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ABSTRACT
Grasslands exhibit high taxonomic and functional diversity, parti
cularly at fine spatial scales, posing challenges for remote sensing 
due to patchiness and species turnover. The spatial resolution of 
most remote sensing platforms often exceeds the size of homo
geneous grassland patches, resulting in mixed pixels that hinder 
vegetation mapping. To address this, we applied Multiple 
Endmember Spectral Mixture Analysis (MESMA) to high-resolution 
(1 m2) hyperspectral imagery from the NEON Airborne Observatory 
Platform (AOP) to assess the predictive accuracies of fractional 
cover and dominance of four major grass evolutionary lineages, 
Andropogoneae, Panicoideae, Chloridoideae, and Pooideae, across 
four U.S. Great Plains grasslands. MESMA performance was evalu
ated using different endmember selection strategies, including leaf- 
vs. plot-level spectral endmembers and site-specific vs. multiple-site 
endmembers. Overall classification accuracy reached ~90% 
(Matthews Correlation Coefficient ~0.84) using optimal endmem
ber combinations. While no single approach was universally super
ior, in general, leaf-level endmembers from focal sites and plot-level 
endmembers aggregated across all sites yielded higher overall 
accuracies. These results demonstrate that plot-level endmembers 
are more transferable across sites compared to leaf-level endmem
bers. Our results furthermore demonstrate that incorporating infor
mation about evolutionary relatedness can improve spectral 
unmixing results. This study advances sub-pixel mapping of grass
land composition, offering insights for ecological modelling, land 
change prediction, and assessing grassland responses to environ
mental change and community composition.
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1. Introduction

Grasslands are among some of the most diverse ecosystems at small spatial extents 
(Wilson et al. 2012). In addition to being taxonomically and functionally diverse, they 
can be extremely patchy with high species turnover at varying scales. Accurately mapping 
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grass and grassland distribution with remote sensing frequently means confronting 
mixed pixels, when a pixel contains multiple subjects of interest (Pazúr et al. 2022). This 
is because the size of homogenous grassland patches is often exceeded by the size of the 
pixel of most remote sensing platforms (Gholizadeh et al. 2019, 2022; Lopatin et al. 2017; 
Van Cleemput et al. 2018). Such variation complicates remote sensing mapping efforts, 
which are critical to understanding the distribution of grasses and grasslands across large 
spatial extents and how they will respond to environmental change.

Spectral Mixture Analysis or SMA is a technique that determines the percentage of 
each subject or class within a heterogeneous pixel (Adams, Smith, and Johnson 1986). 
SMA is employed when the spatial resolution is larger than the object of interest. It allows 
for sub-pixel analysis, enabling the identification of pure sub-pixel signatures and analys
ing sub-pixel components to match the object or component of interest. SMA uses 
a combination of pure spectra of different surfaces referred to as endmembers (Adams, 
Smith, and Johnson 1986). SMA approaches are reliant on the availability of appropriate, 
representative endmembers (Tompkins et al. 1997). Using endmembers that are not 
representative of their respective features decreases performance (Song 2005). If end
members are too similar and correlated with one another, accuracy declines significantly 
(Gong and Zhang 1999). Such similarity may be expected when utilizing lower resolution 
imagery to study grasslands as high inherent heterogeneity may result in the inadvertent 
selection of impure endmembers.

Methods for identifying the number and type of endmembers vary and can include 
different combinations of spectral endmembers from various sources and classes 
(Radeloff, Mladenoff, and Boyce 1999; Roberts et al. 1998; Smith et al. 1990; Wessman, 
Bateson, and Benning 1997; C. Wu and Murray 2003). Endmembers can be sourced from 
remotely sensed imagery or from spectral libraries of measurements recorded either in 
the field or the laboratory. For remote sensing of vegetation, leaf-level endmembers from 
spectral libraries are considered pure spectra without any canopy or illumination effects 
that may be location- or site-specific and thus can be applied to images where that 
species is known to occur. However, previous studies have underscored the benefits of 
using image endmembers with matching spatial scales for a number of reasons (Asner 
and Heidebrecht 2002; Kuemmerle, Röder, and Hill 2006; Rashed et al. 2003). Leaf-level 
endmembers from a spectral library may miss spectral complexities of plant canopies and 
illumination effects within heterogeneous landscapes and result in significant fractional 
estimate error (Somers et al. 2011). Factors such as solar zenith angle, sensor viewing 
direction, and canopy structure can contribute to variations in reflectance (Goodin, Gao, 
and Henebry 2004; Ranson et al. 1985). Furthermore, particularly in open grassy ecosys
tems, effects of soil reflectance are important to consider. Gholizadeh et al. (2018) 
demonstrated the importance of soil background effects in mapping grassland diversity 
at fine scales. They used spectral unmixing of hyperspectral imagery to derive soil percent 
cover fraction in pixels, which improved relationships between species diversity and 
spectral diversity. Thus, spectral endmembers taken in field conditions, at a spatial 
resolution that captures canopies instead of individual leaves (i.e. ‘plot-level’ spectra), 
may lead to more accurate SMA. While the collection of plot-level spectra, especially those 
taken during concurrent temporal timeframes (e.g. same season, month, or week) as 
imagery collection may provide spatially and temporally matched spectral signatures, it is 
time-consuming and often impractical to collect spectral endmembers in the field. If leaf 
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endmembers result in high predictive mapping accuracy, they can alleviate the need for 
time-consuming plot data.

Mapping grass functional groups is a precursor to important developments such as 
estimating grassland productivity and detecting grassland compositional change (Ali 
et al. 2016; Anderegg et al. 2022; Guerini Filho, Kuplich, and Quadros 2020; Hicke et al.  
2002; Psomas et al. 2011; Smit, Metzger, and Ewert 2008; Xu et al. 2008). While the use of 
hyperspectral imagery has focused on mapping species diversity, species composition 
and functional identity may be key to understanding the relationship between grassland 
diversity and spectral diversity due to the sensitivity of spectra to structural and biochem
ical properties rather than species diversity per se (Asner and Martin 2011; Gholizadeh 
et al. 2019; Kothari and Schweiger 2022; Van Cleemput, Adler, and Suding 2023).

Across the Great Plains of the U.S., mapping grass distributions has commonly focused 
on large biogeographic gradients in species that utilize either the C3 or C4 photosynthetic 
pathways, with C3 grasses dominant in cool wet environments and C4 grasses dominant in 
warmer and wetter climates (Lehmann et al. 2019; Paruelo and Lauenroth 1996; Still et al.  
2003). However, inaccuracies in predicting grassland distribution and productivity in 
vegetation models may be due to a lack of information on grass traits beyond photo
synthetic pathway (Still, Cotton, and Griffith 2019). Photosynthetic pathway alone misses 
important trait diversity of grasses, which recent work has shown is better captured by 
evolutionary lineages and should underlie spectral reflectance (Donnelly et al. 2023; Pau 
et al. 2025). Using leaf-level hyperspectral reflectance of 43 grass species, Slapikas et al. 
(2024) predicted grass evolutionary lineages with very high accuracy (>90%). While these 
leaf-level spectra were able to discriminate grass evolutionary lineages, it is unclear if plot- 
level endmembers would perform better when applied to image unmixing for mapping 
purposes. The importance of identifying endmembers using data collected at the leaf- 
scale or using data that captures field conditions remains unknown.

Here, we applied SMA approaches, specifically Multiple Endmember Spectral Mixture 
Analysis (MESMA), to high-spatial resolution National Ecological Observatory Network 
(NEON) Airborne Observatory Platform (AOP) imagery with 1 m2 resolution pixels of 
varying grass composition. We sought to compare the accuracies of different endmember 
selections in predicting the fine-scale composition of grass evolutionary lineages in mixed 
pixels across four grassland sites in the Great Plains region of the U.S.. Our objectives for 
this work are: 1) to use MESMA techniques to predict the fractional percentage and 
dominance within a 1 m2 pixel of grass evolutionary lineages at multiple sites, modelled 
separately, across the Great Plains, U.S., 2) compare MESMA accuracies at each site using 
leaf-level spectral endmembers vs. plot-level spectral endmembers, and 3) compare 
MESMA accuracies at each site using geographically widespread spectral endmembers 
vs. endmembers from the focal site only (i.e. the site being modelled).

2. Methods

2.1. Study sites

Field sampling was conducted at four sites across the Great Plains of the United 
States: Konza Prairie Biological Station (KONZ) in the Flint Hills region of Kansas, the 
Colorado Plains Experimental Range (CPER) in the western Great Plains, the Chase 
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Lake National Wildlife Refuge (WOOD) east of Woodworth, North Dakota, and the 
Cedar Creek Ecosystem Reserve in central Minnesota (CCR) (Figure 1). These sites 
were chosen for their grass dominated ecosystems, to cover a wide environmental 
gradient, and the fact that each site is characterized by a distinct dominant grass 
lineage. KONZ is almost 3,500 hectares in size and managed by Kansas State 
University. The primary vegetation at Konza is a native tallgrass prairie, dominated 
by C4 grasses, with managed burns and herbivore grazing. CPER is a roughly 6,500- 
hectare site managed by the U.S. Department of Agricultural Research Service. 
Dominant vegetation at CPER is a shortgrass steppe that is moderately grazed. The 
WOOD site is just over 1,000 hectares and is managed by the U.S. Fish and Wildlife 
Service and the U.S. Geological Survey. Prairie grasslands and croplands dominate 
this site, and light cattle grazing and prescribed burns are used. CCR is a 2,200- 
hectare reserve managed by the University of Minnesota. It contains coniferous 
forest, deciduous forest, and tallgrass prairie, which are managed using prescribed 
burns and grazing.

2.2. Data collection

2.2.1. Field data collection
Ground-based spectral measurements were conducted in the field during periods of peak 
greenness and on the same dates or within a few days of NEON AOP flyovers to mitigate 
potential phenological disparities. Ground sampling occurred 8–14 July 2020 (KONZ), 
6–8 June 2021 (CPER), 11–14 June 2021 (WOOD), and 20–26 June 2022 (CCR). Field 
measurements were always recorded on days with low cloud cover, between the hours 
of 10am to 2pm. The Malveryn/ASD FieldSpec 4 Hi‐Res NG Spectroradiometer, a portable 

Figure 1. Our four study sites span a broad environmental gradient and are dominated by different 
grass evolutionary lineages, however these lineages also co-occur at fine scales. Colorado Plains 
Experimental Range (CPER; mean annual temperature (MAT) = 8.6°C, mean annual precipitation (MAP) 
= 344.2 mm), Konza Prairie (KONZ; MAT = 12.4°C, MAP = 870 mm), Cedar Creek Ecosystem Reserve 
(CCR; MAT = 6.7°C, MAP = 660.4 mm), and Chase Lake National Wildlife Refuge (WOOD; MAT = 4.9°C, 
MAP = 495 mm).
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spectrometer designed for usage in both field campaigns and laboratory settings, was 
used to collect spectral measurements at both the leaf and the plot scale. The FieldSpec 4 
Hi-Res NG has a spectral range from 350 to 2500 nm with a sampling interval of 1.4–2 nm 
for 350–1000 nm and 1001–2500 nm, respectively. The spectroradiometer was set to 25 
internal repetitions. The data were corrected for spectral discontinuities between the 
three spectroradiometer sensors using a jump correction as in Dorigo, Bachmann, and 
Heldens (2006).

A total of 54 grass species (Table 1), with five to eight replicates per species, were 
collected across the four sites. These 54 grass species were classified into four dominant 
lineages: Andropogoneae (which falls within the Panicoideae subfamily), remaining 
Panicoideae (species excluding Andropogoneae, which we henceforth refer to as 
‘Panicoideae’ for simplicity), Chloridoideae, and Pooideae. The Andropogoneae tribe is 
recognized as a globally dominant grass lineage due to its widespread distribution and 
ecological significance. It is typically considered separately because it represents an 
independently evolved C4 lineage with distinct biogeographical patterns and functional 
traits that differentiate it from other Panicoideae (Donnelly et al. 2023; Griffith et al. 2020). 
Because we did not want to exclude the remaining Panicoideae species, we classified 
those as a separate group and refer to that group as ‘Panicoideae’ although it excludes 
Andropogoneae species. Andropogoneae was represented by eight species, 
Chloridoideae was represented by 13 species, Panicoideae was represented by 11 species, 
and Pooideae was represented by 22 species.

2.2.1.1. Leaf spectral endmembers. Five to eight fresh leaf spectra from 54 grass 
species collected across all sites were measured using a leaf contact probe attachment 
(Slapikas et al. 2024). Leaves collected from the field were stored in a cooler with wet 
paper towels, and spectra were measured from fresh leaves within a 2-hr window of field 
sampling. A standard white reference built into the leaf clip (ASD Leaf Clip Version 2) was 

Table 1. Grass species grouped by evolutionary lineage are used as spectral endmembers. Species are 
organized according to their respective endmembers (Andropogoneae, Chloridoideae, Panicoideae, 
and Pooideae), which represent dominant grass evolutionary lineages. These groups served as end
members in spectral unmixing analyses to characterize lineage-level reflectance patterns.

Dominant grass 
lineages

Photosynthetic  
type Species

Andropogoneae C4 Andropogon gerardii, Bothriochloa bladhii, Bothriochloa ischaemum, Bothriochloa 
laguroides, Schizachyrium scoparium, Sorghastrum nutans, Sorghum halepense, 
Tripsacum dactyloides

Chloridoideae C4 Bouteloua curtipendula, Bouteloua dactyloides, Bouteloua gracilis, Chloris 
verticillata, Eleusine indica, Eragrostis cilianensis, Muhlenbergia cuspidata, 
Muhlenbergia frondosa, Schedonnardus paniculatus, Spartina pectinata, 
Sporobolus compositus, Sporobolus heterolepis, Sporobolus vaginiflorus

Panicoideae C3 Dichanthelium leibergii, Dichanthelium oligosanthes, Dichanthelium perlongum, 
Dichanthelium praecocius

C4 Digitaria cognata, Echinochloa muricata, Hopia obtusa, Panicum virgatum, 
Paspalum setaceum, Setaria pumila, Setaria viridis

Pooideae C3 Agropyron cristatum, Agrostis gigantea, Bromus inermis, Bromus pubescens, 
Bromus tectorum, Diarrhena obovata, Elymus canadensis, Elymus elymoides, 
Elymus repens, Elymus smithii, Elymus villosus, Elymus virginicus, Glyceria 
striata, Hesperostipa comata, Hesperostipa spartea, Koeleria macrantha, 
Nassella viridula, Oryzopsis hymenoides, Phalaris arundinacea, Phleum pratense, 
Poa pratensis, Vulpia octoflora
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measured for calibration before each species was measured and at 10-min intervals 
(Hellmann et al. 2015). Leaf sampling intensity was contingent upon leaf area; if a single 
leaf did not adequately cover the black background on the contact probe, multiple leaves 
were arranged adjacent to each other with their adaxial side facing the sensor (Slapikas 
et al. 2024).

The 54 grass species for leaf-level endmembers were chosen by first reviewing species 
lists and publicly available plot data to create rank abundance curves. We then targeted 
sampling of the most dominant species at each site. We additionally targeted species that 
occurred across multiple sites even when they were not dominant, as well as species that 
were representative of dominant lineages.

2.2.1.2. Plot spectral endmembers and ground validation data. We recorded spectral 
reflectance of 1 m2 plots and associated species composition along multiple transect lines 
at each site (Supplementary Materials Figure S1). Each transect was 100 m in length. 
Beginning at 0 m, 1 m2 quadrats were placed along the transect line, alternating sides 
every 10 m, for a total of 10 quadrats per transect. The spectral signature of each 1 m2 plot 
was collected eight times using the portable spectroradiometer, which was later averaged 
to generate an average spectrum for each plot. The fore-optic lens inside the pistol grip, 
which has a field of view of 25 degrees, was held from the centre of each quadrat at 
a height of ~2 m to collect the spectra of the 1 m2 plot. A standard white reference was 
used to generate a white reference spectrum before every plot measurement and at 10- 
min intervals (Hellmann et al. 2015). The percentage cover of all plant species greater than 
5% within each 1 m2 plot was recorded as well as overall plant species richness (Table 2). 
A total of 43 transects across all sites, generally 7–12 transects at each site, resulted in 430 
1 m2 plot measurements total. The latitudinal and longitudinal coordinates of the plot’s 
centre were recorded using a GPS unit (Trimble R1 Integrated GNSS system, Trimble, 
Sunnyvale, CA, U.S.A.) with a location accuracy of 1–3 m.

The spectral library and endmembers were scaled to the same wavelength and spectral 
bands as the NEON AOP data. This scaling required reducing the data dimensions from 
2,151 bands to 426 bands using the ‘hsdar’ package (Lehnert et al. 2019) in R.

Table 2. Representation of each lineage at each site.
Site Lineage Number of plots with lineage present Range of % cover of lineage in 1 m2 plots

KONZ Andropogoneae 74 20–80%
Chloridoideae 5 20–25%
Panicoideae 3 20–40%
Pooideae 3 5%

CPER Andropogoneae NA NA
Chloridoideae 33 20–45%
Panicoideae NA NA
Pooideae 30 20–90%

WOOD Andropogoneae 5 25–40%
Chloridoideae 2 5–12%
Panicoideae NA NA

CCR Andropogoneae 61 20–90%
Chloridoideae NA NA
Panicoideae 5 20–30%
Pooideae 24 20–45%
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2.2.2. Imagery collection and pre-processing
Three of our study sites, KONZ, CPER, and WOOD, are National Ecological Observatory 
Network (NEON) sites with publicly available hyperspectral and LiDAR imagery from the 
Airborne Observation Platform (AOP) provided at 1 m2 spatial resolution. NEON’s AOP is 
a multifunctional system equipped with three remote sensing instruments tailored for 
hyperspectral, multispectral, and LiDAR imaging (Kampe et al. 2010). The Imaging 
Spectrometer (NIS) records data in 426 bands from 380 to 2510 nm at 5 nm intervals. 
We downloaded NEON’s fully orthorectified surface reflectance data (DP3.30006.001; 
accessed 5 July 2023) and LiDAR-derived Ecosystem Structure Canopy Height Model 
(CHM) (DP3.30015.001; accessed 5 July 2023) for all four of the sites. NEON produces 
the Ecosystem Structure CHM from LiDAR point cloud data as a continuous surface 
representing the height at the top of the canopy (m). We contracted Battelle/NEON to 
conduct AOP flights on 27 June 2022 and 29 June 2022 collecting LiDAR, imaging 
spectroscopy, and high-resolution camera imagery, and they produced AOP data pro
ducts comparable to other NEON sites. NEON collected all AOP data within 1 week of our 
field sampling at all sites.

We used the NEON CHM to mask out non-grass dominated areas in the AOP imagery 
that had CHM over 2 m. We used orthorectified surface reflectance data and processed 
the data performing Bidirectional Reflectance Distribution Function (BRDF) correction to 
account for pronounced cross-track gradients. We used the ‘HyTools’ Python library to 
correct BRDF (Chlus 2023). We also removed the water absorption features (1330–1430  
nm and 1800–1960 nm) and spectral ends (<400 nm and >2400 nm) due to low signal-to- 
noise ratios. Additionally, we filtered pixels with near-infrared (NIR) reflectance ≥20% and 
Normalized Difference Vegetation Index (NDVI) ≥0.5 to remove pixels with a large propor
tion of bareground, shadows, or other contaminants to well-lit vegetation pixels (Pau et al.  
2022).

2.3. Analysis

2.3.1. Spectral endmember library creation and optimization
We used a leaf-level spectral library of 54 grass species from Slapikas et al. (2024; 
Figure 2) as well as a newly developed spectral library of 430 plot-level spectra from 
sampling at our four grassland sites (Tables 1 and 2). The two spectral libraries were 
applied to MESMA separately in leaf-level models or plot-level models. For each 
separate spectral library (i.e. leaf or plot), we generated spectral endmembers for 
each lineage using (1) reflectance collected from only the focal site (i.e. leaves or 
plots from the site being modelled) or (2) reflectance collected from all sites (i.e. leaves 
or plots from all of our study sites averaged for each lineage and applied to the site 
being modelled). We calculated leaf-level spectra for each species using mean reflec
tance values from all replicates, which were then aggregated to leaf-level lineage 
endmembers using the mean reflectance values for all species in each lineage. For 
plot-level endmembers for both focal-site and all-sites libraries, we used the plot with 
the highest % cover of each lineage at each site (Table 2). We also used the Pixel 
Purity Index (PPI; Boardman, Kruse, and Green 1995; Chang, Wu, and Chen 2009), 
which selected the same plots as endmembers as simply using the plot with the 
highest % cover of each lineage. We converted each plot spectra recorded from the 
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field into a simulated pixel. Then, the PPI was used to identify endmember candidates 
for each lineage (all plots with that lineage present were used and this was repeated 
for each lineage at each site) by projecting each plot’s spectra onto random unit 
vectors (‘skewers’). Plot spectra towards extremes of each vector the most times, i.e. 
those with the highest PPI scores, were considered the most pure endmembers for 
each lineage.

Although we used an NDVI and NIR threshold to filter out potential bareground, 
shadows, and other unvegetated pixels in the AOP imagery (details above under 
‘Imagery collection and pre-processing’), we created bareground spectral endmembers 
derived from our plots into the MESMA process. Bareground endmembers were only used 
in our models of fractional percentage because there was essentially no bareground 
visible in plots used for our dominance models. These endmembers were used to account 
for pixels in the imagery that potentially included bareground, allowing for improved 
discrimination between vegetation and non-vegetated surfaces. The inclusion of bare
ground spectra can help mitigate classification errors and refine fractional abundance 
estimates in areas where soil exposure is present (Jacquemoud, Baret, and Hanocq 1992). 
The bareground endmember was based on the ground-truth plot with the 
highest percent cover of bareground across all the sites when applying endmembers 
aggregated across all sites. When endmembers from only focal sites were used, the plot 
with the highest percent cover of bareground at each site was selected as the bareground 
endmember.

2.3.2. Spectral unmixing
Multiple Endmember Spectral Mixture Analysis (MESMA) is an advanced type of 
linear SMA. Individual pixels are modelled independently with different 

Figure 2. Leaf-level spectral endmembers used in Multiple Endmember Spectral Mixture Analysis 
(MESMA). The shaded regions represent ±2 standard deviations around the mean reflectance for each 
lineage, shown in the corresponding transparent colour. Remaining Panicoideae (species excluding 
Andropogoneae) we refer to as simply Panicoideae for simplicity.
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combinations of endmembers (Fernández-Guisuraga, Calvo, and Suárez-Seoane  
2020; Fernández-Manso, Quintano, and Roberts 2012; Roberts et al. 1992, 1998). 
This contrasts with SMA in which individual pixels are modelled using the same 
combination of endmembers. MESMA is often used in land cover classifications, 
particularly when pixels are of a moderate resolution or lower, but the technique 
has also been applied to mapping dominant grassland species (e.g. Lopatin et al.  
2017). We selected MESMA because the technique is particularly adept at mana
ging the spectral signatures present in heterogeneous vegetation communities 
such as grasslands, where multiple endmembers contribute to the observed reflec
tance spectra (Y. He, Guo, and Wilmshurst 2006; Rossi and Gholizadeh 2023; J. Wu 
et al. 2023).

Leveraging our spectral libraries, we applied MESMA to predict both the dominant 
lineage and the fractional abundance (e.g. percentage) of each lineage within a pixel. The 
initial aim of using Spectral Mixture Analysis (SMA) was to assess how much representa
tion of each endmember was present in the original data. However, an issue that arises 
with linear SMA is the fractional error when too few spectral endmembers are used within 
the model. MESMA is an extension of SMA and accounts for this issue of within- 
endmember variability. We performed MESMA using a non-negative least squares 
(NNLS) regression, which employs a sequential coordinate-wise algorithm (SCA) (Franc, 
Hlaváč, and Navara 2005), with the ‘RStoolbox’ package in R. The NNLS regression 
estimates the fractional cover of each endmember within a pixel. Each pixel spectrum is 
modelled as a linear combination of endmember spectra, subject to the constraints that 
the coefficients must be non-negative and sum up to ≤1. The primary parameters 
estimated by the NNLS regression are the fractional abundances (regression coefficients) 
for each selected endmember (e.g. Andropogoneae, Chloridoideae, Panicoideae, 
Pooideae, and bareground). Two additional parameters are available, which are the 
residual error term and user-defined constraints that include the sum-to-one condition 
and the maximum number of endmembers per pixel.

We applied MESMA to predict grass lineages in 1 m2 AOP pixels using four approaches, 
both comparing leaf vs. plot-level endmembers and comparing all available endmembers 
vs. only focal site endmembers. First, we classified AOP pixels into their fractional cover of 
each grass lineage (Andropogoneae, Panicoideae, Chloridoideae, and Pooideae) using 
MESMA. For each site, we used linear regressions to assess the accuracy of predicted 
fractional cover. We compared predictive accuracies using models that did and did not 
include subfamily identity as an additional predictor in our models. Second, we used 
a minimum threshold of at least 30% cover and then classified each pixel to the most 
dominant lineage relative to other lineages present in ground-truth validation plots (i.e. 
pixels were classified as the lineage with the highest percent cover). We chose a minimum 
threshold of at least 30% because it was >¼ the size of the 1-m pixel (i.e. visually and 
ecologically dominant). The 30% cut-off operationalized dominance by reducing sensi
tivity to the inclusion of multiple lineages with potentially similar % cover. Through trial 
and error, we determined that a minimum of 30% cover was the lowest threshold that 
resulted in the highest classification accuracy. We evaluated the accuracy of dominance 
classifications using the Matthews Correlation Coefficient (MCC) rather than Cohen’s 
Kappa, due to well-documented limitations of Kappa in providing meaningful or inter
pretable improvements to accuracy assessment (Foody 2020; Olofsson, Gilmore, and 

INTERNATIONAL JOURNAL OF REMOTE SENSING 9



Millones 2011). We assessed accuracy based on the dominant lineage classified within 
each AOP pixel using standard confusion matrix outputs. We calculated these accuracies 
for each of the four approaches we utilized (leaf-level across all sites, leaf-level from 
a single focal site, plot-level across all sites, plot-level from a single focal site). For both 
fractional cover and dominance predictions, we used percent cover values (of lineages 
and bareground) from 1 m2 plots directly observed from the field at each site as validation 
plots, using GPS to geolocate the AOP pixel that corresponded to our 1 m2 plot (see 
details above under ‘Plot spectral endmembers and ground validation’).

3. Results

3.1. Sub-pixel classification

The fractional coverage predictions using MESMA, with subfamily included as an 
additional covariate, showed improved performance when utilizing leaf-level end
members from all sites or plot-level endmembers from the focal site, compared to 
other approaches (leaf-level endmembers from the focal site or plot-level endmembers 
from all sites) (Table 3). All unmixing models of fractional cover included a bareground 
endmember (see Figure S2 and Figure S3 in Supplementary Materials for confusion 
matrices). For the plot-level endmembers from the focal site approach, KONZ had the 
lowest RMSE of 16.46 and an R2 of 0.87, whereas not including subfamily as an 
additional covariate the RMSE increased to 33.69 and the R2 decreased to 0.44. CCR 
exhibited the highest RMSE of 26.59 and an R2 of 0.53 with subfamily included and 
without had an RMSE of 38.64 and an R2 of 0.01. Using leaf-level endmembers from all 
sites, R2 values were generally higher than those observed using leaf-level endmem
bers from only the focal site, with the exception of CPER, where the focal site 
approach produced a higher R2. Among all sites, predictions at WOOD had the lowest 

Table 3. (a) Adjusted R2 values from linear regression models predicting the fractional cover of each 
grass lineage within 1 m2 AOP pixels using MESMA estimates, incorporating subfamily as an additional 
covariate (MESMA prediction ~ observed % cover + subfamily) and a bareground endmember. (b) The 
table presents the differences between models that include subfamily as a covariate and those that do 
not. Improvements in model fits with the addition of subfamily as a covariate are indicated by 
negative RMSE (i.e. a reduction in error) and positive R2 values (i.e. an increase in variance explained). 
The models evaluate the effectiveness of endmembers derived at both the plot and leaf levels. All 
results are statistically significant with p < 0.000.

Leaf-level focal Leaf-level all Plot-level focal Plot-level All

Site R2 RMSE R2 RMSE R2 RMSE R2 RMSE

KONZ 0.67 15.94 0.72 15.39 0.87 16.46 0.96 9.44
CPER 0.33 14.91 0.18 17.30 0.60 18.60 0.48 22.52
WOOD 0.07 11.49 0.34 12.30 0.50 17.21 0.07 11.49
CCR 0.42 19.76 0.48 17.87 0.53 26.59 0.48 17.87

(b)

Site Diff R2 Diff RMSE Diff R2 Diff RMSE Diff R2 Diff RMSE Diff R2 Diff RMSE

KONZ 0.33 −6.53 0.35 −7.62 0.43 −17.23 0.46 −23.23
CPER 0.16 −1.74 0.09 −0.92 0.60 −10.84 0.46 −8.31
WOOD 0.08 −0.47 0.34 −2.80 0.28 −4.35 0.08 −0.47
CCR 0.27 −4.07 0.35 −5.30 0.52 −12.05 0.35 −5.30
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RMSE of 12.30 and an R2 of 0.34 using leaf-level endmembers from all sites when 
subfamily was included and had a RMSE of 15.10 and an R2 of 0 when subfamily was 
omitted. CCR had the highest RMSE of 17.87 and an R2 of 0.48, and an RMSE of 23.17 
and an R2 of 0.13 when the subfamily was not included. Overall, KONZA consistently 
achieved the highest R2 values across all approaches, while WOOD had the lowest R2 

except when applying the leaf-level endmembers from all sites. The inclusion of 
subfamily as a covariate was always significant (p ≤ 0.01) and increased R2 by 0.32 
on average, but was as high as 0.60, for each approach across all sites and lowered the 
RMSE on average by 6.95, but as high as 23.23, underscoring the importance of 
subfamily identity in improving predictive accuracy of grassland composition.

3.2. Classification of dominant lineages

3.2.1. Leaf-level endmembers
When using only validation plots that had a lineage present at 30% cover or higher 
(which excluded the bareground class as bareground did not exceed 30%), the 
number of plots went from 430 to 297; however, accuracies generally improved 
compared to models that did not use a threshold of minimum percent cover. Using 
leaf-level endmembers measured from only the focal site, the overall prediction 
accuracy reached 90.3% with an MCC of 0.84 (Figure 3(a)). The accuracies for each 
individual lineage were all 75% or higher (diagonals in Figure 3(a)). Panicoideae 
had the lowest classification accuracy with misclassifications into Andropogoneae. 
When using leaf-level endmembers from all sites, the overall prediction accuracy 
reached 87.5% with an MCC of 0.77 (Figure 3(b)). The accuracies for each individual 

Figure 3. Mean normalised confusion matrices for MESMA classification of National Ecological 
Observatory Network (NEON) Airborne Observatory Platform (AOP) hyperspectral image pixels into 
the most dominant lineage using leaf-level endmembers from the focal site (a) and from all sites (b). 
Classification accuracy for each lineage is across the diagonal, and all other cells in the matrix describe 
the error rate. Using endmembers from focal sites resulted in an overall accuracy of 90.3% with an 
MCC of 0.84. Using endmembers across all sites resulted in an overall accuracy of 87.5% with an MCC 
of 0.80.
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lineage were all 75% or higher, again with Panicoideae having the lowest classifi
cation accuracy of 75% (diagonals in Figure 3(b)), with misclassifications into 
Andropogoneae. Overall model accuracies include bareground endmembers, how
ever when using a 30% cover threshold, bareground was never misclassified as 
a grass lineage. Therefore, confusion matrices (Figure 3(a,b)) are normalized to only 
show lineage classification/misclassification.

3.2.2. Plot-level endmembers
Using plot-level endmembers from a focal site to classify the most dominant 
lineage (i.e. the lineage with the highest percent cover, with a minimum cover of 
at least 30%), the overall prediction accuracy was 85.1% with an MCC of 0.77 
(Figure 4(a)). The individual lineages Chloridoideae and Pooideae had accuracies 
over 95%, while Andropogoneae and Panicoideae had accuracies over 75% (diag
onals in Figure 4(a)). The presence of Panicoideae tended to be confused for 
Andropogoneae. Using the plot-level endmember with a 30% threshold 
on percent cover from all sites, the overall prediction accuracy reached 90.7% 
with an MCC of 0.84 (Figure 4(b)). Andropogoneae, Chloridoideae, and Pooideae 
had individual accuracies over 87%, while Panicoideae had an accuracy of 75% 
(diagonals in Figure 4(b)). Panicoideae were misclassified as Andropogoneae. 
Similarly, to the leaf-level endmember models, overall model accuracies include 
bareground endmembers; however, when using a 30% cover threshold, bare
ground was never misclassified as a grass lineage. Therefore, confusion matrices 
(Figure 4(a,b)) are normalized to only show lineage classification/misclassification.

Figure 4. Mean normalised confusion matrices for MESMA classification of National Ecological 
Observatory Network (NEON) Airborne Observatory Platform (AOP) hyperspectral image using plot- 
level endmembers from the focal site (a) and from all sites (b). Classification accuracy for each lineage is 
across the diagonal, and all other cells on the matrix describe the error rate. Using endmembers from focal 
sites only resulted in an overall accuracy of 85.1% with an MCC of 0.75. Using endmembers across all sites 
resulted in an overall accuracy of 90.7% with an MCC of 0.84.
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4. Discussion

To predict the future functionality of grassland ecosystems accurately, it is crucial to 
understand the distribution patterns of dominant functional types (Gholizadeh et al.  
2022; Griffith et al. 2020; Still, Cotton, and Griffith 2019). Grassland ecosystems typically 
consist of heterogeneous assemblages of species at fine scales. Mapping the distribu
tion of grasses using imagery often necessitates working with mixed pixels, which can 
introduce uncertainty. This is because of a scale mismatch between the small size of 
plant species found in grasslands in relation to the spatial resolution of imagery 
(Gamon et al. 2020; Gholizadeh et al. 2022). To assess the potential for spectral 
unmixing techniques to classify grassland composition at fine scales, we disaggregated 
1-m NEON AOP hyperspectral pixels using MESMA and compared the effectiveness of 
leaf vs. plot-level endmembers in addition to the transferability of endmembers across 
sites. In general, the four endmember approaches we used to detect the dominant 
grass lineages at varying sites resulted in similarly high accuracies (~85–90%). 
However, the use of leaf-level spectral endmembers from focal sites compared to 
aggregating spectra across all sites resulted in slightly higher overall accuracies, 
while the use of plot-level spectral endmembers from all sites had slightly higher 
overall accuracies than using endmembers from the focal site.

Leaf traits, which influence leaf-level reflectance, may vary more across sites (e.g. Pau 
et al. 2025) compared to structural traits, which influence plot-level reflectance. Canopy 
structure, leaf area, and leaf angle may differ less across species and sites, and therefore 
serve as representative endmembers even across sites for particular lineages. For instance, 
the canopy trait, LAI, which is the total leaf area relative to the ground area, influences the 
proportion of light absorbed or reflected by a canopy versus other components like soil. 
Higher LAI generally increases reflectance in certain bands, especially in the near-infrared 
region, which is sensitive to vegetation (Shibayama and Akiyama 1989; Turner et al. 1999). 
Similarly, leaf size and leaf angle distribution of grass lineages, which can affect the 
amount and directionality of reflected light, may differ less across species and sites 
(Supplementary Materials Figure S4).

Our work further demonstrates the importance of taxonomic identity rather than 
measures of diversity per se. When unmixing NEON AOP pixels, our results highlight the 
advantage of incorporating phylogenetic information for predicting grassland composi
tion, which substantially improved predictive accuracies (Table 3(b)). In other words, the 
fractional cover of pixels dominated by certain lineages was better predicted than others, 
suggesting that particular traits associated with lineage have a stronger spectral signal. 
This result was consistent when using endmembers at the leaf-level and at the plot-level 
from both the focal site and across all sites with at least a 30% threshold. Relevant traits 
may propagate across scales or there are both leaf and canopy traits associated with 
lineages that have strong optical properties. More specifically, sites dominated by 
Andropogoneae, i.e. KONZ and CCR, tended to have higher accuracies for predicting 
fractional cover. Additionally, these two sites also had the lowest bareground presence. 
While the presence of bareground did not affect classifications using a dominance thresh
old, when a threshold was not applied the presence of bareground in small proportions 
also played a role in predictive accuracies for fractional abundance of the dominant grass 
lineages in the pixel (Figure S2 and S3).
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Although we generally achieved high classification accuracy, spectral similarity among 
vegetation types may have caused classification errors, which can lead to confusion 
between functionally or structurally similar plant lineages. This challenge is particularly 
pronounced in classifying our Panicoideae group, which tended to be misclassified as 
Andropogoneae, a tribe within the subfamily Panicoideae. Because these two groups 
share a close evolutionary relationship, they likely share similar traits and thus similar 
spectral signatures (Slapikas et al. 2024; Pau et al. 2025). Andropogoneae is nonetheless 
an ecologically distinct group with unique functional traits that differentiate it from other 
Panicoideae (Donnelly et al. 2023; Griffith et al. 2020). While Andropogoneae were 
classified with high accuracy, the larger Panicoideae group may lack distinctiveness and 
exhibit larger variability in their spectral signatures (Figure 3 and 4). On the other hand, 
Chloridoideae was classified with almost perfect accuracy in dominance classifications 
because it tends to not co-occur with other lineages or with only Pooideae, and it has 
a very distinct spectral signature (Figure 2).

Another potential reason for classification errors is geolocational misalignment 
between our validation plots and imagery (Pau et al. 2020). Even with our high (1–3 m) 
GPS accuracies recorded for our field plots, georectification and mosaicking of image 
flight lines can result in pixel shifts. Radiance from neighbouring pixels can also affect the 
focal pixel (Inamdar et al. 2020), particularly with 1 m2 pixels provided by the NEON AOP. 
This may have contributed to sometimes low prediction accuracy for some sites and some 
lineages. Konza Prairie, the site with the highest R2 when predicting fractional cover, 
generally has low turnover of lineages at scales <10 m and also had no recorded bare
ground in transects, which contributed to its successful classification.

Not surprisingly, predicting dominant lineages (30% cover or greater) resulted in higher 
predicted accuracies than fractional cover. Previous studies (e.g. Chen et al. 2018; Lopatin 
et al. 2017) found that classifications of grassland composition at the species level have 
limitations due to inter-species spectral signal mixing. Our results suggest that spectral 
distinctiveness may be relatively less important than spatial coverage given that classification 
of dominance was more successful than fractional coverage. Mapping dominant species and 
lineages should help link patterns of diversity to ecosystem functions and help predict future 
patterns of global change at relevant spatial scales (Avolio et al. 2019; Pau and Dee 2016).

Overall, our results show strong potential for modelling the distribution of grass 
lineages at fine scales using hyperspectral imagery. We found that leaf-level 
spectra contain high information content for discriminating grass evolutionary 
lineages as seen in Figures 3 and 5. Our work demonstrates that using leaf end
member collections, rather than more time-consuming plot-based endmembers, 
can lead to comparably high predictive accuracies. However, plot-level spectra 
appear more transferable across sites and suggest that canopy-level traits may 
be more robust to environmental differences. Our work also shows that using plot 
spectra from already existing spectral libraries may be appropriate to apply to new 
sites. In all cases, our models predicted some lineages with greater accuracy than 
others. Partitioning the large Panicoideae subfamily further could help to improve 
model accuracy. Given the increasing number of existing and near-future hyper
spectral satellite missions (e.g. CHIME, SBG, EnMAP), our approach can be scaled to 
spaceborne imaging spectrometers by resampling the leaf and plot spectral 
libraries to each sensor’s capabilities, providing potentially global grassland plant 

14 R. SLAPIKAS ET AL.



diversity maps and long-term monitoring. To improve the accuracy of detecting 
grass evolutionary lineages, future research should explore the use of multiple 
classification approaches instead of relying on a single method. Different classifiers 
can complement each other by handling different sources of error in spectral 
unmixing. Some studies suggest using a discriminative classification model 
(Support Vector Machines, Random Forest, Gradient Boosting Machines, or 
Artificial Neural Networks) alongside spectral unmixing. In this approach, if spectral 
unmixing struggles to classify a pixel with confidence, the system would instead 
rely on the discriminative classification model to make the decision, and vice versa 
(Li et al. 2015). By mapping and modelling the distribution of grass evolutionary 
lineages, we can better understand the environmental factors that shape their 

Figure 5. The far-left image is a classified map depicting the spatial distribution of dominant grass 
lineages (Andropogoneae, Chloridoideae, Panicoideae, and Pooideae) at the Konza Prairie Biological 
Station, derived from leaf-level endmembers from Konza only (i.e., the focal site) using MESMA applied 
to NEON AOP hyperspectral imagery at 1 m2 spatial resolution. The bottom right image highlights two 
distinct regions: the left side is dominated by Andropogoneae (yellow) and are areas with frequent fire 
and no grazers; the right side shows more mixed regions (grey) and are areas with fire and grazing 
treatments where species richness tends to be higher and multiple lineages coexist. Many of the 
mixed pixels in these regions include the presence of Chloridoideae. The top right image is a further 
magnified view of the image below, illustrating the fine-scale spatial distribution of each lineage as 
classified from the hyperspectral data. Regions in white are tree or shrub dominated and masked 
based on the NEON CHM (see Methods).
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distributions and help monitor how distributions might shift in response to climate 
change or land use changes.
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