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ABSTRACT ARTICLE HISTORY
Grasslands exhibit high taxonomic and functional diversity, parti- Received 9 April 2025
cularly at fine spatial scales, posing challenges for remote sensing Accepted 9 November 2025
due to patchiness and species turnover. The spatial resolution of KEYWORDS

most remote sensing platforms often exceeds the size of homo- Biodiversity; evolutionary
geneous grassland patches, resulting in mixed pixels that hinder lineages; imaging
vegetation mapping. To address this, we applied Multiple spectroscopy
Endmember Spectral Mixture Analysis (MESMA) to high-resolution

(1 m®) hyperspectral imagery from the NEON Airborne Observatory

Platform (AOP) to assess the predictive accuracies of fractional

cover and dominance of four major grass evolutionary lineages,

Andropogoneae, Panicoideae, Chloridoideae, and Pooideae, across

four U.S. Great Plains grasslands. MESMA performance was evalu-

ated using different endmember selection strategies, including leaf-

vs. plot-level spectral endmembers and site-specific vs. multiple-site

endmembers. Overall classification accuracy reached ~90%

(Matthews Correlation Coefficient ~0.84) using optimal endmem-

ber combinations. While no single approach was universally super-

ior, in general, leaf-level endmembers from focal sites and plot-level

endmembers aggregated across all sites yielded higher overall

accuracies. These results demonstrate that plot-level endmembers

are more transferable across sites compared to leaf-level endmem-

bers. Our results furthermore demonstrate that incorporating infor-

mation about evolutionary relatedness can improve spectral

unmixing results. This study advances sub-pixel mapping of grass-

land composition, offering insights for ecological modelling, land

change prediction, and assessing grassland responses to environ-

mental change and community composition.

1. Introduction

Grasslands are among some of the most diverse ecosystems at small spatial extents
(Wilson et al. 2012). In addition to being taxonomically and functionally diverse, they
can be extremely patchy with high species turnover at varying scales. Accurately mapping
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grass and grassland distribution with remote sensing frequently means confronting
mixed pixels, when a pixel contains multiple subjects of interest (Pazur et al. 2022). This
is because the size of homogenous grassland patches is often exceeded by the size of the
pixel of most remote sensing platforms (Gholizadeh et al. 2019, 2022; Lopatin et al. 2017;
Van Cleemput et al. 2018). Such variation complicates remote sensing mapping efforts,
which are critical to understanding the distribution of grasses and grasslands across large
spatial extents and how they will respond to environmental change.

Spectral Mixture Analysis or SMA is a technique that determines the percentage of
each subject or class within a heterogeneous pixel (Adams, Smith, and Johnson 1986).
SMA is employed when the spatial resolution is larger than the object of interest. It allows
for sub-pixel analysis, enabling the identification of pure sub-pixel signatures and analys-
ing sub-pixel components to match the object or component of interest. SMA uses
a combination of pure spectra of different surfaces referred to as endmembers (Adams,
Smith, and Johnson 1986). SMA approaches are reliant on the availability of appropriate,
representative endmembers (Tompkins et al. 1997). Using endmembers that are not
representative of their respective features decreases performance (Song 2005). If end-
members are too similar and correlated with one another, accuracy declines significantly
(Gong and Zhang 1999). Such similarity may be expected when utilizing lower resolution
imagery to study grasslands as high inherent heterogeneity may result in the inadvertent
selection of impure endmembers.

Methods for identifying the number and type of endmembers vary and can include
different combinations of spectral endmembers from various sources and classes
(Radeloff, Mladenoff, and Boyce 1999; Roberts et al. 1998; Smith et al. 1990; Wessman,
Bateson, and Benning 1997; C. Wu and Murray 2003). Endmembers can be sourced from
remotely sensed imagery or from spectral libraries of measurements recorded either in
the field or the laboratory. For remote sensing of vegetation, leaf-level endmembers from
spectral libraries are considered pure spectra without any canopy or illumination effects
that may be location- or site-specific and thus can be applied to images where that
species is known to occur. However, previous studies have underscored the benefits of
using image endmembers with matching spatial scales for a number of reasons (Asner
and Heidebrecht 2002; Kuemmerle, Roder, and Hill 2006; Rashed et al. 2003). Leaf-level
endmembers from a spectral library may miss spectral complexities of plant canopies and
illumination effects within heterogeneous landscapes and result in significant fractional
estimate error (Somers et al. 2011). Factors such as solar zenith angle, sensor viewing
direction, and canopy structure can contribute to variations in reflectance (Goodin, Gao,
and Henebry 2004; Ranson et al. 1985). Furthermore, particularly in open grassy ecosys-
tems, effects of soil reflectance are important to consider. Gholizadeh et al. (2018)
demonstrated the importance of soil background effects in mapping grassland diversity
at fine scales. They used spectral unmixing of hyperspectral imagery to derive soil percent
cover fraction in pixels, which improved relationships between species diversity and
spectral diversity. Thus, spectral endmembers taken in field conditions, at a spatial
resolution that captures canopies instead of individual leaves (i.e. ‘plot-level’ spectra),
may lead to more accurate SMA. While the collection of plot-level spectra, especially those
taken during concurrent temporal timeframes (e.g. same season, month, or week) as
imagery collection may provide spatially and temporally matched spectral signatures, it is
time-consuming and often impractical to collect spectral endmembers in the field. If leaf
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endmembers result in high predictive mapping accuracy, they can alleviate the need for
time-consuming plot data.

Mapping grass functional groups is a precursor to important developments such as
estimating grassland productivity and detecting grassland compositional change (Ali
et al. 2016; Anderegg et al. 2022; Guerini Filho, Kuplich, and Quadros 2020; Hicke et al.
2002; Psomas et al. 2011; Smit, Metzger, and Ewert 2008; Xu et al. 2008). While the use of
hyperspectral imagery has focused on mapping species diversity, species composition
and functional identity may be key to understanding the relationship between grassland
diversity and spectral diversity due to the sensitivity of spectra to structural and biochem-
ical properties rather than species diversity per se (Asner and Martin 2011; Gholizadeh
et al. 2019; Kothari and Schweiger 2022; Van Cleemput, Adler, and Suding 2023).

Across the Great Plains of the U.S., mapping grass distributions has commonly focused
on large biogeographic gradients in species that utilize either the C3 or C4 photosynthetic
pathways, with C3 grasses dominant in cool wet environments and C,4 grasses dominant in
warmer and wetter climates (Lehmann et al. 2019; Paruelo and Lauenroth 1996; Still et al.
2003). However, inaccuracies in predicting grassland distribution and productivity in
vegetation models may be due to a lack of information on grass traits beyond photo-
synthetic pathway (Still, Cotton, and Griffith 2019). Photosynthetic pathway alone misses
important trait diversity of grasses, which recent work has shown is better captured by
evolutionary lineages and should underlie spectral reflectance (Donnelly et al. 2023; Pau
et al. 2025). Using leaf-level hyperspectral reflectance of 43 grass species, Slapikas et al.
(2024) predicted grass evolutionary lineages with very high accuracy (>90%). While these
leaf-level spectra were able to discriminate grass evolutionary lineages, it is unclear if plot-
level endmembers would perform better when applied to image unmixing for mapping
purposes. The importance of identifying endmembers using data collected at the leaf-
scale or using data that captures field conditions remains unknown.

Here, we applied SMA approaches, specifically Multiple Endmember Spectral Mixture
Analysis (MESMA), to high-spatial resolution National Ecological Observatory Network
(NEON) Airborne Observatory Platform (AOP) imagery with 1 m? resolution pixels of
varying grass composition. We sought to compare the accuracies of different endmember
selections in predicting the fine-scale composition of grass evolutionary lineages in mixed
pixels across four grassland sites in the Great Plains region of the U.S.. Our objectives for
this work are: 1) to use MESMA techniques to predict the fractional percentage and
dominance within a 1 m? pixel of grass evolutionary lineages at multiple sites, modelled
separately, across the Great Plains, U.S., 2) compare MESMA accuracies at each site using
leaf-level spectral endmembers vs. plot-level spectral endmembers, and 3) compare
MESMA accuracies at each site using geographically widespread spectral endmembers
vs. endmembers from the focal site only (i.e. the site being modelled).

2. Methods
2.1. Study sites

Field sampling was conducted at four sites across the Great Plains of the United
States: Konza Prairie Biological Station (KONZ) in the Flint Hills region of Kansas, the
Colorado Plains Experimental Range (CPER) in the western Great Plains, the Chase
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Figure 1. Our four study sites span a broad environmental gradient and are dominated by different
grass evolutionary lineages, however these lineages also co-occur at fine scales. Colorado Plains
Experimental Range (CPER; mean annual temperature (MAT) = 8.6°C, mean annual precipitation (MAP)
= 344.2 mm), Konza Prairie (KONZ; MAT = 12.4°C, MAP = 870 mm), Cedar Creek Ecosystem Reserve
(CCR; MAT = 6.7°C, MAP = 660.4 mm), and Chase Lake National Wildlife Refuge (WOOD; MAT = 4.9°C,
MAP = 495 mm).

Lake National Wildlife Refuge (WOOD) east of Woodworth, North Dakota, and the
Cedar Creek Ecosystem Reserve in central Minnesota (CCR) (Figure 1). These sites
were chosen for their grass dominated ecosystems, to cover a wide environmental
gradient, and the fact that each site is characterized by a distinct dominant grass
lineage. KONZ is almost 3,500 hectares in size and managed by Kansas State
University. The primary vegetation at Konza is a native tallgrass prairie, dominated
by C, grasses, with managed burns and herbivore grazing. CPER is a roughly 6,500-
hectare site managed by the U.S. Department of Agricultural Research Service.
Dominant vegetation at CPER is a shortgrass steppe that is moderately grazed. The
WOQOD site is just over 1,000 hectares and is managed by the U.S. Fish and Wildlife
Service and the U.S. Geological Survey. Prairie grasslands and croplands dominate
this site, and light cattle grazing and prescribed burns are used. CCR is a 2,200-
hectare reserve managed by the University of Minnesota. It contains coniferous
forest, deciduous forest, and tallgrass prairie, which are managed using prescribed
burns and grazing.

2.2. Data collection

2.2.1. Field data collection

Ground-based spectral measurements were conducted in the field during periods of peak
greenness and on the same dates or within a few days of NEON AOP flyovers to mitigate
potential phenological disparities. Ground sampling occurred 8-14 July 2020 (KONZ),
6-8 June 2021 (CPER), 11-14 June 2021 (WOOD), and 20-26 June 2022 (CCR). Field
measurements were always recorded on days with low cloud cover, between the hours
of 10am to 2pm. The Malveryn/ASD FieldSpec 4 Hi-Res NG Spectroradiometer, a portable
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Table 1. Grass species grouped by evolutionary lineage are used as spectral endmembers. Species are
organized according to their respective endmembers (Andropogoneae, Chloridoideae, Panicoideae,
and Pooideae), which represent dominant grass evolutionary lineages. These groups served as end-
members in spectral unmixing analyses to characterize lineage-level reflectance patterns.

Dominant grass Photosynthetic

lineages type Species

Andropogoneae Cy Andropogon gerardii, Bothriochloa bladhii, Bothriochloa ischaemum, Bothriochloa
laguroides, Schizachyrium scoparium, Sorghastrum nutans, Sorghum halepense,
Tripsacum dactyloides

Chloridoideae Cy Bouteloua curtipendula, Bouteloua dactyloides, Bouteloua gracilis, Chloris
verticillata, Eleusine indica, Eragrostis cilianensis, Muhlenbergia cuspidata,
Mubhlenbergia frondosa, Schedonnardus paniculatus, Spartina pectinata,
Sporobolus compositus, Sporobolus heterolepis, Sporobolus vaginiflorus

Panicoideae G Dichanthelium leibergii, Dichanthelium oligosanthes, Dichanthelium perlongum,
Dichanthelium praecocius
Cy Digitaria cognata, Echinochloa muricata, Hopia obtusa, Panicum virgatum,
Paspalum setaceum, Setaria pumila, Setaria viridis
Pooideae G Agropyron cristatum, Agrostis gigantea, Bromus inermis, Bromus pubescens,

Bromus tectorum, Diarrhena obovata, Elymus canadensis, Elymus elymoides,
Elymus repens, Elymus smithii, Elymus villosus, Elymus virginicus, Glyceria
striata, Hesperostipa comata, Hesperostipa spartea, Koeleria macrantha,
Nassella viridula, Oryzopsis hymenoides, Phalaris arundinacea, Phleum pratense,
Poa pratensis, Vulpia octoflora

spectrometer designed for usage in both field campaigns and laboratory settings, was
used to collect spectral measurements at both the leaf and the plot scale. The FieldSpec 4
Hi-Res NG has a spectral range from 350 to 2500 nm with a sampling interval of 1.4-2 nm
for 350-1000 nm and 1001-2500 nm, respectively. The spectroradiometer was set to 25
internal repetitions. The data were corrected for spectral discontinuities between the
three spectroradiometer sensors using a jump correction as in Dorigo, Bachmann, and
Heldens (2006).

A total of 54 grass species (Table 1), with five to eight replicates per species, were
collected across the four sites. These 54 grass species were classified into four dominant
lineages: Andropogoneae (which falls within the Panicoideae subfamily), remaining
Panicoideae (species excluding Andropogoneae, which we henceforth refer to as
‘Panicoideae’ for simplicity), Chloridoideae, and Pooideae. The Andropogoneae tribe is
recognized as a globally dominant grass lineage due to its widespread distribution and
ecological significance. It is typically considered separately because it represents an
independently evolved C, lineage with distinct biogeographical patterns and functional
traits that differentiate it from other Panicoideae (Donnelly et al. 2023; Griffith et al. 2020).
Because we did not want to exclude the remaining Panicoideae species, we classified
those as a separate group and refer to that group as ‘Panicoideae’ although it excludes
Andropogoneae species. Andropogoneae was represented by eight species,
Chloridoideae was represented by 13 species, Panicoideae was represented by 11 species,
and Pooideae was represented by 22 species.

2.2.1.1. Leaf spectral endmembers. Five to eight fresh leaf spectra from 54 grass
species collected across all sites were measured using a leaf contact probe attachment
(Slapikas et al. 2024). Leaves collected from the field were stored in a cooler with wet
paper towels, and spectra were measured from fresh leaves within a 2-hr window of field
sampling. A standard white reference built into the leaf clip (ASD Leaf Clip Version 2) was
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measured for calibration before each species was measured and at 10-min intervals
(Hellmann et al. 2015). Leaf sampling intensity was contingent upon leaf area; if a single
leaf did not adequately cover the black background on the contact probe, multiple leaves
were arranged adjacent to each other with their adaxial side facing the sensor (Slapikas
et al. 2024).

The 54 grass species for leaf-level endmembers were chosen by first reviewing species
lists and publicly available plot data to create rank abundance curves. We then targeted
sampling of the most dominant species at each site. We additionally targeted species that
occurred across multiple sites even when they were not dominant, as well as species that
were representative of dominant lineages.

2.2.1.2. Plot spectral endmembers and ground validation data. We recorded spectral
reflectance of 1 m? plots and associated species composition along multiple transect lines
at each site (Supplementary Materials Figure S1). Each transect was 100 m in length.
Beginning at 0 m, 1 m? quadrats were placed along the transect line, alternating sides
every 10 m, for a total of 10 quadrats per transect. The spectral signature of each 1 m? plot
was collected eight times using the portable spectroradiometer, which was later averaged
to generate an average spectrum for each plot. The fore-optic lens inside the pistol grip,
which has a field of view of 25 degrees, was held from the centre of each quadrat at
a height of ~2 m to collect the spectra of the 1 m? plot. A standard white reference was
used to generate a white reference spectrum before every plot measurement and at 10-
min intervals (Hellmann et al. 2015). The percentage cover of all plant species greater than
5% within each 1 m? plot was recorded as well as overall plant species richness (Table 2).
A total of 43 transects across all sites, generally 7-12 transects at each site, resulted in 430
1 m? plot measurements total. The latitudinal and longitudinal coordinates of the plot’s
centre were recorded using a GPS unit (Trimble R1 Integrated GNSS system, Trimble,
Sunnyvale, CA, U.S.A.) with a location accuracy of 1-3 m.

The spectral library and endmembers were scaled to the same wavelength and spectral
bands as the NEON AOP data. This scaling required reducing the data dimensions from
2,151 bands to 426 bands using the ‘hsdar’ package (Lehnert et al. 2019) in R.

Table 2. Representation of each lineage at each site.

Site Lineage Number of plots with lineage present Range of % cover of lineage in 1 m? plots
KONz Andropogoneae 74 20-80%
Chloridoideae 5 20-25%
Panicoideae 3 20-40%
Pooideae 3 5%
CPER Andropogoneae NA NA
Chloridoideae 33 20-45%
Panicoideae NA NA
Pooideae 30 20-90%
WOOD Andropogoneae 5 25-40%
Chloridoideae 2 5-12%
Panicoideae NA NA
CCR Andropogoneae 61 20-90%
Chloridoideae NA NA
Panicoideae 5 20-30%

Pooideae 24 20-45%
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2.2.2. Imagery collection and pre-processing

Three of our study sites, KONZ, CPER, and WOOD, are National Ecological Observatory
Network (NEON) sites with publicly available hyperspectral and LiDAR imagery from the
Airborne Observation Platform (AOP) provided at 1 m? spatial resolution. NEON’s AOP is
a multifunctional system equipped with three remote sensing instruments tailored for
hyperspectral, multispectral, and LiDAR imaging (Kampe et al. 2010). The Imaging
Spectrometer (NIS) records data in 426 bands from 380 to 2510 nm at 5 nm intervals.
We downloaded NEON's fully orthorectified surface reflectance data (DP3.30006.001;
accessed 5 July 2023) and LiDAR-derived Ecosystem Structure Canopy Height Model
(CHM) (DP3.30015.001; accessed 5 July 2023) for all four of the sites. NEON produces
the Ecosystem Structure CHM from LiDAR point cloud data as a continuous surface
representing the height at the top of the canopy (m). We contracted Battelle/NEON to
conduct AOP flights on 27 June 2022 and 29 June 2022 collecting LiDAR, imaging
spectroscopy, and high-resolution camera imagery, and they produced AOP data pro-
ducts comparable to other NEON sites. NEON collected all AOP data within 1 week of our
field sampling at all sites.

We used the NEON CHM to mask out non-grass dominated areas in the AOP imagery
that had CHM over 2 m. We used orthorectified surface reflectance data and processed
the data performing Bidirectional Reflectance Distribution Function (BRDF) correction to
account for pronounced cross-track gradients. We used the 'HyTools’ Python library to
correct BRDF (Chlus 2023). We also removed the water absorption features (1330-1430
nm and 1800-1960 nm) and spectral ends (<400 nm and >2400 nm) due to low signal-to-
noise ratios. Additionally, we filtered pixels with near-infrared (NIR) reflectance >20% and
Normalized Difference Vegetation Index (NDVI) >0.5 to remove pixels with a large propor-
tion of bareground, shadows, or other contaminants to well-lit vegetation pixels (Pau et al.
2022).

2.3. Analysis

2.3.1. Spectral endmember library creation and optimization

We used a leaf-level spectral library of 54 grass species from Slapikas et al. (2024;
Figure 2) as well as a newly developed spectral library of 430 plot-level spectra from
sampling at our four grassland sites (Tables 1 and 2). The two spectral libraries were
applied to MESMA separately in leaf-level models or plot-level models. For each
separate spectral library (i.e. leaf or plot), we generated spectral endmembers for
each lineage using (1) reflectance collected from only the focal site (i.e. leaves or
plots from the site being modelled) or (2) reflectance collected from all sites (i.e. leaves
or plots from all of our study sites averaged for each lineage and applied to the site
being modelled). We calculated leaf-level spectra for each species using mean reflec-
tance values from all replicates, which were then aggregated to leaf-level lineage
endmembers using the mean reflectance values for all species in each lineage. For
plot-level endmembers for both focal-site and all-sites libraries, we used the plot with
the highest % cover of each lineage at each site (Table 2). We also used the Pixel
Purity Index (PPl; Boardman, Kruse, and Green 1995; Chang, Wu, and Chen 2009),
which selected the same plots as endmembers as simply using the plot with the
highest % cover of each lineage. We converted each plot spectra recorded from the
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Figure 2. Leaf-level spectral endmembers used in Multiple Endmember Spectral Mixture Analysis
(MESMA). The shaded regions represent +2 standard deviations around the mean reflectance for each
lineage, shown in the corresponding transparent colour. Remaining Panicoideae (species excluding
Andropogoneae) we refer to as simply Panicoideae for simplicity.

field into a simulated pixel. Then, the PPl was used to identify endmember candidates
for each lineage (all plots with that lineage present were used and this was repeated
for each lineage at each site) by projecting each plot’'s spectra onto random unit
vectors (‘skewers’). Plot spectra towards extremes of each vector the most times, i.e.
those with the highest PPl scores, were considered the most pure endmembers for
each lineage.

Although we used an NDVI and NIR threshold to filter out potential bareground,
shadows, and other unvegetated pixels in the AOP imagery (details above under
‘Imagery collection and pre-processing’), we created bareground spectral endmembers
derived from our plots into the MESMA process. Bareground endmembers were only used
in our models of fractional percentage because there was essentially no bareground
visible in plots used for our dominance models. These endmembers were used to account
for pixels in the imagery that potentially included bareground, allowing for improved
discrimination between vegetation and non-vegetated surfaces. The inclusion of bare-
ground spectra can help mitigate classification errors and refine fractional abundance
estimates in areas where soil exposure is present (Jacquemoud, Baret, and Hanocq 1992).
The bareground endmember was based on the ground-truth plot with the
highest percent cover of bareground across all the sites when applying endmembers
aggregated across all sites. When endmembers from only focal sites were used, the plot
with the highest percent cover of bareground at each site was selected as the bareground
endmember.

2.3.2. Spectral unmixing
Multiple Endmember Spectral Mixture Analysis (MESMA) is an advanced type of
linear SMA. Individual pixels are modelled independently with different
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combinations of endmembers (Fernandez-Guisuraga, Calvo, and Suarez-Seoane
2020; Fernandez-Manso, Quintano, and Roberts 2012; Roberts et al. 1992, 1998).
This contrasts with SMA in which individual pixels are modelled using the same
combination of endmembers. MESMA is often used in land cover classifications,
particularly when pixels are of a moderate resolution or lower, but the technique
has also been applied to mapping dominant grassland species (e.g. Lopatin et al.
2017). We selected MESMA because the technique is particularly adept at mana-
ging the spectral signatures present in heterogeneous vegetation communities
such as grasslands, where multiple endmembers contribute to the observed reflec-
tance spectra (Y. He, Guo, and Wilmshurst 2006; Rossi and Gholizadeh 2023; J. Wu
et al. 2023).

Leveraging our spectral libraries, we applied MESMA to predict both the dominant
lineage and the fractional abundance (e.g. percentage) of each lineage within a pixel. The
initial aim of using Spectral Mixture Analysis (SMA) was to assess how much representa-
tion of each endmember was present in the original data. However, an issue that arises
with linear SMA is the fractional error when too few spectral endmembers are used within
the model. MESMA is an extension of SMA and accounts for this issue of within-
endmember variability. We performed MESMA using a non-negative least squares
(NNLS) regression, which employs a sequential coordinate-wise algorithm (SCA) (Franc,
Hlava¢, and Navara 2005), with the ‘RStoolbox’ package in R. The NNLS regression
estimates the fractional cover of each endmember within a pixel. Each pixel spectrum is
modelled as a linear combination of endmember spectra, subject to the constraints that
the coefficients must be non-negative and sum up to <1. The primary parameters
estimated by the NNLS regression are the fractional abundances (regression coefficients)
for each selected endmember (e.g. Andropogoneae, Chloridoideae, Panicoideae,
Pooideae, and bareground). Two additional parameters are available, which are the
residual error term and user-defined constraints that include the sum-to-one condition
and the maximum number of endmembers per pixel.

We applied MESMA to predict grass lineages in 1 m? AOP pixels using four approaches,
both comparing leaf vs. plot-level endmembers and comparing all available endmembers
vs. only focal site endmembers. First, we classified AOP pixels into their fractional cover of
each grass lineage (Andropogoneae, Panicoideae, Chloridoideae, and Pooideae) using
MESMA. For each site, we used linear regressions to assess the accuracy of predicted
fractional cover. We compared predictive accuracies using models that did and did not
include subfamily identity as an additional predictor in our models. Second, we used
a minimum threshold of at least 30% cover and then classified each pixel to the most
dominant lineage relative to other lineages present in ground-truth validation plots (i.e.
pixels were classified as the lineage with the highest percent cover). We chose a minimum
threshold of at least 30% because it was >% the size of the 1-m pixel (i.e. visually and
ecologically dominant). The 30% cut-off operationalized dominance by reducing sensi-
tivity to the inclusion of multiple lineages with potentially similar % cover. Through trial
and error, we determined that a minimum of 30% cover was the lowest threshold that
resulted in the highest classification accuracy. We evaluated the accuracy of dominance
classifications using the Matthews Correlation Coefficient (MCC) rather than Cohen’s
Kappa, due to well-documented limitations of Kappa in providing meaningful or inter-
pretable improvements to accuracy assessment (Foody 2020; Olofsson, Gilmore, and
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Millones 2011). We assessed accuracy based on the dominant lineage classified within
each AOP pixel using standard confusion matrix outputs. We calculated these accuracies
for each of the four approaches we utilized (leaf-level across all sites, leaf-level from
a single focal site, plot-level across all sites, plot-level from a single focal site). For both
fractional cover and dominance predictions, we used percent cover values (of lineages
and bareground) from 1 m? plots directly observed from the field at each site as validation
plots, using GPS to geolocate the AOP pixel that corresponded to our 1 m? plot (see
details above under ‘Plot spectral endmembers and ground validation’).

3. Results
3.1. Sub-pixel classification

The fractional coverage predictions using MESMA, with subfamily included as an
additional covariate, showed improved performance when utilizing leaf-level end-
members from all sites or plot-level endmembers from the focal site, compared to
other approaches (leaf-level endmembers from the focal site or plot-level endmembers
from all sites) (Table 3). All unmixing models of fractional cover included a bareground
endmember (see Figure S2 and Figure S3 in Supplementary Materials for confusion
matrices). For the plot-level endmembers from the focal site approach, KONZ had the
lowest RMSE of 16.46 and an R® of 0.87, whereas not including subfamily as an
additional covariate the RMSE increased to 33.69 and the R® decreased to 0.44. CCR
exhibited the highest RMSE of 26.59 and an R? of 0.53 with subfamily included and
without had an RMSE of 38.64 and an R? of 0.01. Using leaf-level endmembers from all
sites, R? values were generally higher than those observed using leaf-level endmem-
bers from only the focal site, with the exception of CPER, where the focal site
approach produced a higher R%. Among all sites, predictions at WOOD had the lowest

Table 3. (a) Adjusted R? values from linear regression models predicting the fractional cover of each
grass lineage within 1 m? AOP pixels using MESMA estimates, incorporating subfamily as an additional
covariate (MESMA prediction ~ observed % cover + subfamily) and a bareground endmember. (b) The
table presents the differences between models that include subfamily as a covariate and those that do
not. Improvements in model fits with the addition of subfamily as a covariate are indicated by
negative RMSE (i.e. a reduction in error) and positive R? values (i.e. an increase in variance explained).
The models evaluate the effectiveness of endmembers derived at both the plot and leaf levels. All
results are statistically significant with p < 0.000.

Leaf-level focal Leaf-level all Plot-level focal Plot-level All
Site R? RMSE R? RMSE R? RMSE R? RMSE
KONZ 0.67 15.94 0.72 15.39 0.87 16.46 0.96 9.44
CPER 0.33 1491 0.18 17.30 0.60 18.60 0.48 2252
WOOD 0.07 11.49 0.34 12.30 0.50 17.21 0.07 11.49
CCR 0.42 19.76 0.48 17.87 0.53 26.59 0.48 17.87
(b)
Site Diff R? Diff RMSE Diff R? Diff RMSE Diff R? Diff RMSE Diff R? Diff RMSE
KONZ 0.33 -6.53 0.35 -7.62 0.43 -17.23 0.46 -23.23
CPER 0.16 -1.74 0.09 -0.92 0.60 -10.84 0.46 -8.31
WOOD 0.08 -0.47 0.34 -2.80 0.28 -435 0.08 -0.47
CCR 0.27 -4.07 0.35 -5.30 0.52 -12.05 0.35 -5.30




INTERNATIONAL JOURNAL OF REMOTE SENSING . 1

RMSE of 12.30 and an R? of 0.34 using leaf-level endmembers from all sites when
subfamily was included and had a RMSE of 15.10 and an R® of 0 when subfamily was
omitted. CCR had the highest RMSE of 17.87 and an R? of 0.48, and an RMSE of 23.17
and an R? of 0.13 when the subfamily was not included. Overall, KONZA consistently
achieved the highest R? values across all approaches, while WOOD had the lowest R?
except when applying the leaf-level endmembers from all sites. The inclusion of
subfamily as a covariate was always significant (p<0.01) and increased R® by 0.32
on average, but was as high as 0.60, for each approach across all sites and lowered the
RMSE on average by 6.95, but as high as 23.23, underscoring the importance of
subfamily identity in improving predictive accuracy of grassland composition.

3.2. Classification of dominant lineages

3.2.1. Leaf-level endmembers

When using only validation plots that had a lineage present at 30% cover or higher
(which excluded the bareground class as bareground did not exceed 30%), the
number of plots went from 430 to 297; however, accuracies generally improved
compared to models that did not use a threshold of minimum percent cover. Using
leaf-level endmembers measured from only the focal site, the overall prediction
accuracy reached 90.3% with an MCC of 0.84 (Figure 3(a)). The accuracies for each
individual lineage were all 75% or higher (diagonals in Figure 3(a)). Panicoideae
had the lowest classification accuracy with misclassifications into Andropogoneae.
When using leaf-level endmembers from all sites, the overall prediction accuracy
reached 87.5% with an MCC of 0.77 (Figure 3(b)). The accuracies for each individual
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Figure 3. Mean normalised confusion matrices for MESMA classification of National Ecological
Observatory Network (NEON) Airborne Observatory Platform (AOP) hyperspectral image pixels into
the most dominant lineage using leaf-level endmembers from the focal site (a) and from all sites (b).
Classification accuracy for each lineage is across the diagonal, and all other cells in the matrix describe
the error rate. Using endmembers from focal sites resulted in an overall accuracy of 90.3% with an
MCC of 0.84. Using endmembers across all sites resulted in an overall accuracy of 87.5% with an MCC
of 0.80.
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Figure 4. Mean normalised confusion matrices for MESMA classification of National Ecological
Observatory Network (NEON) Airborne Observatory Platform (AOP) hyperspectral image using plot-
level endmembers from the focal site (a) and from all sites (b). Classification accuracy for each lineage is
across the diagonal, and all other cells on the matrix describe the error rate. Using endmembers from focal
sites only resulted in an overall accuracy of 85.1% with an MCC of 0.75. Using endmembers across all sites
resulted in an overall accuracy of 90.7% with an MCC of 0.84.

lineage were all 75% or higher, again with Panicoideae having the lowest classifi-
cation accuracy of 75% (diagonals in Figure 3(b)), with misclassifications into
Andropogoneae. Overall model accuracies include bareground endmembers, how-
ever when using a 30% cover threshold, bareground was never misclassified as
a grass lineage. Therefore, confusion matrices (Figure 3(a,b)) are normalized to only
show lineage classification/misclassification.

3.2.2. Plot-level endmembers

Using plot-level endmembers from a focal site to classify the most dominant
lineage (i.e. the lineage with the highest percent cover, with a minimum cover of
at least 30%), the overall prediction accuracy was 85.1% with an MCC of 0.77
(Figure 4(a)). The individual lineages Chloridoideae and Pooideae had accuracies
over 95%, while Andropogoneae and Panicoideae had accuracies over 75% (diag-
onals in Figure 4(a)). The presence of Panicoideae tended to be confused for
Andropogoneae. Using the plot-level endmember with a 30% threshold
on percent cover from all sites, the overall prediction accuracy reached 90.7%
with an MCC of 0.84 (Figure 4(b)). Andropogoneae, Chloridoideae, and Pooideae
had individual accuracies over 87%, while Panicoideae had an accuracy of 75%
(diagonals in Figure 4(b)). Panicoideae were misclassified as Andropogoneae.
Similarly, to the leaf-level endmember models, overall model accuracies include
bareground endmembers; however, when using a 30% cover threshold, bare-
ground was never misclassified as a grass lineage. Therefore, confusion matrices
(Figure 4(a,b)) are normalized to only show lineage classification/misclassification.
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4. Discussion

To predict the future functionality of grassland ecosystems accurately, it is crucial to
understand the distribution patterns of dominant functional types (Gholizadeh et al.
2022; Griffith et al. 2020; Still, Cotton, and Griffith 2019). Grassland ecosystems typically
consist of heterogeneous assemblages of species at fine scales. Mapping the distribu-
tion of grasses using imagery often necessitates working with mixed pixels, which can
introduce uncertainty. This is because of a scale mismatch between the small size of
plant species found in grasslands in relation to the spatial resolution of imagery
(Gamon et al. 2020; Gholizadeh et al. 2022). To assess the potential for spectral
unmixing techniques to classify grassland composition at fine scales, we disaggregated
1-m NEON AOP hyperspectral pixels using MESMA and compared the effectiveness of
leaf vs. plot-level endmembers in addition to the transferability of endmembers across
sites. In general, the four endmember approaches we used to detect the dominant
grass lineages at varying sites resulted in similarly high accuracies (~85-90%).
However, the use of leaf-level spectral endmembers from focal sites compared to
aggregating spectra across all sites resulted in slightly higher overall accuracies,
while the use of plot-level spectral endmembers from all sites had slightly higher
overall accuracies than using endmembers from the focal site.

Leaf traits, which influence leaf-level reflectance, may vary more across sites (e.g. Pau
et al. 2025) compared to structural traits, which influence plot-level reflectance. Canopy
structure, leaf area, and leaf angle may differ less across species and sites, and therefore
serve as representative endmembers even across sites for particular lineages. For instance,
the canopy trait, LAIl, which is the total leaf area relative to the ground area, influences the
proportion of light absorbed or reflected by a canopy versus other components like soil.
Higher LAl generally increases reflectance in certain bands, especially in the near-infrared
region, which is sensitive to vegetation (Shibayama and Akiyama 1989; Turner et al. 1999).
Similarly, leaf size and leaf angle distribution of grass lineages, which can affect the
amount and directionality of reflected light, may differ less across species and sites
(Supplementary Materials Figure S4).

Our work further demonstrates the importance of taxonomic identity rather than
measures of diversity per se. When unmixing NEON AOP pixels, our results highlight the
advantage of incorporating phylogenetic information for predicting grassland composi-
tion, which substantially improved predictive accuracies (Table 3(b)). In other words, the
fractional cover of pixels dominated by certain lineages was better predicted than others,
suggesting that particular traits associated with lineage have a stronger spectral signal.
This result was consistent when using endmembers at the leaf-level and at the plot-level
from both the focal site and across all sites with at least a 30% threshold. Relevant traits
may propagate across scales or there are both leaf and canopy traits associated with
lineages that have strong optical properties. More specifically, sites dominated by
Andropogoneae, i.e. KONZ and CCR, tended to have higher accuracies for predicting
fractional cover. Additionally, these two sites also had the lowest bareground presence.
While the presence of bareground did not affect classifications using a dominance thresh-
old, when a threshold was not applied the presence of bareground in small proportions
also played a role in predictive accuracies for fractional abundance of the dominant grass
lineages in the pixel (Figure S2 and S3).
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Although we generally achieved high classification accuracy, spectral similarity among
vegetation types may have caused classification errors, which can lead to confusion
between functionally or structurally similar plant lineages. This challenge is particularly
pronounced in classifying our Panicoideae group, which tended to be misclassified as
Andropogoneae, a tribe within the subfamily Panicoideae. Because these two groups
share a close evolutionary relationship, they likely share similar traits and thus similar
spectral signatures (Slapikas et al. 2024; Pau et al. 2025). Andropogoneae is nonetheless
an ecologically distinct group with unique functional traits that differentiate it from other
Panicoideae (Donnelly et al. 2023; Griffith et al. 2020). While Andropogoneae were
classified with high accuracy, the larger Panicoideae group may lack distinctiveness and
exhibit larger variability in their spectral signatures (Figure 3 and 4). On the other hand,
Chloridoideae was classified with almost perfect accuracy in dominance classifications
because it tends to not co-occur with other lineages or with only Pooideae, and it has
a very distinct spectral signature (Figure 2).

Another potential reason for classification errors is geolocational misalignment
between our validation plots and imagery (Pau et al. 2020). Even with our high (1-3 m)
GPS accuracies recorded for our field plots, georectification and mosaicking of image
flight lines can result in pixel shifts. Radiance from neighbouring pixels can also affect the
focal pixel (Inamdar et al. 2020), particularly with 1 m? pixels provided by the NEON AOP.
This may have contributed to sometimes low prediction accuracy for some sites and some
lineages. Konza Prairie, the site with the highest R* when predicting fractional cover,
generally has low turnover of lineages at scales <10 m and also had no recorded bare-
ground in transects, which contributed to its successful classification.

Not surprisingly, predicting dominant lineages (30% cover or greater) resulted in higher
predicted accuracies than fractional cover. Previous studies (e.g. Chen et al. 2018; Lopatin
et al. 2017) found that classifications of grassland composition at the species level have
limitations due to inter-species spectral signal mixing. Our results suggest that spectral
distinctiveness may be relatively less important than spatial coverage given that classification
of dominance was more successful than fractional coverage. Mapping dominant species and
lineages should help link patterns of diversity to ecosystem functions and help predict future
patterns of global change at relevant spatial scales (Avolio et al. 2019; Pau and Dee 2016).

Overall, our results show strong potential for modelling the distribution of grass
lineages at fine scales using hyperspectral imagery. We found that leaf-level
spectra contain high information content for discriminating grass evolutionary
lineages as seen in Figures 3 and 5. Our work demonstrates that using leaf end-
member collections, rather than more time-consuming plot-based endmembers,
can lead to comparably high predictive accuracies. However, plot-level spectra
appear more transferable across sites and suggest that canopy-level traits may
be more robust to environmental differences. Our work also shows that using plot
spectra from already existing spectral libraries may be appropriate to apply to new
sites. In all cases, our models predicted some lineages with greater accuracy than
others. Partitioning the large Panicoideae subfamily further could help to improve
model accuracy. Given the increasing number of existing and near-future hyper-
spectral satellite missions (e.g. CHIME, SBG, EnMAP), our approach can be scaled to
spaceborne imaging spectrometers by resampling the leaf and plot spectral
libraries to each sensor’s capabilities, providing potentially global grassland plant
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Figure 5. The far-left image is a classified map depicting the spatial distribution of dominant grass
lineages (Andropogoneae, Chloridoideae, Panicoideae, and Pooideae) at the Konza Prairie Biological
Station, derived from leaf-level endmembers from Konza only (i.e., the focal site) using MESMA applied
to NEON AOP hyperspectral imagery at 1 m2 spatial resolution. The bottom right image highlights two
distinct regions: the left side is dominated by Andropogoneae (yellow) and are areas with frequent fire
and no grazers; the right side shows more mixed regions (grey) and are areas with fire and grazing
treatments where species richness tends to be higher and multiple lineages coexist. Many of the
mixed pixels in these regions include the presence of Chloridoideae. The top right image is a further
magnified view of the image below, illustrating the fine-scale spatial distribution of each lineage as
classified from the hyperspectral data. Regions in white are tree or shrub dominated and masked
based on the NEON CHM (see Methods).

diversity maps and long-term monitoring. To improve the accuracy of detecting
grass evolutionary lineages, future research should explore the use of multiple
classification approaches instead of relying on a single method. Different classifiers
can complement each other by handling different sources of error in spectral
unmixing. Some studies suggest using a discriminative classification model
(Support Vector Machines, Random Forest, Gradient Boosting Machines, or
Artificial Neural Networks) alongside spectral unmixing. In this approach, if spectral
unmixing struggles to classify a pixel with confidence, the system would instead
rely on the discriminative classification model to make the decision, and vice versa
(Li et al. 2015). By mapping and modelling the distribution of grass evolutionary
lineages, we can better understand the environmental factors that shape their
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distributions and help monitor how distributions might shift in response to climate
change or land use changes.
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