Comparators – a brief overview

- Similar to an Op Amp…including the symbol
 - $A_V = \infty$
 - $I_{BIAS} = 0$
 - $V_{OS} = 0$
 - $BW = \infty$

- Except…
 - Output stage is likely different (open collector/drain, open emitter/source)
 - Designed to saturate and recover rapidly
 - Not compensated, i.e. no provision for unity gain stability
 - Not intended to be used as an amplifier
 - Used open loop or with POSITIVE feedback
 - More…other difference can be subtle
Comparators – function and application

- Decides if an input voltage is above or below a reference voltage
 - i.e. Single-bit analog-to-digital converter
 - Zero-crossing detector
 - Oscillators
 - Drivers (switch, relay, LED, etc.)
- Often have unique output structures for speed or interfacing
 - Compatibility with standard logic levels
 - Latching outputs
 - Open-collector/drain, open-emitter/source
- Suffer from offset and bias current problems just like Op Amps
- Input Overdrive – magnitude of ΔV_{IN}
 - Affects output response time
Op Amps as Comparators

- This is often done with the extra amp in a dual or quad package
- Op Amp input protection diodes often prevent using an Op Amp as a Comparator
 - Large input differential causes large currents and damage

- Op Amps have better accuracy and lower drift (DC and dynamic)
 - Op Amp is really the only option for microvolt comparisons
- True Comparators are usually faster (no internal compensation)
- Output voltage may not be compatible with logic levels
- Very poor saturation recovery
- Comparator as an Op Amp – don’t even try
Comparators make simple “digital” decisions

- Simple view of LM311 Comparator operation:

 - Output acts as Transistor “switch” – only allows current to flow one direction
 - External connections (i.e. pull-up, pull-down) define output operation
- “Open” Emitter not available on most comparators
- High-speed comparators have a defined output circuit to preserve speed
- “Open” Collector allows flexibility in interfacing
 - Voltage level shifting
 - LED or Relay drivers
- If $V_{IN} = 0$ V, output is INDETERMINATE!
LM311 – Output configurations are limitless

- $V_{IN} < V_{REF}$, $V_{OUT} = 0$; $V_{IN} > V_{REF}$, $V_{OUT} = V_{DC}$

- $V_{IN} < V_{REF}$, $V_{OUT1} = V_{OUT2} = V_{DC} R_4/(R_3 + R_4)$; $V_{IN} > V_{REF}$, $V_{OUT1} = V_{DC}$, $V_{OUT2} = 0$

- $V_{IN} < V_{REF}$, $V_{OUT} = V_{DC}$; $V_{IN} > V_{REF}$, $V_{OUT} = 0$

- $V_{IN} < V_{REF}$, $V_{OUT} = V_{DC}$; $V_{IN} > V_{REF}$, $V_{OUT} = -V_{DC}$

Problems with Comparators (LM311 specifically)

- Input Offset Voltage
- Input Bias Current
- Common-mode input range
 - Exceeding the CM input range or absolute input range can cause very strange responses (Definition, Survival, Operation)

\[V_{CM} = \frac{V_{IN}^+ - V_{IN}^-}{2} \]

- With passive pull-up, output rise asymmetrical
 - \(t(V_{OL} \rightarrow V_{OH}) \neq t(V_{OH} \rightarrow V_{OL}) \)
- Noise – causes jitter in switching
- Overdrive – small overdrive = long switching time

\[V_{IN}^+ < V_{SS} + 30V \]
\[V_{IN}^- > V_{DD} - 30V > V_{SS} \]
\[V_{IN}^+ < V_{DD} - 1.25V \]
\[V_{IN}^- > V_{SS} + 0.4V \]