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Lineage-based functional types:
characterising functional diversity
to enhance the representation of
ecological behaviour in Land
Surface Models

Summary

Process-based vegetation models attempt to represent the wide

range of trait variation in biomes by grouping ecologically similar

species into plant functional types (PFTs). This approach has been

successful in representing many aspects of plant physiology and

biophysics but struggles to capture biogeographic history and

ecological dynamics that determine biome boundaries and plant

distributions. Grass-dominated ecosystems are broadly distributed

across all vegetated continents and harbour large functional

diversity, yet most Land Surface Models (LSMs) summarise grasses

into two generic PFTs based primarily on differences between

temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of

species-level trait variation is an active area of research to enhance

the ecological realism of PFTs, which form the basis for vegetation

processes anddynamics in LSMs.Using reportedmeasurements,we

developed grass functional trait values (physiological, structural,

biochemical, anatomical, phenological, and disturbance-related) of

dominant lineages to improve LSM representations. Our method is

fundamentally different from previous efforts, as it uses phyloge-

netic relatedness to create lineage-based functional types (LFTs),

situated between species-level trait data and PFT-level abstractions,

thus providing a realistic representation of functional diversity and

opening the door to the development of new vegetation models.

Introduction

Functional trait variation within biomes arises from evolutionary
histories that vary biogeographically, leading to plant taxa with
differing ecological behaviour and differences in ecosystem struc-
ture and function across continents (Lehmann et al., 2014;Higgins
et al., 2016; Griffith et al., 2019). Land Surface Models (LSMs),
fundamental components of Earth SystemModels, typically apply
abstracted plant functional types (PFTs; but see Pavlick et al., 2013;

Scheiter et al., 2013; Medlyn et al., 2016) to represent physical,
biological and chemical processes crucial for soil and climate-
related decision making and policy. However, PFTs must gener-
alise across species, and inevitably encapsulate a wide range of plant
strategies and vegetation dynamics, a demand that contrasts with
efforts to investigate nuanced and species specific ecological
behaviour (Cramer et al., 2001; Bonan, 2008; Sitch et al., 2008;
Kattge et al., 2011). Furthermore, PFTs account for only a modest
degree of variation in a wide array of functional traits, ranging from
seed mass to leaf lifespan (LL), in the TRY database (Kattge et al.,
2011). For example, standard PFTs may not generally capture key
drought responses in tree species (Anderegg, 2015), although
models with a hydraulics module can be specifically applied for this
purpose (e.g. ecosys; Grant et al., 1995). Oversimplification of the
physiognomic characteristics of PFTs can have major unintended
consequences when simulating ecosystem function (Griffith et al.,
2017a), such as highly biodiverse savanna ecosystems (Searchinger
et al., 2015). However, studies that explicitly incorporate species-
level trait variation into vegetation models (e.g. Grant et al., 1995,
2019; Sakschewski et al., 2016; Lu et al., 2017; Mekonnen et al.,
2019) have demonstrated improvements in model performance.
Selecting trait data from multivariate trait distributions for model
parameterisation (Wang et al., 2012; Pappas et al., 2016) is very
challenging for global modelling applications, particularly in
hyperdiverse regions like the tropics, and may not be feasible for
areas with biased or limited data. Until these data gaps are filled, a
finer-grained representation of the functional diversity among
species might be achieved by reorganising PFTs based on trade-offs
and evolutionary relatedness.

Importantly, in seeking approaches to restructure PFTs,
numerous observations over the last decade have shown that both
plant traits and biome occupancy are commonly phylogenetically
conserved, with closely related species having similar traits and
niches (e.g. Cavender-Bares et al., 2009, 2016; Crisp et al., 2009;
Liu et al., 2012; Donoghue & Edwards, 2014; Coelho de Souza
et al., 2016). The existence of strong evolutionary constraints on
plant functioning and distribution suggests that, as an alternative,
vegetation types should be organised in a manner consistent with
phylogeny. Eco-evolutionary models have increased our mecha-
nistic understanding of ecological patterns in fields ranging from
community ecology (e.g. Webb et al., 2002; Cavender-Bares et al.,
2009) to global biogeography (e.g. the Latitudinal Diversity
Gradient; Visser et al., 2014; Pontarp et al., 2019).We advocate for
explicit inclusion of evolutionary history and a consistent frame-
work for integrating traits into global vegetation models. This
approach brings a testable method for defining vegetation types,
enables the functional traits of uncharacterised species to be
inferred from relatives, and allows evolutionary history to be
explicitly considered in studies of biome history.Here, we illustrate
this approach for grasses and grass-dominated ecosystems, where
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we use our framework to aggregate species into lineage-based
functional types (LFTs) to capture the species-level trait diversity in
a tractablemanner for large-scale vegetation process models used in
LSMs. Capturing the evolutionary history of woody plants is also
critical to understanding variation in ecosystems function in
savannas (Lehmann et al., 2014; Osborne et al., 2018), and in
general we are advocating for the development of LFTs in other
vegetation types and in other ecosystems. Grasses provide a
tractable demonstration for the utility of LFTs; we also discuss the
potential to significantly improve ecological and biogeographical
representations of other plants in LSMs.

Grasses are one of the most ecologically successful plant types on
Earth (Linder et al., 2018) and provide great opportunity for
increasing understanding of plant functional diversity. Ecosystems
containing or dominated by grasses (i.e. temperate, tropical, and
subtropical grasslands and savannas) account for a >40% of global
land area and productivity, and are a staple for humanity’s
sustenance (Tilman et al., 2002; Still et al., 2003; Asner et al., 2004;
Gibson, 2009). The photosynthetic pathway composition (C3 or
C4) of grass species is a fundamental aspect of grassland and savanna
function, ecology and biogeography. Of the c. 11 000 grass species
on Earth, some c. 4500 use the C4 photosynthetic pathway
(Osborne et al., 2014). Although they account for <2% of all
vascular plant species (Kellogg, 2001), C4 grasses are estimated to
account for 20–25% of terrestrial productivity (Still et al., 2003),
having risen to such prominence only in the last 8 Myr (Edwards
et al., 2010). Dominance by C4 vs C3 grasses has major influences
on gross primary productivity and ecosystem structure and
function (Still et al., 2003) and strongly influences interannual
variability of the global carbon cycle, due to a combination of
ecological and climatic factors (Poulter et al., 2014; Griffith et al.,
2015). Dynamic vegetation models largely fail to reproduce spatial
patterns of grass cover – both past and present – and productivity at
regional to continental scales, limiting ability to predict future plant
community changes (Fox et al., 2018; Still et al., 2018). As a
consequence, LSMs require significant improvement to adequately
represent vegetation responses to increasing CO2 (De Kauwe et al.,
2016; Smith et al., 2016). Many models also miss key transitions
between biome states (e.g. Still et al., 2018) that exist as a result of
disturbance or biogeographic history (e.g. Staver et al., 2011;
Dexter et al., 2018).

Most LSMs classify grasses into two PFTs based on differences
between temperate C3 grasses and subtropical and tropical C4

grasses. However, grass ecological adaptations and physiological
properties are highly diverse, ranging from cold-specialised to fire-
and herbivore-dependent species. While grasses are often equated
functionally, in reality they exhibit a high degree of variation in
hydraulic, leaf economic and phenological traits (Taylor et al.,
2010; Liu et al., 2012) that are likely to explain their broad
geographic dominance in different regions (Edwards et al., 2010;
Visser et al., 2014). These differences include economically
important forest-forming grasses such as bamboos, although here
we focus on globally dominant herbaceous lineages. Grasses exhibit
strong phylogenetic diversity in leaf economics variation and
associations with disturbance (Taylor et al., 2010; Liu et al., 2012;
Simpson et al., 2016). Disturbances such as fire and herbivory have

large impacts on ecosystem function and distributions, and PFT-
based approaches are unlikely to capture these differences among
lineages. At broad phylogenetic and spatial scales, niche and biome
conservatism ofmajor plant lineages is common (Crisp et al., 2009;
Becklin et al., 2014; Cornwell et al., 2014; Donoghue & Edwards,
2014) and we therefore argue that evolution and biogeography
provide a framework for aggregating species (across ecosystems and
strata) into LFTs that capture species-level trait diversity in a way
that can be feasibly incorporated for use in global vegetationmodels
and that will improve PFT-based modelling approaches. Focusing
on grasses, we developed this approach by collecting grass traits
from databases (e.g. Osborne et al., 2011) and literature (e.g.
Atkinson et al., 2016; Supporting Information Methods S1), for
five key categories (physiology, structure, biochemistry, phenology
and disturbance). We summarise these species traits at the lineage
level and relate these functional types to their observed global
distributions.

Methods for establishing lineage-based functional
types (LFTs) for grasses

There are 26 monophyletic C4 lineages described in the Poaceae
family, yet only two (the Andropogoneae and Chloridoideae)
account for most of the areal abundance of C4 grasses globally
(Fig. 1; Edwards & Still, 2008; Edwards et al., 2010; Grass
Phylogeny Working Group II, 2012; Lehmann et al., 2019).
Among C3 grasses, only the Pooideae are globally dominant today.
The Pooideae occupy cooler climates than the C4 Andropogoneae
and Chloridoideae, which dominate in warm and wetter and drier
climates, respectively. Therefore, we focused on collecting species-
level trait data from the literature and from databases for grass
species from these three lineages. The term ‘trait’ is defined
differently across research disciplines (Violle et al., 2007).Our aims
necessitated a collection of broad trait space beyond that typically
used for the leaf economic spectrum to include morphological and
physiological determinants of plant hydraulics, physicochemical
controls of photosynthesis, allocation to reproduction and spectral
reflectance. Many traits are highly correlated, reflecting plant
functional strategies. Furthermore, a single trait can relate to
multiple forms of plant fitness. Here, traits were assigned to groups
(Table 1) based on their use in models and how they might be used
in future applications (e.g. hyperspectral remote sensing of LFTs, or
modelling of fire). We present median and variation in trait values
among species for three major grass lineages (LFTs) as per Fig. 1,
and compare these with commonly used values for C3 andC4 PFTs
(Table 1).

LFTs for grasses differ drastically in key functional
traits

Our LFTs demonstrate both the importance of considering lineage
to explain ecological patterning, and the need for modification of
current LSM PFT approaches. For instance, C4 plants typically
have lower RuBisCO activity (Vcmax) but higher electron transport
capacity (Jmax) than C3 plants, reflecting both the additional
energetic cost of C4 physiology and the greater efficiency of
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RuBisCO in higher CO2 environments (Collatz et al., 1998). The
Chloridoideae (C4) grasses have intermediate Vcmax and Jmax

compared with the Andropogoneae (C4) and the Pooideae (C3)
(Table 1). Furthermore, the Pooideae have evolved to tolerate
much colder conditions (reflected in Trange; Sandve & Fjellheim,
2010; Vigeland et al., 2013;McKeown et al., 2016), and our results
suggested that C4 lineages may differ in their thermal tolerances
(Watcharamongkol et al., 2018). These differences suggested that
macroecological synthesis studies with global implications (e.g.
Walker et al., 2014; Heskel et al., 2016) should, at minimum,
include more grass species in their datasets, ideally organised as
LFTs.

Trade-offs among adaptations and tolerances in natural systems
promote coexistence among plant species (Tilman, 1988; Tilman
& Pacala, 1993; Kneitel & Chase, 2004). Specific leaf area (SLA)
measures the cost of constructing a leaf, which represents a trade-off
between acquisitive (high relative growth rate) and conservative
(high LL) plant strategies (Westoby, 1998; Westoby et al., 2002;
Wright et al., 2004). Model simulations of growth are highly
dependent on the value of SLA used (K€orner, 1991; Sitch et al.,
2003; Bonan, 2008). However, in most of these LSMs, C3 grass
PFTs have higher or similar SLA values as C4 PFTs are likely to bias
predictions. By contrast, we found that the C4 LFTs had higher
SLA than the C3 LFT, but SLA did not differ between the two
dominant C4 grass lineages (Atkinson et al., 2016). SLA can be
highly variable within lineages in grasses, probably due to the
importance of herbivore pressure as a competing demand on leaf
economics (Anderson et al., 2011; Griffith et al., 2017b) as well as
intraspecific variation. As a result, SLA highlighted that some traits
are harder to generalise than others using the LFT approach and
suggested that a range of values may be more appropriate than a
single value for constraining LFT parameters. The phylogenetic
signal among grass lineages is stronger for stature (Taylor et al.,
2010; Liu et al., 2012), with the Andropogoneae being consider-
ably taller on average than the Chloridoideae. This difference

suggests that not all traits are oriented along a fast–slow axis at broad
taxonomic scales acrossC3 andC4 grass lineages (Reich, 2014;D�ıaz
et al., 2016; Archibald et al., 2019). Furthermore, the C3- and
eudicot-centric approach in the current leaf economics framework
suggested that a higher SLA should also correlate with a higher
specific leaf nitrogen content, yet the evolution of C4 photosyn-
thesis allows for a significant reduction in RuBisCO content, and
hence plant nitrogen requirements (Taylor et al., 2010). Thus, grass
lineages differ in numerous leaf traits; this has consequences that
extend from palatability and flammability to hydrological differ-
ences.

Physiological and morphological leaf vascular traits underlie
variation in SLA, constrain the hydrology of plants (e.g. Blonder
et al., 2014; Sack et al., 2014) and are key traits related to the
evolution ofC4 photosynthesis (Sage, 2004;Ueno et al., 2006).We
describe next key hydraulic differences between the two dominant
C4 lineages that correspond to the C4 biochemical subtypes (Ueno
et al., 2006; Liu & Osborne, 2015). The Chloridoideae have low
conductance and high embolism resistance hydraulic traits
(Table 1), and tend to inhabit drier sites (Fig. 1). Some Andro-
pogoneae have been described as ‘water spenders’ (Williams et al.,
1998), and their hydraulic traits help to explain their affinity with
higher rainfall habitats where they rapidly expend available soil
water (Taub, 2000) and promote fire after curing. These hydraulic
differences should have large effects inmodels, especially those that
consider tree–grass coexistence (Higgins et al., 2000) and explicit
representation of plant hydraulics (Grant et al., 1995; Mekonnen
et al., 2019).

Lineages also differ in biogeochemical traits that influence
nutrient turnover rates and the reflectance and absorbance
properties of vegetation. For example, Andropogoneae have higher
C : N than Chlordoideae grasses, likely to be a result of growth rate
differences and the frequent association of Andropogoneae grasses
with fire. Similarly, a greater proportion of N in Chloridoideae
leaves is allocated to RuBisCO, which is related to Vcmax

Andropogoneae − C4 
Chloridoideae − C4 
Pooideae − C3

Not grassy 

Fig. 1 Distributions of the three globally dominant grass lineages in the herbaceous layer. These data come from Lehmann et al. (2019) and showwhere each
lineage is more abundant compared with the other two lineages based on a 0.5-degree grid.
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(Ghannoum et al., 2011). Finally, C3 and C4 grasses are
distinguishable spectrally at the leaf, canopy and landscape level
based on differences between the functional types in the chloro-
phyll a/b ratio, canopy structure and seasonality (Foody & Dash,
2007; Irisarri et al., 2009; Siebke & Ball, 2009). C3 and C4 grasses
are typically givenmany of the same optical properties in vegetation
models, but we show here that Chloridoideae might have
considerably higher near infrared (NIR) reflectance than other
lineages, possibly producing interesting optical variation and
affecting the surface energy balance and albedo (Ustin & Gamon,
2010) (Table 1). Foliar spectral traits are also correlated with
morphological and chemical traits related to nutrient cycling and
plant physiology (Dahlin et al., 2013; Serbin et al., 2014).

Grass lineages also show key differences in reproductive traits
and the timing of related biological events (e.g. leaf-out times) that
should be captured in models, especially those that include
demographic predictions (Davis et al., 2010). Chloridoideae
grasses have seeds with lower mass than other lineages (Liu et al.,

2012; Bergmann et al., 2017), and this may represent a life history
trade-off with higher seed production and other ‘fast’ growth
strategies (Adler et al., 2014). Wind versus animal dispersal
strategiesmight also affect diaspore size in a way not directly related
to disturbance (e.g. Westoby, 1998; Bergmann et al., 2017),
whereas some reproductive traits may also indicate fire-related and
disturbance-related adaptations. Phenological traits, such as flow-
ering and leaf-out times and their cues (which can include
disturbance factors), exhibit conservatism across many plant
lineages (Davies et al., 2013). Fire and herbivory are two globally
important and contrasting disturbances for grass-dominated
vegetation (Archibald & Hempson, 2016; Archibald et al., 2019)
and adaptations to both can be characterised by phenological and
reproductive traits in addition to physiological and leaf traits. It is
less clear how herbivory effects can be captured in such models,
given that many herbivore-related traits vary greatly in grasses
(Anderson et al., 2011). Many fire-related traits show patterns of
phylogenetic conservatism, with high flammability clustering into

Table 1 Common plant functional type (PFT) parameters from Land Surface Models (LSMs), and median lineage-based functional type (LFT) parameters
(interquartile range (IQR) in parentheses, where calculable) for three dominant grass lineages, taken from the literature and trait databases.

Category Parameter

PFT

Source

LFT†

C4 C3 Andropogoneae Chloridoideae Pooideae

Physiological Vcmax (lmol m�2 s�1) 39 90 1, 2 38 45.6 (4.4) 63.6 (28)
Jmax (lmol m�2 s�1) 400 100 3 180 108.1 (43) 128.8 (45)
Rd (lmol m�2 s�1) 0.8 1.1 1, 2 0.9a (0.2) 2a (1.4) 0.9a (0.7)
Phi (lmol lmol�1) 0.06 0.085 4, 5 0.06 0.06 0.09
Trange (°C) < 15.5 > 15.5 6 > 5‡ >�5‡ >�30 and < 5‡

Structural SLA (m2 kg�1) 16 33 7 33b (11) 29b (14) 25a (12)
LDMC (g g�1) – – – – –
SRL (m g�1) – – – – –
Culm height (cm) – – 150c (150) 80b (50) 60a (60)
R : S (g g�1) 2 2 7 0.4b (0.07) 0.3a (0.07) 0.4b (0.1)

Biogeochemical/spectral C : N (g g�1) 10 17 7 66.1b (14.7) 39.9a (22.2) 55.7ab (10)
Nrubisco (proportion) 0.09 0.137 7 0.05 (0.01) 0.08 (0.03) 0.2
Reflectance (300–2500 nm) – – – – –
e.g. rNIR (reflectance) 0.35 0.35 7 0.4 0.5 0.3

Anatomical/hydraulic IVD (lm) – – 85.7a (25.2) 136.8b (40) 242.1c (58)
Xylem dia. (lm) – – 7 21.4b (12.2) 16.8a (10.7) 19.3a (6.7)
Kleaf – – – – –
Vein hierarchy (Primary vein secondary vein�1) – – 0.11a (0.09) 0.29b (0.2) 0.58c (0.6)
Leaf width : Length – – 0.04b (0.05) 0.03a (0.04) 0.03a (0.02)

Life history LL (months) 1.68 12 7 2 (0.4) 1.1 2 (1.8)
1000-seed mass (g) – – 7 1.4b (2.4) 0.2a (0.4) 1.4b (3.8)
Life history (% annual) – – 7 0.25 0.28 0.15

Disturbance Curing rate (%) 80 20 8 80 50‡ 20
Bud bank – – – – –
Flammability (g s�1) – – – – –

Lineage assignments are based onOsborne et al. (2014). The table shows a subset of common parameters, with up to five parameters from each of six major
categories. Blank values in the plant/lineage functional type (PFT/LFT) columns signify parameters that are not typically included in LandSurfaceModels (LSM)
but arepotentially important for describing theecological behaviour of grasses. Boldednumberswith letters (i.e. a compact letterdisplay; sharinga letter (a, b, c)
indicates no difference) indicate significant differences with a Tukey’s test from simple linear model fits when all three lineages had at least three data points.
Sources are below.
1, Farquhar et al. (1980); 2, Collatz et al. (1992); 3, von Caemmerer (2000); 4, Ehleringer et al. (1997); 5, Collatz et al. (1998); 6, Sitch et al. (2003); 7, Oleson
et al. (2010); 8, Scheiter et al. (2012). Curing rate is the percentage cured 30 d after the end of the growing season, as described in Scheiter et al. (2012).
Abbreviations: C : N, carbon to nitrogen ratio; IVD, interveinal distance; Jmax, light saturated rate of electron transport; Kleaf, leaf hydraulic conductance;
LDMC, leaf drymatter content; LL, leaf lifespan; Phi, quantumefficiency; R : S, root to shoot ratio; Rd, dark respiration; SLA, specific leaf area; SRL, specific root
length; Vcmax, maximum carboxylation rate.
†Published citations for LFT values can be found in Methods Supporting Information S1. Anatomical data came from T. J. Gallaher et al. (unpublished).
‡Estimated value.
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particular lineages such as the Andropogoneae (Simpson et al.,
2016). Large-scale vegetationmodels that have simulated grass fires
in Africa have attributed faster curing (becoming dry fuel) rates to
C4 vegetation (Scheiter et al., 2012), and this behaviour appears to
be due largely to dominant Andropogoneae grasses.

We have identified large differences among LFTs, across six trait
categories, that are not captured by the standard PFT approach.
Many of these trait data have very low sample sizes (from1 to 1365)
and come from nonoverlapping species, highlighting the need for
systematic data collection for grasses. Such a data collection effort
would be an excellent opportunity to test for coordination among
trait axes in a phylogenetic context, which has rarely been done in
other systems, despite the likelihood that relatedness drives patterns
of trait covariation (e.g.Griffith et al., 2016; Salguero-G�omez et al.,
2016). Furthermore, intragroup (whether PFTs or LFTs) trait
variation deserves to be properly estimated (only some traits in
Table 1 have enough data to estimate variability) as convergence
and adaptation produce meaningful trait variation that should be
incorporated into models.

Potential for LFTs in other vegetation types

Many current PFTs implicitly represent groupings of closely
related lineages (e.g. pinaceous conifers, grasses). However, even in
these cases, biogeographic distributions and the coarseness of the
phylogenetic unit generate a lack of useful resolution. Currently,
there are efforts to incorporate species-level trait data;methods such
as those proposed by Cornwell et al. (2014) could be employed to
cluster species into prominent lineage-based groupings represent-
ing unique trait combinations. Phylogenies are hierarchical by
nature and allow the LFT approach to be scalable and adjustable to
the research question being addressed. While many technical
challenges still remain, the ability to remotely sense plant lineages
adds the potential for rapidly developing LFTs from spectral data
(e.g. Cavender-Bares et al., 2016). LFTs would be valuable for a
wide range of systems. For example, trees in Eurasian boreal forests
suppress canopy fires through the structure of their canopies,
whereas North American boreal trees enable greater intensity
canopy fires (Rogers et al., 2015). These distinctions led to major
differences inCO2 emissions and function (Rogers et al., 2015) that
might be captured in an LFT framework. First, the boreal tree
example is challenging because these communities are comprised of
closely related species that are ecologically different, potentially
requiring species-level parameterisation or being better represented
by fire-based PFTs. Second, LFTs for savanna tree communities
could better represent differing climatic responses that are driven by
unique evolutionary and biogeographic histories (Lehmann et al.,
2014;Osborne et al., 2018). Finally, tropical ecosystems such as the
dipterocarp forests in Southeast Asia would be well suited to LFTs
whichmight better represent carbon storage (Brearley et al., 2016).

Potential challenges with a lineage-based functional approach
include the fact that many plant traits do not show strong
phylogenetic conservatism (Cadotte et al., 2017),with several being
labile. There are likely spatial and phylogenetic scales at which the
LFT approachwill bemost appropriate, for example on a large scale

(regional to continental) lineage conservatism is common (Crisp
et al., 2009). By contrast, at the scale of local communities, we
might expect character displacement and limiting similarity
(processes that lead to reduced trait similarity of coexisting species)
could obscure phylogenetic patterns and limit the utility of LFTs, as
proposed here (Webb et al., 2002; Cavender-Bares et al., 2009;
HilleRisLambers et al., 2012).However, in grassy ecosystems, there
is evidence that the patterns of spatial ecological sorting of lineages
would be captured with LFTs also at landscape scales (e.g. within
Serengeti National Park, Anderson et al., 2011; Forrestel et al.,
2017). Ultimately, we focus on extant lineages that are functionally
important today, but their past interactions with other clades may
have shaped the biomes they inhabit (Edwards et al., 2010).

Conclusions

We conclude that an LFT perspective captures important
variation in functional diversity for grasses (Table 1). Our
analysis of current knowledge of grass functional diversity (in
terms of physiology, structure, biochemistry, phenology and
disturbance), distributions and phylogeny indicates that to
represent grass ecological behaviour, division of today’s ecolog-
ically dominant grasses into at least two C4 and at least one C3

LFT could potentially improve the representation in LSMs.
These proposed LFTs capture key evolutionary differences in
physiological, structural, biogeochemical, anatomical, phenolog-
ical and disturbance-related traits. We also highlight the need for
systematic trait data collection for grasses, which we show are
vastly underrepresented in trait databases, despite their ecological
and economic importance. More broadly, we outline the LFT
framework, which is highly flexible and has the potential for use
in a wide range of applications. Here, we speak to incorporating
LFTs as groupings in vegetation models, but we also suggest that
trait-based models might capture important biogeographic
variation (e.g. due to historical contingency) through the
inclusion of phylogenetic conservatism. We advocate the use of
phylogeny as a way to help guide and constrain the inclusion of
burgeoning plant trait data, to expand the range of functional
types considered by global vegetation models.
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Methods S1 Description of data and code for Table 1.
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