“Real” components complicate modeling & design

- **Tolerances**
 - High precision or matched resistors are expensive
 - Hand “selects” are time consuming, therefore expensive and probably not “manufacturable”
 - Good designs account for (compensate?) component tolerances

- **Temperature coefficients**
 - +/- 100 ppm/°C or more for “stock”
 - Low TCR resistors are expensive

- **Discrete values available (E24, E48, E96…)**
 - You may not always be able to get the ratio you want
 - Parallel or series combinations acceptable under some circumstances
 - Potentiometers are imprecise, high TCR, and drift – use only when necessary

- **Spice DOES NOT model reality. It only models what you (or the developer of the model) tell it to.**
There is no such thing as “Ideal”

- All passives have parasitic R’s, L’s and/or C’s
 - Component leads are inductive
 - There is capacitance from the body to ground and between the leads
 - There is capacitance between the turns of an inductor
 - There is resistance in the inductor winding
- Resistors have noise $v_n = (4kTR\Delta f)^{1/2}$
- Capacitors have memory (soakage), leakage, and dissipation that are a function of the dielectric properties and construction
Difference amplifier common mode rejection
(perfect resistor matching)

71dB - excellent low frequency CMR

Ideal resistors
Difference amplifier common mode rejection
(1% resistor tolerances, Monte Carlo analysis)

34dB worst case CMR

This does not account for
Variations due to temperature

1% resistors
Difference amplifier common mode rejection
(10°C temperature change, 100ppm/°C resistors)

30+ dB change in CMR

A 16-bit ADC requires a signal with >96dB SNR or you are just digitizing noise

100 ppm./°C resistors