC coupled designs are tricky

So why are some Op Amps called single-supply?
- Rail-to-rail inputs and/or output
- CMR includes one or both rails
- Often low-power and/or low-supply voltage
Single Supply Design Issues

- **Lowered supply rails:**
 - Reduced dynamic range (reduced noise margin)
 - Reduced precision because open-loop gain may be lower
 - Bias currents can change with reduced supply voltage
 - Offset voltage is impacted (PSRR)
 - Reduced output drive (needs “lighter” loads)

- **Example of how reduced supply affect an Op Amp:**
 - OP177 has initial offset of ± 20 µV at ± 15V with a PSRR of 1 µV/V (-120 dB – Power Supply Rejection Ratio)
 - At ± 5V, 20V reduction in supply changes offset by ± 20µV
 - New offset voltage spec is ± 40µV

- **Rail-to-rail inputs and outputs suffer linearity issues**
 - May not actually get to the rail – 50 mV seems to be common value
 - Generally, the last 50 – 100 mV before saturation is non-linear
Selection/design of “ground” reference is critical

- Is there a problem?
Circuit will only marginally function

- Output cannot go negative when input is positive
- Output will have a small "dead-band" when going positive (~1.5V for OP-07)
- RRIO Op Amp reduces but doesn’t eliminate the problems
So let's bias the input away from the negative rail...

- **Feedback will force inverting node to** \(V_{pos} / 2 \)
 - Progress – it might be inside the CMR

- **\(V_s \) “sees” the inverting gain** \(-R_f / R_g\)

- **But…**
 - Voltage on non-inverting terminal sees positive gain, so output could be saturated
 - Output only swings when input pulls output away from positive rail
 - Operation is still marginal
Go back to the basics

- Op Amp doesn’t know what “ground” is
- “Ground” nodes are “biased” to \(V_{bias} = \frac{(V_{pos} + V_{neg})}{2} \)
 - It just “happens” to be 0 V

So we can make a single supply design work by mimicking this biasing
Single Supply Alternatives

- Replace “ground” with V_{REF}
- Make sure V_{REF} is a low-impedance source

Low-impedance reference
When in doubt, do the math!

- Replace “ground” with V_{REF}

$$V_{out} = \left(1 + \frac{R_f}{R_g}\right)V_{REF2} - \frac{R_f}{R_g}(V_s + V_{REF1})$$

$$V_{out} = V_{REF2} + \frac{R_f}{R_g}(V_{REF2} - V_{REF1}) - \frac{R_f}{R_g}V_s$$

If $V_{REF1} = V_{REF2} = V_{REF}$

$$V_{out} = V_{REF} - \frac{R_f}{R_g}V_s$$

- Output swings relative to V_{REF}
Key points for Single-Supply Design

- Don’t inadvertently amplify your DC bias
- Extra biasing resistors can add noise
 - Use filtering caps if not in signal path
- AC coupling works when biased correctly and DC response isn’t needed
- Make sure your reference has a low source impedance
 - Source impedance can change circuit gain
- Watch out for CMR violations
Questions?