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Abstract
Grassland ecosystems are historically shaped by climate, fire, and grazing which are essential ecological drivers. These 
grassland drivers influence morphology and productivity of grasses via physiological processes, resulting in unique water 
and carbon-use strategies among species and populations. Leaf-level physiological responses in plants are constrained by the 
underlying anatomy, previously shown to reflect patterns of carbon assimilation and water-use in leaf tissues. However, the 
magnitude to which anatomy and physiology are impacted by grassland drivers remains unstudied. To address this knowledge 
gap, we sampled from three locations along a latitudinal gradient in the mesic grassland region of the central Great Plains, 
USA during the 2018 (drier) and 2019 (wetter) growing seasons. We measured annual biomass and forage quality at the plot 
level, while collecting physiological and anatomical traits at the leaf-level in cattle grazed and ungrazed locations at each 
site. Effects of ambient drought conditions superseded local grazing treatments and reduced carbon assimilation and total 
productivity in A. gerardii. Leaf-level anatomical traits, particularly those associated with water-use, varied within and across 
locations and between years. Specifically, xylem area increased when water was more available (2019), while xylem resistance 
to cavitation was observed to increase in the drier growing season (2018). Our results highlight the importance of multi-year 
studies in natural systems and how trait plasticity can serve as vital tool and offer insight to understanding future grassland 
responses from climate change as climate played a stronger role than grazing in shaping leaf physiology and anatomy.
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Introduction

The Great Plains is the largest expanse of grasslands in 
North America, reaching from Saskatchewan through Texas 
(Robinson et al. 2019; Jones et al. 2020). The community 
composition and productivity of native grasses in the Great 
Plains varies as a result of gradients in precipitation (longi-
tudinally) and temperature (latitudinally) (Teeri and Stowe 

1976; Sala et al. 1988; Lura et al. 2019). The impacts of 
these gradients are reflected in the grassland ecotones of 
the Great Plains (arid to mesic) that separate regions of 
shortgrass, mixed-grass, and tallgrass prairies (DeLuca and 
Zabinski 2011; Dixon et al. 2014). Each of these prairie sys-
tems are dominated by a few grass species that account for 
a majority of annual production. For example, Andropogon 
gerardii (tallgrass prairie) and Bouteloua gracilis (shortgrass 
steppe) can account for 70–90% of annual biomass in their 
respective ecosystems (Weaver 1968; Smith and Knapp 
2003; Sasaki and Lauenroth 2011; Lura et al. 2019; Hoff-
man et al. 2020).

Dominant grasses thrive in their native habitats, because 
each has evolved specialized functional traits as mechanisms 
of persistence within each region’s disturbance regimes 
(Anderson 2006; Bachle et al. 2018; Jardine et al. 2021). 
These adaptations include but are not limited to: (1) large 
shallow rooting systems comprised of fine roots that quickly 
absorb water (Nippert and Knapp 2007; Nippert et al. 2012); 
(2) belowground meristematic tissues (“bud banks”) which 
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provide new growth after senescence, fire, and grazing (Dal-
gleish and Hartnett 2006; Ott and Hartnett 2015; Ott et al. 
2019); and (3) specialized leaf morphology and anatomy to 
maximize light capture and minimize water loss to decrease 
the drought effects (Hameed et al. 2012; Nunes et al. 2020). 
While these functional traits improve our understanding of 
the continued success of grass species in their respective 
region, less is understood about how these traits vary across 
spatial scales within a broad geographic region. For instance, 
which anatomical and physiological traits confer persistence 
locally (tallgrass prairie) and do these traits express the same 
relationship across different locations and climates (Great 
Plains)?

Trait-related investigations of dominant  C4 grass species 
like A. gerardii have primarily focused on assessing pro-
ductivity, whole-leaf economics, or genomics/phenotypes 
(Avolio and Smith 2013; McAllister et al. 2015). Much of 
this research was built around a common garden experimen-
tal design, and has yielded many novel insights such as the 
genotypic changes in local populations (ecotypes) across 
regions (Mendola et al. 2015; Maricle et al. 2017; Galliart 
et al. 2019). In addition, other studies have determined that 
large intraspecific variation in functional traits regulating 
physiology exists in A. gerardii, enabling a single species 
to occupy a wide geographic and environmental breadth 
(Bachle and Nippert 2018, 2021; Bachle et al. 2018; West-
erband et al. 2021). To date, investigations of genotypic and 
physiological variability in A. gerardii have provided key 
perspectives on population-level plasticity across naturally 
occurring precipitation gradients (Avolio and Smith 2013; 
McAllister et  al. 2015). Understanding the relationship 
between anatomical and physiological traits within popu-
lations across multiple years may provide a more detailed 
understanding of how a single species responds to future 
climate variability. In addition, the intraspecific variation in 
a species’ physiology across these climate gradients may be 
heavily influenced by anatomical traits, which are currently 
poorly understood.

Anatomical traits are often not assessed because of the 
tedious and labor-intensive preparation and data collection, 
but information gleaned from these methods allows for 
deeper understanding of physiological mechanisms (Wahl 
and Ryser 2000; McElrone et al. 2004; Carmo-Silva et al. 
2009). Plant physiology has typically been constrained by 
variation in anatomical traits, because the structural frame-
work of tissue architecture sets limits for physiological 
function (Esau 1939; Furbank 2016; Bellasio and Lundgren 
2016). For instance, the innovation and diversification of 
xylem affect survival in drought conditions across functional 
types (Scoffoni et al. 2014; Hammond et al. 2019; Ocheltree 
et al. 2020). Also, alterations to stomatal anatomy and densi-
ties regulate water-usage, because stomata serve as the gate-
way for the flux of  CO2,  O2, and  H2O to and from the leaf. 

This regulation is essential, because  CO2 and  H2O fluxes 
directly impact both carbon and water balance at the leaf-
level, and the subsequent whole organism performance. In 
addition to carbon and water, nitrogen is also necessary for 
proper physiological functioning, all of which are required 
for cellular upkeep and development of anatomical tissues 
(Chaves et al. 2003; Lundgren and Fleming 2019).

Investigations focused on the anatomical changes of rela-
tively few species associated with different levels of car-
bon, nitrogen, and water availability are typically done in 
greenhouses or in agricultural settings and only focus on few 
traits—usually for the purpose of yield enhancement (Henry 
et al. 2012; Retta et al. 2016; Ermakova et al. 2019). While 
the importance of this research should not be overlooked 
due to its significance in feeding a growing global popula-
tion, these data are collected from controlled environments 
with abundant resources and such results may not apply to 
natural ecosystems. Under field conditions, resources for 
native species are typically variable and often limiting. In 
addition, morphological responses from annual agricultural 
species do not always translate to regions like the Great 
Plains, which is comprised of native perennial grasses that 
invest beyond a single annual reproductive cycle (Benson 
et al. 2004; Benson and Hartnett 2006). Currently, 60% of 
the Great Plains is now at risk of, or has previously been 
degraded due to anthropogenic pressures (e.g., agriculture 
and climate change) (Olimb and Robinson 2019), and the 
perennial grasslands that remain are used for cattle grazing. 
To our knowledge, a multi-year investigation across a cli-
mate gradient to assess the effects of climate in conjunction 
with cattle grazing on leaf-level anatomy and physiology 
has not been done for a native grass. This type of study will 
aid in determining mechanistic strategies at the leaf-level 
that constrain physiological responses to ecological drivers 
in the Great Plains.

Here, we investigate naturally occurring populations in 
their home environments under a range of environmen-
tal conditions. This approach allows for an assessment of 
responses to climate variability within a site and compari-
sons of variability across sites. This study aims to provide 
a mechanistic understanding of how varying climate and 
grazing impacts a dominant species’ (A. gerardii) physio-
logical and anatomical traits across a latitudinal gradient in 
the Great Plains. We hypothesized that: (1) due to site-level 
differences in climate histories across the latitudinal gradi-
ent, and contrasting growing season conditions in 2018 and 
2019, there would be significant differences in mean and 
variability (measured here as the coefficient of variation) 
of leaf-level nutrient content, anatomical traits, and instan-
taneous physiological responses across sites; (2) because 
anatomical traits constrain physiological responses to water 
availability, the existing trait relationships will show signifi-
cant differences between years sampled due to the disparity 
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in precipitation received; and (3) due to the stress of com-
pensatory growth and reallocation of resources, cattle graz-
ing will emphasize leaf-level anatomy and nutrient content 
differences between treatments and across locations.

Materials and methods

Site descriptions

This experiment was conducted at three separate locations 
dominated by A. gerardii within the tallgrass prairie region 
of the Great Plains during the 2018 and 2019 growing sea-
sons. These locations include: (1) a Long-Term Ecologi-
cal Research site (LTER), Konza Prairie Biological Station 
(Northern Kansas site: N. KS) located in the northern Flint 
Hills region of eastern Kansas USA (39.1 °N, 96.9 °W), (2) 
the Flint Hills Prairie Preserve (Southern Kansas site: S. KS) 
located at the mid-point of the Flint Hills region (38.2 °N, 
96.3 °W), and (3) the Platte River Prairies (Nebraska site: 
NE) located within the Big Bend region of south-central 
Nebraska USA (40.4 °N, 98.3 °W). All sites are owned by 
The Nature Conservancy (TNC) of Kansas and Nebraska. 
Data were collected from five 1-m2 plots equally distrib-
uted in cattle grazed and ungrazed locations across similar 
topographic positions (N = 10 plots at each site). The S. KS 
site was burned in the summer of 2017, but not in 2018 
or 2019, and grazed at 3 animal units (AU)  acre−1 (7.32 
AU  ha−1). This site is predominantly silty-clay soils that 
receives ~ 950 mm  year−1 precipitation. Two separate exper-
imental watersheds were utilized at N. KS, including the 
ungrazed watershed ‘2D’ and the grazed watershed ‘3CB’ 
(8 AU  acre−1 or 19.5 AU  ha−1), both of which were burned 
in 2019. N. KS receives ~ 870 mm of annual precipitation 
and is characterized by silty-clay soils (Bachle and Nip-
pert 2021). Experimental plots at the NE site were located 
in ungrazed and grazed pastures (8 AU  acre−1 or 19.5 AU 
 ha−1); both locations were burned in the spring of 2019. The 
NE site receives ~ 670 mm  year−1 with predominantly sandy 
soils. In 2018, the S. KS and N. KS experienced a drought 
that drastically reduced rainfall in the early (April–May) and 
mid-growing season (June–July).

Leaf physiology and anatomy

Gas-exchange rates were measured using a Li-Cor model LI-
6400XT (Li-COR Biosciences, Lincoln, NE, USA) equipped 
with an LED light source (maintained at 2000 µmol  m−2  s−1). 
 CO2 concentration was set at 400 ppm and relative humid-
ity in the chamber was maintained between 40 and 60%. 
Measurements were collected between 10:00 and 14:00 CDT 
to collect photosynthetic rates (An), stomatal conductance 
(gs), and transpiration rates (E) during two periods (June 

and August) in the 2018 and 2019 growing seasons. At each 
sampling period, leaves from three individual A. gerardii 
grasses were measured in each plot. To avoid confounding 
results due to leaf age, only new and fully expanded leaves 
were used for analyses. Measurements were recorded when 
gas-exchange levels remained stable for ~ 2 min. These same 
individual leaves were also used to determine nutrient con-
tent and anatomical traits within each growing season.

Following physiological gas-exchange measurements, 
the previously measured leaf tissues were then clipped 
(~ 30 mm) and immediately placed into FAA (10% forma-
lin/5% glacial acetic acid/50% ethanol) (95% EtOH/35% DI 
water) for vacuum infiltration to analyze anatomical traits. 
Leaf tissues were then cross sectioned to a 4 µm thick-
ness with a Leica RM2135 microtome (Leica Biosystems, 
Newcastle, UK), stained with Safranin-O and Fast Green 
(Ruzin 2000), and imaged at 100X and 200X on an Olym-
pus BH-2 compound microscope (Olympus America Inc, 
Melville, NY) (Fig. 1). We then quantified anatomical traits 
using IMAGEJ software (Rasband 1997) and the procedure 
detailed by Bachle and Nippert (2018). The selected ana-
tomical traits included: the total cross-sectional area meas-
ured (TMA), bundle sheath cell area  (BSA,), mesophyll area 
 (MSA), bundle sheath: mesophyll area (BS:MS), bulliform 
area (BA), xylem area  (XA), and xylem reinforcement (t/b), 
which is the ratio of xylem wall thickness (t) with xylem 
diameter (b). The following traits were measured on an area 
basis (as a percentage of TMA):  BSA,  MSA, BA, and VA. In 
addition, due to the small size of minor veins in the sampled 
leaf tissue, xylem characteristics were restricted to the major 
vascular bundles.

Leaf stoichiometry and biomass

Carbon (C) and nitrogen (N) contents were measured on 
the same leaves used for gas-exchange. These leaves were 
dried and ground for elemental composition of carbon and 
nitrogen per plot (protocol outlined in Connell et al. 2020). 
Aboveground biomass was determined by clipping herba-
ceous tissues in one 0.1 × 0.1 m frame per plot at the con-
clusion of each growing season. This biomass was sorted to 
exclude dead biomass (when necessary) and then dried at 
60 °C for 48 h and weighed to determine dry mass.

Statistical analyses

All analyses were completed in the statistical program R 
V3.5.3 (R Core Team 2020). We evaluated homogene-
ity of variances by examining residuals vs fitted, normal-
ity using qq-plots and, when necessary, a Shapiro–Wilk’s 
test. TMA and t were the only traits that required non-par-
ametric analyses (after attempting log transformations) via 
Kruskal–Wallace test accompanied with a post hoc pairwise 
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Wilcox test. To assess the effects of grazing and climate dif-
ferences between locations, we utilized repeated-measures 
mixed-effects model ANOVAs with separate models for each 
physiological, anatomical, and nutrient trait as the response 
variables, and location, grazing treatment, and year sam-
pled as predictor variables, and plot as the random effects. 
We reported the F values and binned the P values by levels 

of significance (Table 1). Tests were performed using the 
“lmer” function within the “lmerTest” package (Kuznet-
sova et al. 2017). We also performed a principal compo-
nent analysis (PCA) using the “prcomp” function within 
the “stats” package on the mean trait data across locations, 
grazing treatments, and years to summarize the relation-
ships and range of physiological, functional, and anatomical 

Fig. 1  a Long-term mean 
annual precipitation for each 
location (1981–2019); error 
bars represent standard error. b 
Growing season precipitation 
from May 1st to August 10th 
during 2018 and 2019. Shapes 
denote location (open circle, 
S. KS; open triangle, N. KS; 
open square, NE), while color 
denotes year (gray, 2018; black, 
2019)

Table 1  ANOVA results, 
reported as F values for leaf-
level physiological, anatomical, 
stoichiometric traits, and 
biomass

Subscript text in parentheses refers to data transformation necessary to meet assumptions of normality. 
ˆP < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001
An, photosynthetic rate; gs (SQRT), transformed stomatal conductance; E, transpiration rate;  TMALOG, log-
transformed total measured area;  BSA, bundle sheath area;  MSA, mesophyll area; VA, vein area; BS:MS, 
ratio of bundle sheath to mesophyll area; BA, bulliform cell area; XA, xylem area; t/b(LOG), log-transformed 
xylem reinforcement; N, nitrogen content; C:N, ratio of carbon-to-nitrogen content;  biomass(LOG), log-
transformed biomass

Trait Location Grazing treatment Year L × T L × Y T × Y L × T × Y

An 26.91*** 0.79 280.30*** 2.74ˆ 23.79*** 5.14* 0.23
gs (SQRT) 11.25*** 0.37 356.52*** 3.19 49.03*** 0.00 1.52
E 5.73** 0.08 1.05 1.48 51.92*** 7.61** 1.92
TMA (LOG) 5.25** 1.27 0.33 0.57 0.80 0.99 0.91
BSA 10.45*** 1.21 191.00*** 2.84ˆ 15.19*** 4.67* 0.39
MSA 1.05 7.46* 1.70 7.30*** 4.21* 3.09ˆ 0.40
VA 1.52 4.99ˆ 9.46** 4.59* 19.73*** 8.15** 4.53*
BS:MS 6.07** 0.33 61.63*** 2.00 8.24*** 6.25* 0.37
BA 0.04 0.32 62.08*** 1.94 19.88*** 6.00* 1.70
XA 1.03 0.17 14.00*** 4.96** 3.00ˆ 9.97** 8.19***
t/b(LOG) 1.68 2.10 31.08*** 7.05** 4.94** 1.03 6.08**
N 6.66*** 2.91 137.86*** 1.05 1.14 0.04 0.58
C:N 11.36*** 4.75* 73.38*** 2.35ˆ 0.58ˆ 0.06 3.57*
Biomass (LOG) 57.15*** 67.19*** 5.52* 3.09ˆ 2.49ˆ 7.50** 0.58
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responses. We did not include traits such as t (xylem thick-
ness) and b (xylem diameter) as they are already components 
of xylem reinforcement (t/b). In addition, we did not include 
climate parameters here; rather, we focused on key traits 
coming from our predictor variables. Standard deviations, 
proportion of variance, cumulative proportions, and load-
ing scores of principle components are located in Table S3.

Results

Leaf‑level physiological traits

Leaf-level gas-exchange in A. gerardii varied by location 
(P < 0.005), but not by grazing treatment (P > 0.40) (Fig. 2; 
Table 1). E was statistically similar across the years sampled 
(P > 0.05; Fig. 2C; Table 1). Grasses at NE had the highest 
gas-exchange rates in 2018, while S. KS displayed the high-
est rates in 2019 (Fig. 2). An and gs increased between 2018 
and 2019 (P < 0.001), most notably at S. KS (74% and 156%, 

respectively) and N. KS (119% and 150%, respectively) 
(Fig. 2A, B). In addition, there was an interaction between 
location and year sampled for both An and gs (P < 0.001; 
Table 1). While there was no statistically significant latitu-
dinal trend for E and gs discernible in 2018 (Fig. 2B, C), An 
was observed to increase with growing season precipitation 
and a decrease with growing season temperatures regardless 
of grazing.

Internal anatomical leaf traits

The total measurable area of internal anatomical traits 
(TMA) varied significantly among locations (P < 0.05) but 
remained statistically similar across grazing treatment and 
year (P = 0.29; 0.57, respectively; Table 1). Specifically, 
TMA at S. KS was significantly smaller compared to other 
locations in 2019 (P < 0.05; Table 1). Additionally,  BSA was 
displayed an interaction between the location and year sam-
pled, with a significant increase in  BSA from 2018 to 2019 
(P < 0.001; Table 1). In 2018,  BSA in samples from N. KS 
was significantly higher than either S. KS or NE; however, 
S. KS samples contained the highest  BSA in 2019 (P < 0.05; 
Table 1). In addition, C:N ratios,  MSA, and biomass were 
the only traits that were affected by the grazing treatment, 
but only within N. KS in 2019 (P < 0.05; Table 1). Over-
all,  MSA did not change between years nor among locations 
(P > 0.05), maintaining ~ 40% of TMA.

The ratio of bundle sheath area and mesophyll area 
(BS:MS) displayed significant effects from location, year, 
and their interaction (P < 0.03, P < 0.0001, P < 0.0001; 
Table 1). VA varied significantly between years (P < 0.05), 
but was not affected by grazing or location sampled 
(P > 0.05, P = 0.056; Table 1). VA at S. KS and NE increased 
from 2018 to 2019; in contrast, VA at N. KS decreased 
(Table S2). Tissues within VA were consistently between 
12 and 18% of TMA (Table S2). BA did not vary across 
locations (P = 0.96) or grazing treatment (P = 0.59; exclud-
ing N. KS in 2019), but significantly decreased from 2018 
to 2019 in all locations except N. KS (P = 0.25; Fig. 3B; 
Table 1). In addition, TMA consisted of ~ 20–30% BA across 
each location, year, and grazing treatment (Table S2). XA 
also increased across years sampled (Fig. 3; P < 0.005) but 
remained statistically similar across locations and grazing 
treatment (P = 0.36, P = 0.69, respectively; Table 1). S. KS 
was the only location that exhibited a large difference in 
XA between control and grazing treatment in both 2018 and 
2019 (P < 0.02, P < 0.005, respectively), while grazing only 
impacted XA at N. KS in 2018 (P < 0.05; Fig. 3A; Table 1). 
Finally, xylem reinforcement (t/b) followed a similar pat-
tern to XA and significantly decreased across years sampled 
(Table 1; P < 0.005), but did not differ across locations or 
grazing treatments (P > 0.05; Table 1). Microanatomical 
traits displayed similar general trends with growing season 

Fig. 2  Gas-exchange collected at each site and treatment during the 
2018 (gray) and 2019 (black) growing seasons. a Photosynthetic rate 
(An); b stomatal conductance to vapor (gs); c transpiration rate (E). 
Thickened lines represent the median value; upper and lower edges of 
box represent the interquartile values (25th and 75th percentiles)
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temperature and climate as leaf-level physiological traits; 
however, our results also reflect an increased coordination 
between internal leaf tissues specific to water-use.

Stoichiometry and productivity

Carbon and nitrogen contents in A. gerardii leaves varied 
according to year and location, but C:N was the only stoi-
chiometric measurement affected by the grazing treatment 
(P > 0.05; Table 1). Leaf nitrogen content was consistently 
higher in 2019 than in 2018 (P < 0.0001; Table 1); grass 
leaves at NE had the highest nitrogen content, regardless 
of year (Table S1). In addition, C:N ratios were higher in 
2018 than 2019 and varied by location sampled and grazing 
treatment (P < 0.05; Table 1). The C:N ratio was higher at 
both S. KS and N. KS relative to NE in both years sampled, 
regardless of treatment (Table S1). Aboveground biomass 
varied by location, year, and grazing treatment (P < 0.05; 
Table 1). NE was the most productive location in both 2018 
and 2019, in both grazed and ungrazed plots (Table S1). N 
was observed to increase positively with traits specific to 
carbon assimilation including  BSA and An in both grazed 
and ungrazed treatments (Fig. 4).

Trait relationships and variation

While traits did show relationships with average climate 
parameters (MAP and MAT) for the three sites, grazing had 
little effect on most traits and relationships (Table S1, S2). 
However, higher temperatures were associated with lower 
N content, higher C:N ratios, and decreased gas-exchange 
rates (Table S1). Trait data collected across locations, years, 

Fig. 3  Boxplots of anatomical data collected at each site and treat-
ment during the 2018 (gray) and 2019 (black) growing season. a 
Mean xylem area (XA); b mean bulliform cell area (BA). Thickened 
lines represent the median value; upper and lower edges of box repre-
sent the interquartile values (25th and 75th percentiles)

Fig. 4  Linear regression relat-
ing leaf-level nitrogen content 
and mean photosynthetic 
rate at each location and year 
(mean ± SE). a Relationship 
across years; b relationship 
separated by treatment. Shapes 
denote location (circle, S. KS; 
triangle, N. KS square, NE), 
while color denotes year (gray, 
2018; black, 2019)
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and grazing treatment displayed statistically significant 
variation (Table S1, S2). The mean coefficient of variation 
(CV) in physiological traits (An, gs, and E) was significantly 
higher than the mean CV in anatomical traits (Fig. 5A, 
B). However, water-usage/storage traits (XA, t/b, and BA), 
were responsible for the majority of anatomical variation 
(Fig. 5C). In addition, slight changes in anatomical CV were 
observed between years and locations, while physiology dis-
played significantly higher CV in 2018 than 2019 (Fig. 5). 
According to our PCA analyses, axis 1 and 2 cumulatively 
explained 60.9% of the variation in traits (Fig. 6). Physi-
ological and anatomical trait relationships were more dis-
tinct when grouped by year (Fig. 6A) than grazing treatment 
(Fig. 6B), which revealed higher gas-exchange rates,  BSA, 
 MSA, and  XA with increased rainfall received in 2019, while 
traits associated with the drier 2018 included t/b, C:N, and 
BA (Fig. 6A). In addition, there was increased dispersion 
in 2018 and sites were also more clustered in 2018 when 
compared to 2019 (Fig. 6B).

Discussion

Climate histories in grassland ecosystems are often vari-
able compared to other biomes (Zhang et al. 2010; Knapp 
et al. 2015; Flanagan et al. 2017). Our data illustrated that 
the pattern of variation in response to wet/dry years was not 
uniform across locations and these responses to interannual 
climate had a larger effect than responses to cattle grazing. 
Here, our results emphasize the large differences in physi-
ological and anatomical responses that can exist within a 
widespread  C4 grass species (A. gerardii) across multiple 
years and locations with distinct climate (precipitation and 
temperature) and variable management histories (i.e., graz-
ing) (Fig. 1).

A large number of studies have investigated how the dom-
inant  C4 grass species A. gerardii responds to changes in 

Fig. 5  Coefficient of variation (CV) at each location and year. a 
Combined mean CV for the photosynthetic rate (An), stomatal con-
ductance (gs), and transpiration rate (E). b Combined mean CV for 
all anatomical traits (excluding redundancies). c Combined mean CV 
for anatomical traits that influence water storage or transport (XA, t/b, 
BA). Colors denote year of sampling (gray, 2018; black, 2019)

Fig. 6  Principal components analysis (PCA) of mean trait values for 
A. gerardii at each location and year. This plot provides a summary 
of populations in multivariate trait space using the first two PC axes, 
which together account for 60.9% of the trait variation. a Grouped 
across years; b grouped by treatment. Shapes denote location (circle, 
S. KS; triangle, N. KS square, NE), while color denotes grouping: a 
gray, 2018; black, 2019. b Light green, grazed; dark green, ungrazed. 
Information concerning PCA axes importance and subsequent load-
ings are located in Table S3
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precipitation (Knapp 1985; Dietrich and Smith 2016; Hoff-
man et al. 2018). However, a few studies have compared 
responses to multiple key grassland ecosystem drivers (fire, 
climate, and grazing), which have been repeatedly shown 
to impact physiological responses and biomass (O’Keefe 
and Nippert 2017; O’Connor et al. 2020; Connell et al. 
2020). In agreement with our first hypothesis, significant 
differences in leaf-level physiology, anatomy, stoichiom-
etry, and biomass were observed across sites and between 
years in this study. The long-term climate histories of each 
location (Fig. 1) were responsible for shaping functional 
traits of local populations, allowing for site-specific leaf-
level anatomy and physiology (Figs. 2, 3; Tables 1, S1, S2) 
(Hoffman and Smith 2020; Bachle and Nippert 2021). The 
drought conditions during 2018 at both Kansas locations 
resulted in significantly reduced photosynthetic rates, stoma-
tal conductance, and leaf nitrogen content (Fig. 2; Tables 1, 
S1). Increasing aridity and water stress decreases stomatal 
aperture, allowing for reduced water loss at the leaf-level; 
however, long durations of water stress can lead to carbon 
starvation (Lawson and Matthews 2020; Nunes et al. 2020). 
Similarly, decreased XA and increased BA were also observed 
in 2018 (Fig. 3), reflecting changes in water-use strategies. 
Previous research indicates that increased XA allows for 
greater water transport, but it also increases the likelihood 
of cavitation during droughts or when the water column is 
under high tension (Olson et al. 2020). Therefore, A. gerardii 
may be coordinating both instantaneous (gas-exchange) and 
structural/investment (anatomical) mechanistic strategies in 
response to decreased water availability.

Intraspecific trait variability (CV) was statistically differ-
ent between years, supporting our first hypothesis, but rela-
tively similar across locations (Fig. 5). This result is surpris-
ing due to the different climatic and management histories 
of each location (Fig. 1). The greatest variation was reported 
for gas-exchange measurements (An, gs, E) in 2018, which 
were ~ 2 times higher than the following year (at both S. KS 
and N. KS) (Fig. 5A). While high variability may be inherent 
to the instantaneous nature of gas-exchange measurements, 
the CV of physiological responses in 2019 was similar to all 
anatomical traits regardless of function (Fig. 5B, C). This 
decrease in physiological CV may indicate a baseline physi-
ology, and associated physiological plasticity of A. gerardii, 
when water is less limiting. Mean anatomical traits varied 
significantly between 2018 and 2019, and there was little 
change in variability (CV) across years or grazing treatment 
(Fig. 5B, C). In fact, most anatomical variation resulted from 
water-specific traits (XA, t/b, BA) (Fig. 5C). This diversity in 
functional trait responses has been previously reported to 
protect individuals and populations from detrimental effects 
of drought (Mori et al. 2013; Kreyling et al. 2017; Rob-
erts et al. 2019). In addition, such variation may also aid in 

protecting populations from the potentially negative effects 
from grazing.

While previous research has indicated that anatomical 
traits can influence/constrain physiological responses to 
changes in water availability (Christin et al. 2013; Guha 
et al. 2018; Edson-Chaves and Graciano-Ribeiro 2018; War-
gowsky et al. 2021), a few studies have analyzed physiology, 
stoichiometry, and anatomy of the same leaf across multiple 
years and locations. The importance of this sampling tech-
nique allowed us to analyze relationships of both functional 
trait mean and variability (CV) (Figs. 4, S1; Tables S1, S2). 
These results emphasize how disparate climates across years 
(i.e., 2018 and 2019) can result in dissimilar relationships 
among and between traits and climate variables (Fig. 4; 
Tables S1, S2), thereby supporting our second hypothesis. 
For instance, A. gerardii photosynthetic rates correlated 
positively with increasing leaf nitrogen content (Fig. 4A) 
when analyzed between years. However, this seemingly 
tight relationship breaks down when analyzing each year 
and treatment separately (Fig. 4B), emphasizing the impor-
tance of multi-year studies. PCA results also indicate the 
importance of a multi-year experimental design to reveal 
mechanistic trait responses and relationships to contrasting 
growing seasons (Fig. 6). While it is well understood that 
higher rainfall can correspond to increased carbon assimila-
tion observed in gas-exchange rates and biomass (Fig. 6A), 
the more interesting results can be seen at the anatomical 
level. For instance, our data indicate that tissues responsi-
ble for water conservation and water allocation/usage were 
diametrically opposed across 2018 and 2019. Larger xylem 
area (XA) is beneficial in years with more rainfall, while 
A. gerardii would benefit with increased water storage (BA) 
and the strengthening of the xylem walls (XA) during dry 
years (Fig. 6A). Increasing t/b provides a more rigid con-
duit that decreases the likelihood of cavitation under drought 
stress and may also explain the increased C:N as more car-
bon investment would be necessary to thicken xylem walls 
(Mauseth 1988). In addition to total growing season pre-
cipitation, the timing of precipitation is known to impact 
grassland productivity (Nippert et al. 2006; Craine et al. 
2012), which is ultimately a result of altered anatomy and 
physiology (Fay et al. 2002; Wang et al. 2016; Lemoine et al. 
2018). For example, high early growing season precipitation 
results in larger vessel areas with greater transport potential 
following spring rains. In contrast, early season droughts can 
constrain tissue develop and result in smaller vessel areas 
(example in Fig S1), which may reduce productivity across 
the growing season (Mauseth 1988).

Similar to climate variability and fire, responses to 
grazing are typically examined at the community or eco-
system levels, while less is understood about the physi-
ological and anatomical mechanisms responsible for 
those responses (O’Keefe and Nippert 2017). However, 
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grazing and other forms of herbivory have been previously 
observed to increase gas-exchange rates to compensate for 
the loss of tissue (Pinkard et al. 2011; O’Connor et al. 
2020), which can allow for increased carbon assimilation 
but also increase water loss (Bertolino et al. 2019). Con-
trary to our expectations (hypothesis 3), we observed few 
statistically significant responses attributed to grazing. 
Gas-exchange rates within cattle grazed locations in this 
study were nearly identical to ungrazed locations (Table 1; 
Fig. 2), even during the drier 2018 growing season. In 
addition, only three functional traits were impacted by the 
grazing treatment:  MSA, C:N ratios, and biomass produc-
tion (Table 1); all of which correspond to an increased leaf 
size. Cattle grazing did impact functional trait variability, 
but only during the 2018 growing season and only in phys-
iological and water-use anatomical trait CV (Fig. 5). The 
overall lack of grazing response may be due to several fac-
tors including: (1) stocking rates at each location may not 
be intensive enough to reflect substantive grazing pressure; 
(2) the experimental design may not have adequately cov-
ered/represented each site and subsequent treatment; (3) 
due to the evolutionary history of A. gerardii in the Great 
Plains, a heightened grazing intensity may be necessary 
to induce alternative physiological responses. One such 
adaptation may include the innately large rooting systems 
of native grass species which that absorb water efficiently 
and can serve as carbon reserves during drought (Weaver 
and Darland 1949; Blair et al. 2014), which could have 
compensated for the stress exhibited aboveground.

Our results highlight how trait plasticity can serve as an 
important tool for understanding the anatomical and physi-
ological mechanisms that facilitate wide distributions of 
a dominant grass species exposed to varying management 
strategies (i.e., cattle grazing). Drought conditions in 2018 
resulted in decreased gas-exchange rates and subsequent 
biomass production, irrespective of grazing. However, 
increased water availability in 2019 facilitated higher gas-
exchange rates and the doubling of aboveground biomass. 
In addition, there was significant variation in anatomical 
traits across locations and between sampling years. Such 
leaf construction strategies frame instantaneous physi-
ological responses to climate variability, and also other 
grassland drivers (i.e., grazing and fire). Results from this 
study underlie the importance of collecting multiple years 
of data from native species in natural environments. Our 
data also emphasize the need for increased anatomical 
research, as we clearly demonstrate site and climate-spe-
cific leaf construction strategies are important for under-
standing and contextualizing physiological responses in a 
dominant grass species.
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