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Abstract

To predict ecological responses at broad environmental scales, grass species

are commonly grouped into two broad functional types based on photosyn-

thetic pathway. However, closely related species may have distinctive anatomi-

cal and physiological attributes that influence ecological responses, beyond

those related to photosynthetic pathway alone. Hyperspectral leaf reflectance

can provide an integrated measure of covarying leaf traits that may result from

phylogenetic trait conservatism and/or environmental conditions.

Understanding whether spectra-trait relationships are lineage specific or

reflect environmental variation across sites is necessary for using hyperspectral

reflectance to predict plant responses to environmental changes across spatial

scales. We measured hyperspectral leaf reflectance (400–2400 nm)

and 12 structural, biochemical, and physiological leaf traits from five

grass-dominated sites spanning the Great Plains of North America. We

assessed if variation in leaf reflectance spectra among grass species is explained

more by evolutionary lineage (as captured by tribes or subfamilies), photosyn-

thetic pathway (C3 or C4), or site differences. We then determined whether leaf

spectra can be used to predict leaf traits within and across lineages. Our results

using redundancy analysis ordination (RDA) show that grass tribe identity

explained more variation in leaf spectra (adjusted R2 = 0.12) than photosyn-

thetic pathway, which explained little variation in leaf spectra (adjusted
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R2 = 0.00). Furthermore, leaf reflectance from the same tribe across multiple

sites was more similar than leaf reflectance from the same site across tribes

(adjusted R2 = 0.12 and 0.08, respectively). Across all sites and species, trait

predictions based on spectra ranged considerably in predictive accuracies

(R2 = 0.65 to <0.01), but R2 was >0.80 for certain lineages and sites. The rela-

tionship between Vcmax, a measure of photosynthetic capacity, and spectra

was particularly promising. Chloridoideae, a lineage more common at drier

sites, appears to have distinct spectra-trait relationships compared with other

lineages. Overall, our results show that evolutionary relatedness explains more

variation in grass leaf spectra than photosynthetic pathway or site, but consid-

eration of lineage- and site-specific trait relationships is needed to interpret

spectral variation across large environmental gradients.

KEYWORD S
Chloridoideae, grasslands, Great Plains, niche conservatism, phylogenetic conservatism,
phylogeny, plant functional types, remote sensing, spectroscopy, Vcmax

INTRODUCTION

Plant functional types (PFT) link physiology to community
and ecosystem processes, providing a predictive frame-
work for modeling ecosystem responses to global change
across scales (Box, 1996; Díaz et al., 1998). The grass fam-
ily (Poaceae) is one of the most diverse plant families with
over 11,500 species (Soreng et al., 2017) and contains
a high degree of variation in evolutionary history and
ecological behavior, yet grasses are often simplified into
coarse functional groupings based on photosynthetic path-
way, that is, C3 versus C4 (Hattersley, 1983; Paruelo &
Lauenroth, 1996; Woodward et al., 2004). The C4 photo-
synthetic pathway describes a series of biochemical and
morphological modifications to the ancestral C3 pathway
that reduces photorespiration and increases plant produc-
tivity, especially in low CO2 conditions and in warm,
high-light environments (Ehleringer & Monson, 1993;
Pearcy & Ehleringer, 1984). The biogeography of C3 and
C4 grasses is thought to reflect this advantage and has
revealed patterns of productivity and distinct responses to
climate variations (Epstein et al., 1997; Knapp et al., 2020;
Ricotta et al., 2003; Tieszen et al., 1997; Wang et al., 2013).
For example, in the Great Plains region of North America,
there is a well-documented northwest to southeast gra-
dient of increasing C4 grass dominance associated with
warmer and wetter climates (Paruelo & Lauenroth, 1996;
Sage & Monson, 1999; Still et al., 2003).

Despite firmly established patterns of C3 and C4 dif-
ferences, consideration of grass evolutionary lineages has
revealed a new understanding of grass biodiversity and
ecological functioning (Edwards et al., 2010; Lehmann
et al., 2019). The C4 photosynthetic pathway has evolved

independently at various times in roughly 26 grass line-
ages (Grass Phylogeny Working Group II, 2012) that
differ in their ecological and climatic niches (Edwards
et al., 2007; Edwards & Still, 2008). This phylogenetic
diversity may confound understanding of functional differ-
ences that have previously been attributed to the photosyn-
thetic pathway (Liu et al., 2012; Taylor et al., 2010). Grass
evolutionary lineages have distinct biogeographic distribu-
tions from C3–C4 distributions (Griffith et al., 2020). In the
Great Plains, C4-dominated regions are represented by
two evolutionary lineages with contrasting environmen-
tal preferences—the tribe Andropogoneae (within the
subfamily Panicoideae) tends to occur in warmer and
wetter regions that experience frequent fire, whereas the
subfamily Chloridoideae tends to occur in warmer and
drier regions (Figure 1; Griffith et al., 2020; Lehmann
et al., 2019). C3-dominated regions are generally comprised
of grasses in the large subfamily Pooideae, which is
represented by several independent tribes. Importantly,
the environmental responses of grass lineages can corre-
late with trait differences in ways that are obscured when
considering only the photosynthetic pathway. For
example, in a North American tallgrass prairie, grass
species with the same life history strategy in two differ-
ent C4 tribes differed in their specific leaf area (SLA),
leaf dry matter content (LDMC), leaf thickness, and
vegetative height (Donnelly et al., 2023). These findings
for grasses align with a review and synthesis of
plant-water relations that found a phylogenetic signal
more often in plant structural traits than in physiologi-
cal traits (Ávila-Lovera et al., 2023). Given these and
other studies, there is mounting evidence suggesting
that lineage-based functional types may lead to a more
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accurate representation of grass ecological behavior
(Griffith et al., 2020).

Plant traits and functional group identity have been
explored using leaf and canopy spectroscopy
(e.g., Asner & Martin, 2009; Roberts et al., 1998;
Schweiger et al., 2017; Serbin et al., 2014; Ustin
et al., 1998; Wang et al., 2020). Spectroscopy provides a
rapid method of assessing plant phenotypic differences
across taxa and environmental gradients
(Cavender-Bares et al., 2017). Leaf reflectance from the
visible to the short-wave infrared regions
(~350–2500 nm) can capture both structural and physi-
ological differences in leaves, which may be linked to
resource constraints and environmental differences
(Ustin et al., 2004). Many plant traits, including in
grasses, show coordinated trait strategies (Aspinwall

et al., 2013; Taub, 2000; Wright et al., 2004), thus rela-
tionships between leaf spectra and individual traits may
be confounded by trait covariation. On the other hand,
relationships between spectra and plant traits that arise from
trait covariance can be valuable for understanding plant
growth strategies with a single integrated measure pro-
vided by spectroscopy (Cavender-Bares et al., 2016;
Kothari & Schweiger, 2022; Ustin & Gamon, 2010).

Plant reflectance spectra can also reveal differences in
evolutionary history if spectra are more similar among
closely related species than among more distantly related
species, a phenomenon known as phylogenetic conserva-
tism (Cavender-Bares et al., 2016, 2017, 2022; Schweiger
et al., 2018). Spectra may be phylogenetically conserved if
trait covariance is constrained by evolutionary rela-
tionships and those traits affect plant reflectance.

F I GURE 1 Hyperspectral leaf reflectance was collected from 66 grass species across five sites that vary in their climate and composition

of grass evolutionary tribes (colored text for each tribe indicates subfamilies and associated photosynthetic pathway). MAT, mean annual

temperature.
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Phylogenetic signal has been demonstrated in plant spec-
tra at the leaf scale (e.g., Cavender-Bares et al., 2016;
Griffith, Byrd, Taylor, et al., 2023; Meireles et al., 2020;
Schweiger et al., 2018; Slapikas et al., 2024) as well as at
canopy and landscape scales (e.g., Doughty et al., 2011;
Griffith, Byrd, Anderegg, et al., 2023; McManus et al.,
2016). Slapikas et al. (2024) showed high classification
accuracy (>90%) of leaf spectra into grass evolutionary lin-
eages. However, spectral differences due to site variation
and photosynthetic pathway were not explicitly examined.

In contrast to leaf spectra showing phylogenetic
conservatism, spectra and associated traits can also vary
across environmental gradients because of intra-and
interspecific trait variation (Meerdink et al., 2019;
S�anchez-Azofeifa et al., 2009; Seeley et al., 2023). Trait
variation across sites may be due to inter- and intra-
specific trait differences from either plastic (variation
within one genotype) or ecotypic (variation due to dif-
ferent genotypes) responses to environmental condi-
tions, as well as differences in ontogeny and phenology.
Although previous work showed that grass leaf spectra
and traits are phylogenetically conserved (Slapikas et al.
2024), it is unclear what the relative effect of site differ-
ences is on spectral variation. Determining whether
spectra-trait relationships are specific to evolutionary
lineages or shaped by environmental variation across
sites is pivotal for mapping across scales and under-
standing how grasslands and grass functional types will
respond to environmental change. Here, we examine
variation in grass leaf hyperspectral reflectance collected
from five sites across the Great Plains of North America.
We ask whether variation in spectra is better explained
by evolutionary lineage, photosynthetic pathway, or site
differences. We then compare the ability of spectra to pre-
dict 12 structural, biochemical, and physiological leaf
traits. Specifically, we ask: (1) Does lineage explain more
variation in spectra than photosynthetic pathway?
(2) Does lineage explain more variation in spectra than site
differences? (3) How well do leaf spectra predict leaf traits,
and are spectra-trait relationships lineage-specific?

METHODS

Study sites and species

We analyzed leaf-level reflectance spectra from 66 grass spe-
cies from five National Ecological Observatory Network
(NEON) and/or Long-term Ecological Research (LTER)
sites in North America (Figure 1). Before sampling at each
site, we reviewed species lists and available plot data to
create rank abundance curves, and targeted sampling of
the most dominant species at each site. We additionally

sampled species that occurred across multiple sites even
when they were not dominant, and sampled species that
were representative of dominant lineages. Measurements
were made during peak greenness in the summers of
2020–2022: (1) Konza Prairie (KONZ), Kansas, (2) Colorado
Plains Experimental Range (CPER), Colorado, (3) Chase
Lake National Wildlife Refuge (WOOD), North Dakota,
(4) the Cedar Creek Ecosystem Science Reserve (CDCR),
Minnesota, and (5) Jornada Experimental Range (JORN),
New Mexico. These sites span a broad geographic gradient
ranging from cool and dry conditions (WOOD) to cool and
mesic (CDCR), warm and dry conditions (CPER) to warm
and mesic (KONZ), and finally hot and dry conditions
(JORN). These sites also vary in photosynthetic pathway
abundance and grass tribe representation. Mean annual
temperature at each site is 15.7�C at JORN, 12.4�C at
KONZ, 8.6�C at CPER, 6.7�C at CDCR, and 4.9�C at
WOOD. Mean annual precipitation at each site is
271.2 mm at JORN, 344.2 mm at CPER, 419 mm at
WOOD, 660 mm at CDCR, and 870 mm at KONZ.

We grouped the 66 grass species into their eight
respective tribes: Andropogoneae (C4; n = 8 spp), Aristideae
(C4: n = 2), Bromeae (C3; n = 3 spp), Cynodonteae (C4;
n = 13), Diarrheneae (C3; n = 1), Eragrostideae (C4; n = 2),
Meliceae (C3; n = 1), Paniceae (C3 or C4; n = 12 spp),
Paspaleae (C4; n = 2), Poeae (C3; n = 6), Stipeae (C3;
n = 4), Triticeae (C3; n = 7), and Zoysieae (C4; n = 5).
See Appendix S1: Table S1 for the number of species in
each tribe at each site.

Fifteen species occurred at more than one site: Bromus
inermis (four sites; Bromeae), Andropogon gerardii (four
sites; Andropogoneae), Elymus smithii (three sites;
Triticeae), Panicum virgatum (three sites; Paniceae),
Phalaris arundinacea (three sites; Poeae), Schizachyrium
scoparium (three sites; Andropogoneae), Aristida purpurea
(two sites; Aristideae), Bouteloua curtipendula (two
sites; Cynodonteae), Bouteloua dactyloides (two sites;
Cynodonteae), Dichanthelium oligosanthes (two sites;
Paniceae), Dichanthelium praecocius (two sites; Paniceae),
Hesperostipa spartea (two sites; Stipeae), Poa pratensis (two
sites; Poeae), Sorghastrum nutans (two sites; Andropogoneae).

Leaf sampling and reflectance
measurements

Fresh leaves were collected from dominant species at
each site and sampled during peak greenness to account
for potential differences in phenology. Peak greenness was
determined from a NEON model using more than 15 years
of Moderate Resolution Imaging Spectroradiometer
(MODIS) normalized difference vegetation index (NDVI)
data. Leaves were kept in a cooler until spectra were
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measured within a 2-h window of field collection. Five to
eight fresh individual leaves for each species at each site
were measured using an ASD FieldSpec 4 Hi-Res
spectroradiometer with a leaf contact probe and the adax-
ial surfaces oriented toward the sensor. The contact probe
contains a calibrated internal light source and a leaf clip
with the standard black surface behind the leaves
(Malvern Panalytical, Malvern, United Kingdom). In the
case of a single leaf being too small to cover the area of the
black background, several leaves were carefully placed
side-by-side as close as possible to ensure no visible gaps
between leaves while avoiding leaf overlap (Slapikas
et al., 2024). The FieldSpec 4 Hi-Res NG measures radi-
ance in the electromagnetic spectrum from 350 to
2500 nm with 2150 bands with a spectral resolution of
3 nm in the Visible Near Infrared range and 6 nm in the
Shortwave Infrared range. A standard white reference
built into the leaf clip (ASD Leaf Clip 2) was scanned for
calibration and conversion to reflectance before measur-
ing each species and also every 10 min. The FieldSpec
spectroradiometer was set to 25 internal repetitions to
reduce measurement variability and noise and then aver-
aged to generate one spectral reflectance for each sample.
The data were corrected for spectral discontinuities
between the three spectroradiometer sensors using a jump
correction as in Dorigo et al. (2006). Wavelengths shorter
than 400 nm or longer than 2400 nm were removed to
avoid spectrally noisy regions. Median reflectance values
from the five to eight individual leaves across the
400–2400-nm wavelengths were used in analyses. A spline
interpolation with a moving window of 10 nm using the
“hsdar” package (Lehnert et al., 2019) in the software R
(R Core Team, 2023) was used to reduce spectral bands
from 2000 to 201 bands.

Leaf traits

Structural, biochemical, and physiological leaf traits
were measured for 52 species collected from the same
populations, but on different individual leaves from the
leaf spectral measurements. Twelve leaf traits were mea-
sured (all sunlit fully developed leaves): leaf area, fresh
leaf thickness, dry leaf mass, SLA, LDMC, % Carbon
(%C), % Nitrogen (%N), δ13C, δ15N, C:N, Vcmax25 , and
Jmax25 . SLA (in square centimeters per gram) is defined as
the ratio of leaf area to leaf dry mass. LDMC (unitless) is
defined as the ratio of leaf dry mass to leaf wet mass.
Fresh leaf thickness (in centimeters) is the thickness of
the leaf in field conditions and wet leaf thickness
(in centimeters) is the thickness of the leaf when fully
hydrated. C:N is the ratio of carbon to nitrogen in the
leaf and δ13C (‰) is the ratio of 13C isotopes to 12C

isotopes compared with a lab standard. Vcmax25 is the
maximum rate of carboxylation of the enzyme Rubisco
(in micromoles per square meter per second) and Jmax25

is the maximum rate of electron transport (in micromoles
of electrons per square meter per second) during the pho-
tosynthetic light reactions. Both are corrected to a stan-
dard temperature of 25�C using the “plantecophys”
package in R.

Structural traits

For SLA, LDMC, and fresh leaf thickness, one leaf was
clipped from each individual plant, and all structural trait
measurements were performed on that same leaf. One to
nine replicates were measured for each species at each
site, with most species at each site having 4–5 replicates.
Fresh leaf thickness was measured immediately in the
field using a micrometer, where five measurements were
taken randomly at various increments along the leaf
and averaged. Leaf area was measured in the field using
Leafscan (Version 1.3.21), a mobile application that
measures the surface area of leaves (Anderson &
Rosas-Anderson, 2017). For rehydration, the leaves
were submerged in water for 24–48 h. Once rehydrated,
the leaves were measured for wet mass, which was used to
derive LDMC. Then, the leaves were dried at 60�C for at
least 48 h, until they reached a constant weight before
being measured for dry mass.

Biochemical traits

For C:N, δ13C, and δ15N numerous leaves per replicate
were collected from one or multiple individuals in the
immediate area to obtain enough biomass for measure-
ments. Leaf C, N, δ13C, and δ15N were measured at the
Stable Isotope Mass Spectrometry Laboratory at Kansas
State University. The leaves were dried at 60�C for at
least 48 h before being ground and homogenized.

Gas-exchange measurements

Net CO2 assimilation rates at different internal leaf CO2

concentrations (i.e., A-Ci curves) were measured using
portable photosynthetic devices (LI-6400 and LI-6800;
Li-COR, Lincoln, Nebraska, USA) at all sites except
CDCR. One to eight replicates per species per site were
measured with replicates from separate individuals.
Photosynthetic photon flux density (PPFD) was set at
2000 μmol m−2 s−1 for all A-Ci curves. For CPER and
WOOD sites using Li6400, the reference CO2 was
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changed in the sequence of 400, 300, 200, 100, 50, 35,
150, 500, 800, and 1000 ppm. For KONZ and JORN sites
using LI-6800, the dynamic A-Ci program was used.
Plants were secured in the closed chamber for 10 min of
acclimation at a reference CO2 concentration of
400 ppm before the program started. Reference CO2

concentration decreased from 1600 to 400 ppm in 4 ppm
decrements. Block temperature was only controlled at
the JORN site (40�C). The range of VPDL (min, max)
measured at each site is as follows: CPER: (1.61, 7.84);
WOOD: (1.71, 7.08); KONZ: (1.50, 5.58); JORN: (1.80,
4.80). The data from the dynamic A-Ci curve were aver-
aged every 10 data points before curve fitting. For C3

species, “plantecophys” R package (Duursma, 2015) was
used; and for C4 species, we followed Zhou et al. (2019)
with an Excel template to fit the curves. Maximum car-
boxylation (Vcmax) and electron transport rate (Jmax)
values normalized to 25�C were estimated from the
fitted curves.

Statistical analyses

Redundancy analysis ordination (RDA) followed by vari-
ance partitioning were used to examine the relative
effects of tribe, photosynthetic pathway, and site on spec-
tra. An RDA is a combination of a constrained ordination
and a regression with a response matrix (Legendre &
Legendre, 1998). We ran a series of separate models, first
testing the effects of tribe and photosynthetic pathway on
the 201 spectral reflectance bands and then, the effects of
tribe and site on the same bands. We also tested the effect
of subfamily (Figure 1) but subfamily resulted in lower
variance explained than tribe. We used adjusted (adj) R2

values, which account for the different number of predic-
tors, to partition the variance explained by each predictor
using the “vegan” package (Oksanen et al., 2019) and the
function “varpart” in the software R. The function “rda”
was used to derive p-values.

To assess the ability of leaf spectral reflectance to
predict leaf traits, we performed partial least squares
regressions (PLSR) using the “pls” package in R (Mevik &
Wehrens, 2007). PLSR is commonly used to predict rela-
tionships among spectroscopic data and functional traits
(e.g., Ollinger & Smith, 2005; Serbin et al., 2014). PLSR
reduces the large predictor matrix (i.e., 201 bands of reflec-
tance after aggregating) to fewer, uncorrelated latent com-
ponents. We split the data into 80% for training and 20%
for validation using stratified sampling across each tribe.
To explore whether trait predictions varied across lineages,
we used subfamily instead of tribe because our sample size
was too small at the tribe level for model training and vali-
dation (number of species per subfamily: Chloridoideae,

n = 17; Panicoideae, n = 19; Pooideae, n = 20). We used
30% of the data for validation (70% for training) because of
the smaller sample size when running separate models by
lineage. We ran a third set of models using a leave-one-out
cross-validation to predict traits at each site using data
from the remaining four sites. We report both validation
R2 and the root mean square error of prediction (RMSEP).
For each trait model, we chose the number of components
(ncomp) that resulted in the highest validation R2. All data
analyses were performed using R Statistical Software
(R Core Team, 2023).

RESULTS

Variance partitioning

Across all 66 species and five sites, almost all explained
variation in grass leaf spectra was attributed to evolutionary
lineage (i.e., tribes) rather than photosynthetic pathway (adj
R2 for the conditional effect of tribe = 0.12; adj R2 for the
conditional effect of photosynthetic pathway = 0.00; resid-
ual variance adj R2 = 0.87; Table 1a). The effect of subfam-
ily was also tested but resulted in lower variance explained
than tribe, although subfamily still explained more variance
than site. Tribe also accounted for more explained variation
in spectra than site (adj R2 = 0.12 for the conditional effect

TABL E 1 Variance explained in redundancy analysis

ordination (a) by tribe and photosynthetic pathway and (b) tribe

and site in leaf reflectance spectra from 66 species occurring across

five sites.

Factor

Individual
effect

(adjusted R 2)

Conditional
effect

(adjusted R 2)

(a) Tribe + Photosynthetic pathway

Tribe 0.137*** 0.117**

Photosynthetic pathway 0.016** −0.004

Both factors 0.133***

Joint 0.019

Residual 0.867

(b) Tribe + Site

Tribe 0.137*** 0.121**

Site 0.096** 0.081*

Both factors 0.217***

Joint 0.016

Residual 0.783

Note: “Both factors” refers to having both factors in the model combined,
whereas “joint” refers to the amount of shared variance that is jointly
explained by both factors.
*p < 0.05; **p < 0.01; ***p < 0.001.
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of tribe holding the effect of site constant; adj R2 = 0.08 for
the conditional effect of site holding the effect of tribe con-
stant; residual variance adj R2 = 0.78). Importantly, shared
variance between tribe and photosynthetic pathway, and
tribe and site (i.e., the amount of variance that both factors
jointly explain) was low (<2%). Overall, the combination of
tribe and site better predicted leaf spectra variation than
tribe and photosynthetic pathway given the lower residual
variance (Table 1a,b).

Because a few common species represent each tribe
across sites, we examined a subset of 15 species that occur
across multiple sites. In this case, the effect of tribe relative
to photosynthetic pathway was slightly larger, but adj R2

values were not significant (Appendix S1: Table S2a). Site
explained more variation in leaf spectra than tribe (adj R2

for the conditional effect of tribe = 0.10 n.s.; adj R2 for the
conditional effect of site = 0.46; residual variance adj
R2 = 0.52; Appendix S1: Table S2b). Again, shared vari-
ance between lineage and site was low (<1%).

Leaf trait predictions

Using stratified sampling across each tribe, the highest
validation R 2 for PLSR-based trait predictions using leaf
spectra was for Vcmax25 (R2= 0.65; RMSEP= 12.6%;
ncomp= 3; Figure 2). Spectra also predicted δ13C
(R2= 0.62; RMSEP= 24.7%; ncomp= 7) reasonably well,
with clear sorting by photosynthetic pathway. Remaining
traits were predicted with variable accuracy by leaf
spectra: LDMC (R 2= 0.55; RMSEP= 15.1%; ncomp= 7),
δ15N (R2= 0.47; RMSEP= 9.1%; ncomp= 7), fresh leaf
thickness (R 2= 0.44; RMSEP= 12.0%; ncomp= 6), C:N
(R 2= 0.38; RMSEP= 19.0%; ncomp= 9), %C (R 2= 0.37;
RMSEP= 8.8%; ncomp=5), %N (R2=0.36; RMSEP=19.7%;
ncomp= 10), SLA (R2=0.24; RMSEP=12.5%; ncomp=10),
leaf dry mass (R2=0.11; RMSEP=10.5%; ncomp=1), leaf
area (R2= 0.11; RMSEP= 12.6%; ncomp= 3), and Jmax25

(R2 < 0.01; RMSEP= 56.0%; ncomp= 1; Figure 2).
We also explored trait predictions for individual line-

ages, though we grouped by subfamily and not tribe
for larger sample sizes to allow for model validation
(Figure 3). Differences among lineages show that in gen-
eral, Panicoideae and Pooideae spectra performed better
at predicting traits (i.e., lower RMSEP). Chloridoideae
had the highest RMSEP for 6 of the 12 leaf traits (LDMC,
SLA, %C, C:N, δ15N, and Vcmax25 ).

Trait predictions using leaf spectra were generally bet-
ter at the wetter, resource-rich sites (i.e., WOOD, KONZ,
and CDCR), whereas predictions for drier, resource-poor
sites (i.e., CPER and JORN) were worse (Figure 3;
Appendix S1: Figure S1). The trait δ13C was well predicted
by spectra at WOOD (R2 = 0.81; RMSEP = 18.1%) and

CDCR (R2 = 0.81; RMSEP = 17.3%). A few leaf structural
traits at select sites had an R2 > 0.50 using PLSR: SLA at
CDCR (R 2 = 0.53; RMSEP = 15.5%), LDMC at KONZ
(R 2 = 0.71; RMSEP = 22.5%), fresh leaf thickness at
WOOD (R 2 = 0.61; RMSEP = 17.6%).

DISCUSSION

Our results show that variation in hyperspectral leaf
reflectance of grass species collected across a gradient of
sites is better explained by evolutionary history than by
photosynthetic pathway or site. The Great Plains
are among the most endangered ecosystems in North
America (Samson et al., 2004; White et al., 2000; Gibson
2009), spanning large climatic gradients that are associ-
ated with turnover in dominant grass species and eco-
system functions. Species compositional change and
differences in ecosystem function across the Great
Plains have typically been understood through differ-
ences in photosynthetic pathway (Knapp et al., 2020).
Photosynthetic pathway was an evolutionary innovation
to past periods of low atmospheric CO2 and precipita-
tion seasonality (Edwards & Smith, 2010; Ehleringer
et al., 1991) resulting in fundamental differences in how
plants fix atmospheric CO2. However, these pathways
are not necessarily connected to distinct grass traits and
growth strategies (e.g., Donnelly et al., 2023; Griffith
et al., 2020; Liu et al., 2012; Taylor et al., 2010).

The amount of spectral variance explained by both
tribe and photosynthetic pathway was higher than for
photosynthetic pathway alone (i.e., “both factors” in
Table 1) indicating that both affect differences in spectra.
However, the amount of shared variance explained was
still relatively low, suggesting tribe and photosynthetic
pathway are not confounded in their effects on leaf spec-
tra and that they affect spectra differently. Each predictor
appears to be associated with unique leaf traits, which
may affect different regions of the spectra. In all our models,
residual variance in spectra was high, which is not surpris-
ing given the high dimensionality of hyperspectral reflec-
tance data (Cawse-Nicholson et al., 2022). Future work
could evaluate various techniques to reduce noise beyond
the spectral averaging and component selection that we
performed (e.g., principal components analysis); though our
approach here was to focus on the relative effects of each
factor.

When considering differences by site, tribe was again
the dominant effect on leaf reflectance. In other words,
leaf reflectance from the same tribe across sites was more
similar than leaf reflectance from the same site across lin-
eages. This result demonstrates evolutionary constraints
on grass leaf spectra and associated traits despite large
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environmental differences across sites. The larger effect
of tribe over site furthermore suggests that there can be
higher within-site spectral diversity, associated with phy-
logenetic diversity and possibly other factors, than across
sites. Few studies have compared spectral diversity
within versus across sites. However, remote sensing

studies have recently shown that spectral dissimilarity
can detect fine-scale species richness in grassland com-
munities (Gholizadeh et al., 2018, 2020; Schweiger
et al., 2018; Wang et al., 2018). On the other hand, Van
Cleemput et al. (2023) found mixed support for the ability
of spectral diversity to predict taxonomic diversity,

F I GURE 2 Validation plot from partial least squares regression (PLSR) predictions of 12 leaf traits using leaf spectra (400–2400 nm)

from five sites across the Great Plains, USA. Points show median trait values for each species at a site against PLSR predicted values.

Validation data are stratified by tribe so that 20% of species from each tribe was used for validation (80% of species from each tribe was used

for training the PLSR model). LDMC, leaf dry matter content; SLA, specific leaf area. Grey shading = 95% confidence intervals around the

predicted line.

8 of 14 PAU ET AL.

 21508925, 2025, 4, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.70257, W

iley O
nline L

ibrary on [28/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



particularly at the sites that overlapped with our study
(CPER, KONZ, and WOOD).

For a subset of species that occur across two or more
sites, the most influential effect on spectra was site not
tribe (Appendix S1: Figure S1). Thus, although variation
in grass spectra was clearly constrained by evolutionary
history, this result suggests that species with wider distri-
butions respond to unique site conditions, whether
through leaf plasticity or ecotypic variation (population
local adaptation). A. gerardii, for example, is a perennial
C4 grass that is widespread across the Great Plains. This
species displays large intraspecific trait variation, which
may allow it to be dominant across a range of climatic
conditions (Bachle et al., 2018). P. virgatum is another
widespread C4 grass species that shows local adaptation
in morphological and physiological traits (Aspinwall

et al., 2013; Donnelly et al., 2025). Thus, certain species
and tribes may have a greater capacity to adapt or accli-
mate to future environmental change given their intra-
specific trait variability (Valladares et al., 2014).

Despite measuring spectra and traits on different
leaves (but from the same population within each site,
that is, sampled within a few meters of each other), the
explained variance in many of our trait predictions from
leaf spectra (e.g., Vcmax25 , LDMC, δ15N, fresh leaf thick-
ness, C:N, %C, %N) was within the range of other studies
(e.g., Doughty et al., 2011; Kothari et al., 2023; Schweiger
et al., 2017; Serbin et al., 2014; Van Cleemput et al., 2018;
Wang et al., 2020). For trait predictions that were low
compared with previous studies (e.g., SLA, leaf dry mass,
leaf area, and Jmax25 ), either a larger sample size is
needed, traits should be measured on the same leaves as

F I GURE 3 Comparison of root mean square error of prediction (RMSEP) from partial least squares regressions of 12 leaf traits using

leaf spectra (400–2400 nm) for grass subfamilies. LDMC, leaf dry matter content; SLA, specific leaf area.
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spectra, and/or there are weak relationships with spectra
for different taxa. Notably, our results showed a promis-
ing relationship between Vcmax25 , a key measure of pho-
tosynthetic capacity and a critical parameter in land
surface models (Lu et al., 2020). Vcmax is the maximum
carboxylation rate of the enzyme Rubisco. Although
Vcmax is generally lower in C4 compared with C3 grasses
(Collatz et al., 1998), Vcmax can also vary with phylogeny
(Donnelly et al., 2023; Griffith et al., 2020) and environ-
mental factors (Croft et al., 2017; Groenendijk
et al., 2010; Kattge et al., 2009; Smith et al., 2019). The
recognized positive relationship between Vcmax and leaf
chlorophyll content may underlie the correlation between
leaf spectra and Vcmax in our results. Chlorophyll content
and Vcmax can be strongly linked because the absorption
of light energy by chlorophyll is related to the amount of
CO2 catalyzed by Rubisco via coordination of the light and
dark reactions of photosynthesis (Croft et al., 2017; Lu
et al., 2020). Chlorophyll content is one of the most
well-studied leaf traits using remote sensing (Ustin
et al., 2009; Van Cleemput et al., 2018) and is well corre-
lated with optical remote sensing measurements using
both physically based radiative transfer models (Croft
et al., 2020; Zarco-Tejada et al., 2004) and empirically
based statistical models (Sims & Gamon, 2002). While
Vcmax can also be correlated with other leaf traits such
as leaf %N and SLA, these relationships are often incon-
sistent across sites and species (Croft et al., 2017; Kattge
et al., 2009; Walker et al., 2014). In our data, R 2 values
for SLA and %N were not high, although site-specific
relationships were in some cases stronger (Appendix S1:
Figure S1). Predictions of Jmax25 were surprisingly poor
given the typically tight coupling of Jmax25 with leaf chlo-
rophyll content and with Vcmax25 (Walker et al., 2014),
perhaps due to differences in environmental stress at the
time of data collection. Barnes et al. (2017) showed that
variation in pre-dawn water potential affected predictions
of Vcmax using hyperspectral leaf reflectance only moder-
ately, whereas predictive accuracy for Jmax was consider-
ably reduced. Other studies have found higher correlations
between leaf reflectance and Vcmax, with a principal differ-
ence being that Vcmax and leaf reflectance were measured
under varying temperatures rather than across species
(Serbin et al., 2012, 2015).

For Chloridoideae, traits that were poorly predicted
in comparison to other lineages (LDMC, SLA, %C, C:N,
and Vcmax25 ; Figure 3) may covary in ways unique to that
lineage. In other words, single traits do not underlie plant
reflectance; rather it is the combination of traits, some of
which may show stronger relationships to spectra than
others, that affect predictive ability. Additionally, varia-
tion is fundamental to statistical prediction. Stronger trait
predictions are leveraged when there is more variance to
explain, that is, a greater range of trait values. Some of

these traits were well predicted when using data across
all lineages (e.g., Vcmax25 ), indicating that the trait itself
may have a spectral signature but is not well captured in
Chloridoideae leaves, which all have low Vcmax25 values.
The strength of spectrally predicted traits when using data
across all sites and lineages (Figure 2) were in some cases
due to variation across lineages and in other cases to varia-
tion across sites. Leaf structural traits appear to cluster by
lineage in trait predictions; for example, Cynodonteae
(in the Chloridoideae subfamily) show clustering in dry
mass, leaf thickness, and leaf area values (Figure 2). This
result aligns with previous work showing more frequent
phylogenetic signal in leaf structural traits, which are more
fixed, as opposed to physiological traits which are typically
more plastic in response to environmental variation
(Ávila-Lovera et al., 2023; Donnelly et al., 2023).

Trait predictions limited to individual sites, using
spectra from remaining sites to train the models, show
improved accuracy for some traits and sites, and poor
transferability for others. In general, trait predictions at
the wetter sites (i.e., CDCR, KONZ, and WOOD) were
better, suggesting environmental filtering of traits and
spectra at the drier, more marginal sites (i.e., JORN
and CPER; Appendix S1: Figure S1). JORN, an arid desert
grassland, and CPER, a semiarid short-grass steppe, are
the two sites characterized by water limitation, short grow-
ing seasons, and pulsed precipitation events. These habi-
tats may filter for lineages or species that can tolerate and
persist under resource-poor conditions (Cornwell &
Ackerly, 2009; Díaz et al., 1998; Keddy, 1992); for exam-
ple, Chloridoideae is a dominant lineage in these drier
habitats. Traits may also vary uniquely within a species
or lineage (plasticity or ecotypic intraspecific variation)
as specializations to marginal resource-poor environ-
ments (e.g., Power et al., 2019) or in response to the
competitive environment (e.g., Burns & Strauss, 2012;
Turcotte & Levine, 2016). Investigations of how
trait-spectra relationships vary with environmental condi-
tions have shown that both biotic and abiotic factors can
alter trait-spectra relationships (Asner & Vitousek, 2005;
S�anchez-Azofeifa et al., 2009; Seeley et al., 2023). Our sam-
pling design spanned five sites across a large biogeographic
and environmental gradient, which came at a cost to more
intensive sampling at specific sites. For some traits, greater
sampling at individual sites may improve prediction accu-
racy, as we found generally positive relationships with
observed spectra for many traits.

CONCLUSIONS

Our results from 66 grass species occurring across five sites
in North America show that leaf hyperspectral reflectance
is more strongly influenced by evolutionary relationships
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than by photosynthetic pathway or differences across sites.
Phylogenetic conservatism of grass leaf spectra indicates
distinct evolutionary constraints on responses to envi-
ronmental change. Although relationships with individ-
ual traits were variable in their accuracy, the predictable
phylogenetic variation in leaf spectra suggests that spec-
tra can indicate unique trait coordination across line-
ages. Relatedly, our work shows that the transferability
of PLSR models across taxa and general predictive
models across biomes may be challenging (Helsen
et al., 2011). Our results suggest that future research
should focus on understanding relationships between
spectral reflectance and trait networks that integrate
form and function, not necessarily individual traits. In
modeling efforts, especially for grasslands, explicitly
including the diversity of grass lineages should lead to
improved predictions of responses to global change
(Anderegg et al., 2022; Griffith et al., 2020); plant reflec-
tance spectra provide a novel avenue for understanding
ecological similarity at multiple spatial scales. With the
development of airborne and satellite hyperspectral sen-
sors (e.g., NEON AOP, DESIS, and the planned NASA
SBG mission) our work demonstrates the potential to
examine underappreciated grass diversity and their eco-
logical responses to future global change.
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