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Abstract

In the context of a randomized experiment, I identify treatment effect het-

erogeneity across endogenous post-assignment decisions. Unlike existing ap-

proaches, I do not rely on any instruments or specific experimental design.

Instead, I exploit a baseline survey to proxy for control outcomes. The proxy

variable must be similar to the control outcome in rank orders, but need not be

in their levels. I then apply this strategy to a microcredit experiment with one-

sided non-compliance to identify the average treatment effect on the treated

(ATT). In microcredit studies, a direct effect of the treatment assignment has

been a threat to identification of the ATT based on an IV strategy. I find

the IV estimate for the ATT is 2.3 times larger than my preferred estimate.

I also extend this analysis to two-sided non-compliance including differential

attrition problem. R package ptse is available for this analysis.

1 Introduction

Randomization of treatment assignment identifies the average treatment effect if

everyone complies with the assigned treatment. However, randomization becomes
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insufficient for identification when we step out of the case of perfect compliance. Un-

der imperfect compliance, the average difference in outcomes between the treatment

and control groups becomes the intention-to-treat effect (ITT). The ITT is usually

not the primary parameter of interest. The ITT is not the effect of the treatment as

not everyone takes the treatment. Instead, the ITT is the effect of the assignment,

and is a weighted mean of heterogeneous treatment effects by the treatment take-up

behavior. Alternatively, we are frequently interested in the treatment effect for those

who take up the treatment, called the average treatment effect on the treated (ATT).

The ATT reveals the effect of taking the treatment for the subgroup of the treated,

rather than the effect of treatment assignment as the ITT identifies. However, the

ATT is not identified just by randomization of treatment assignment.

I propose a general strategy to identify the treatment effect heterogeneity across

endogenous post-intervention decisions. I do not rely on instruments or other specific

designs which may not be available. Instead, I use an observation from a baseline

survey as a proxy for the control outcome. As a particularly important case, I adopt

the strategy to identify the ATT when the conventional assumption of no direct effect

of treatment assignment may not hold and therefore there is no valid instrument. In

the upcoming application to the experimental study of microcredit, I demonstrate

that the direct effect is not just an interesting parameter in itself, but also crucial in

the estimation of the magnitude of the ATT.

Development economists are interested in the effect of expanding access to micro-

credit opportunities in developing countries. For example, Angelucci et al. (2015),

Banerjee et al. (2015) and Crépon et al. (2015) ran large-scale microcredit exper-

iments. In these experiments, a microcredit company visits treatment villages to

provide microfinance opportunities to all households in those villages. Despite new

credit being available, not all people in treated villages borrow from the microcredit

firms. We wish to evaluate the effects of microcredit on those who borrowed from

the microcredit firms. However, the conventional IV strategy is invalid if access to
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the microcredit has a direct effect on business outcomes of interest. For example,

availability of credit may change the behavior of the units including those who do not

ex-post use the credit. The experimental randomization at the village level rather

than an individual level also may generate a direct effect of access. For example, the

local village economy may be altered by the equilibrium effect through the interest

rate of informal lending or local sale price changes. Transfers to and from relatives

or friends also generate positive or negative spillover to those who do not borrow

the credit. I point out that the IV estimate of the ATT, which is consistent under

the assumption of no direct effect, is subject to bias if the direct effect is non-zero,

and the bias can be enormous even for a small direct effect when the take-up rate is

relatively small. Using the study of Crépon et al. (2015) which collected a detailed

baseline survey, I estimate the ATT as the average effect of both treatment access

and microcredit take-up for those who decide to take-up the microcredit treatment,

and I separately estimate the average direct effect of the microcredit access for those

who do not take-up the microcredit treatment. I find that the IV point estimate of

ATT is 2.3 times larger than my preferred estimate. The suggested magnitude of the

ATT estimate and the sign of the estimated direct effect implies the possibility that

there may be a small but positive direct effect. I find that the direct effect, while

small, results in an enormous bias in the IV point estimate of the ATT.1

The contribution of this paper is to provide a non-parametric identification of

treatment effects conditional on the treatment take-up decision. The general strat-

egy covers identification of subgroup effects of randomized treatment conditional on

subgroups generated by endogenous post-treatment variables. In this paper, I study

specific cases of randomized experiments with imperfect compliance. In section 2,

I show the subgroup effects conditional on treatment take-up are the ATT or the

direct effect for the case of one-sided non-compliance. In section 6, I consider its ex-

tension to the Local Average Treatment Effect (LATE) with additional assumptions.

1Crépon et al. (2015) defines people with predicted probabilities of borrowing lower than 30%
as a subgroup who would not borrow from the microcredit firms and concludes that there is no
evidence of externality. For the difficulties in their approach, see the application of section 5.
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In Biostatistics, studies on these subgroup effects are called principal stratification

as formally defined in Frangakis and Rubin (2002). These studies rely on other as-

sumptions which may not be plausible for some problem setup. For example, their

identification strategies rely on exclusion restrictions (Imbens and Angrist, 1994 or

Angrist et al., 1996) or a parametric model (Hirano et al., 2000 and Imbens and

Rubin, 2015)2. Zhang and Rubin, 2003 and Rubin, 2006 also propose partial identi-

fication based on the monotone treatment response type of assumptions as in Manski

(1997).

My approach relies on a proxy variable from a baseline survey for the control

outcomes. My key assumption is the rank similarity assumption (Chernozhukov

and Hansen, 2005 and Athey and Imbens, 2006)3 in addition to other standard as-

sumptions. Under the rank similarity assumption, the treatment take-up may be

endogenous. Therefore, the proxy variable and the control outcome may be corre-

lated with the treatment take-up even when the treatment take-up has no causal

effect on the proxy variable and the control outcome. This rank similarity assump-

tion imposes restrictions on the latent rankings of the proxy variable and the control

outcome. The latent ranking of an outcome is a uniform random variable normal-

ized to [0, 1] representing underlying percentile associated with the outcome mea-

sure. The rank similarity assumes that the distributions of latent rankings for the

proxy variable and for the control outcome are the same conditional on the treat-

ment take-up.4 With a baseline survey, the underlying data structure is related to

the Change-in-Change model studied by Athey and Imbens (2006). However, the

baseline survey do not generate the DiD structure as the treatment group has a

2More precisely, these studies employ a Bayesian approach with a parametric assumption for the
relation between the potential outcomes and the post-intervention variables conditional on model
parameters. At least in the frequentist point of view of the restriction, their parametric assumptions
imply the conditional exogeneity of the post-intervention variable to the potential outcomes.

3My proposed assumption is slightly weaker than the original assumption of Chernozhukov and
Hansen (2005). Nevertheless, similar lines of arguments would apply to rationalize both assump-
tions.

4If the treatment take-up is exogenous to and has no causal effects on the proxy variable and the
control outcome, then this equivalence of conditional distributions is trivial as the (unconditional)
distributions of the rankings are normalized to a uniform distribution on the support of [0, 1].
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non-compliance nature. Therefore, the DiD procedure do not apply to the problem

studied in this paper unlike Athey and Imbens (2006).5 Furthermore, the support

assumption (Assumption 3.4 of Athey and Imbens, 2006) is not an additional re-

striction as I exploit the randomization. With the non-compliance nature, the data

structure is similar to but different from the Fuzzy Differences-in-Differences model

studied by de Chaisemartin and D’Haultfoeuille (2017). First, their rank imputation

approach in de Chaisemartin and D’Haultfoeuille (2017) exploits the stable control

group assumption (Assumption 2 in de Chaisemartin and D’Haultfoeuille, 2017) for

the point-identification that excludes one-sided non-compliance problems studied in

this paper. Second, their solution to two-sided non-compliance problems differs from

mine as well. My strategy first identifies the heterogeneous treatment effects or

the principal stratification, and then I impose a restriction on the heterogeneity to

identify the LATE. On the other hand, de Chaisemartin and D’Haultfoeuille (2017)

assumes the stability which excludes an example of the attrition bias as the treatment

of “attrition” do not occur in the baseline survey.

Researchers have used the rank similarity assumption or its stronger concept of

the rank invariance assumption in the literature of counterfactual studies that use

rank imputation strategies (Juhn et al., 1993, Altonji and Blank, 1999, Machado

and Mata, 2005 and Athey and Imbens, 2006). Most recently, Han (2018) uses the

rank similarity assumption to identify dynamic treatment effects with non-separable

models. The rank similarity assumption is generally not testable. For the quantile

treatment response model (Chernozhukov and Hansen, 2005), Kim and Park (2017)

proposes a testing procedure for rank similarity in the presence of overidentification.

Unfortunately, their procedure does not apply to my model as their overidentification

restriction arises from the exclusion restriction of multiple instruments.6

5By the non-compliance nature, the trend of the treated in the treatment group must be com-
pared with those people who would have treated if they were in the treatment group but assigned
to the control group. As we do not know the subgroup in the control group, the standard DiD is
not feasible.

6Dong and Shen (2018) and Frandsen and Lefgren (2018) propose other testing procedures of
the rank similarity assumption, but their restrictions are stronger than the original assumption
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This paper also provides an estimation and an inference strategy similar to the

procedures for Change-in-Change models (Athey and Imbens, 2006, Melly and San-

tangelo, 2015 or Callaway et al., 2018). As my primary focus is on mean effects rather

than on quantile differences, I propose an estimator based on the semi-parametric

distribution regression (Chernozhukov et al., 2013) instead of the quantile regres-

sions as in Melly and Santangelo (2015) or Callaway et al. (2018).7 I show weak

convergence of the empirical process for the proposed counterfactual estimator and

the validity of bootstrap inference. I also adopt the recent study on cluster robust

weak convergence results by Davezies et al. (2018) to accommodate many relevant

experimental studies with cluster dependencies.

The organization of this paper is as follows. In the next section, I introduce

notations and parameters of interest as the subgroup effect. In section 3, I list formal

identification assumptions for a general argument of the identification of the average

subgroup effects. Later in the same section, I specialize the general framework to the

case of one-sided non-compliance. In section 4, I develop the estimation procedure

and the asymptotic properties of the estimators. I conclude that bootstrap inference

is valid and the inference strategy is cluster-robust. In section 5, I apply the one-

sided non-compliance procedure to the microcredit application. Finally, in section

6, I extend the framework to the case of two-sided non-compliance models including

differential attrition problem, followed by a conclusion.

(Chernozhukov and Hansen, 2005) and my proposed assumption.
7As is discussed further in the estimation section, there are advantages and disadvantages of

the quantile regression and distribution regression. While the quantile regression is straightforward
to estimate the conditional quantile functions, it requires tail-trimming procedure to estimate the
conditional distribution functions. For the primary purpose of the mean effect unconditional of
the covariates, I need to obtain the conditional distribution functions for the whole support of the
outcome of interest.
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2 Parameter of Interest

2.1 General Idea

Consider a standard model of potential outcomes. Let T ∈ {0, 1} be the treat-

ment assignment, and let Y be an observed outcome generated out of two potential

outcomes Y1 and Y0 indexed by the intention to treatment T ∈ {0, 1}8 such that

Y = TY1 + (1− T )Y0.

The average effect of assignment T ,

E[Y1 − Y0] = E[Y1]− E[Y0]

is called the intention to treatment effect (ITT). The ITT includes any direct effect

of treatment assignment as well as any effect of treatment take-up enabled by the

treatment assignment.

Let W denote pre-treatment covariates observed in a baseline survey. if the

following conditional ignorability assumption (Rosenbaum and Rubin, 1983)

Assumption 2.1 (Conditional Ignorability).

Yt |= T |W,∀t ∈ {0, 1},

is satisfied, then the following conditional ITTs are identified:

Lemma 2.1. If assumption 2.1 holds, then

E[Y1 − Y0|W = w] = E[Y |T = 1,W = w]− E[Y |T = 0,W = w]

for every w ∈ W.

8In this paper, I consistently use one-index potential outcome Yt as the potential outcome if the
unit was given the assignment T . One may view this assignment as one of two treatments (T,D)
since the assignment T would have a direct effect on the outcome Y .
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Although this ITT represents the average effect of the assignment T , usually

the ITT is not the ultimate goal of the study. The parameter of interest is often

average effect of the treatment, not the average effect of assignment to treatment.

Let D be a binary variable representing the treatment take-up that the units choose

endogenously posterior to the assignment T .

One consideration is to see the heterogeneity in E[Y1 − Y0] by the treatment

take-up behavior D. For example, this paper focuses on the subgroup mean effects

E[Y1 − Y0|D = d, T = 1]

and the subgroup quantile differences9

QY1|D,T (τ |d, 1)−QY0|D,T (τ |d, 1)

for each value of d ∈ {0, 1}.

These parameters represent the effect of the treatment assignment T for those

who would take D = d, d ∈ {0, 1} under treatment assignment group T = 1. These

parameters are essential to understanding the effect of the treatment take-up D and

the direct effect of the assignment T separately.10

In particular, the subgroup mean effects defined above may be equivalent to a

well-known parameter of interest. For the case of a one-sided non-compliance model,

this subgroup mean effect for D = 1, T = 1 is equivalent to the average treatment

9This quantile difference is not quite a treatment effect, as this parameter does not take the
form of mapping from the treatment effect Y1 − Y0. As mentioned in Abbring and Heckman
(2007), one may be interested in quantiles of Y1−Y0 rather than the quantile difference in the main
text. However, the identification of the alternative parameter requires generally harder assumptions
than the assumptions studied in this paper. Therefore, this paper does not study the alternative
parameter.

10Furthermore, these parameters may be essential to the evaluation of a manipulable policy T . If
policymakers face non-uniform weights on their welfare function, then the unconditional ITT should
not be sufficient to decide whether the policy should be implemented. For example, the policymaker
may want to avoid losses in welfare. Policymaker may want to have heterogeneous effects. The tax
revenue or the economic development may be driven stronger by larger effects for a small population
rather than smaller effects for the whole population. Similarly, a policymaker might also want to
have homogeneous effects when the equality is an essential factor for their decisions. The ITT does
not help in the decision of the policy implementation for the criterion.

8



effect on the treated (ATT) as parameter shown below.

2.2 ATT as the Subgroup Mean Effect under One-Sided

Non-Compliance

One-sided non-compliance is a randomized experiment where not all units assigned to

treatment group T = 1 take the treatment, i.e., have D = 1, but the treatment is not

available for units assigned to the control T = 0. For one-sided non-compliance, the

subgroup effect for T = 1, D = 1 is the average treatment effect on treated (ATT).

The application to the microcredit experiment of Crépon et al. (2015) is an example

of one-sided non-compliance to microcredit take-up D in response to the treatment

assignment T of the microcredit promotion. T is a randomized offer and promotion

to the microcredit service, and D is the realized take-up of the credit. Furthermore,

the control group has no access to the credit D. Namely, D = 0 whenever T = 0.

In this case, the observed outcome is one of the three potential outcomes Y11, Y10

or Y0 such that

Y = T (DY11 + (1−D)Y10) + (1− T )Y0

where Y11 is the outcome given the offer T = 1 and taking the credit D = 1, Y10 is

the outcome given the offer T = 1 but not taking the credit D = 0, and Y0 is the

outcome of the control group with T = 0 therefore D = 0. Then the subgroup mean

effect is rewritten as

E[Y1 − Y0|T = 1, D = d] = E[Y1d − Y0|T = 1, D = d].

In particular,

E[Y11 − Y0|T = 1, D = 1]

is the average treatment effect on the treated, the ATT, and

E[Y10 − Y0|T = 1, D = 0]
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is the direct effect of the assignment T for those who do not take-up the credit,

i.e., D = 0. The random variable Y10 − Y0 is refereed to as a direct effect in the

Mediation analysis literature (Imai et al., 2010, Pearl, 2014), and I will call the

average of this effect for those assigned to treatment but who do not take-up the

treatment, E[Y10 − Y0|T = 1, D = 0], the direct effect of treatment assignment on

the non-treated.

2.3 How the Identification Fails: Bad Control Problem

In general, we cannot achieve identification of these parameters by merely running a

regression on the observed treatment take-up variable D.

For usual pre-assignment covariates W such as strata of randomization, observed

conditional moments reveal the ITT:

E[Y |T = 1,W = w]− E[Y |T = 0,W = w] = E[Y1 − Y0|W = w].

One may wonder whether an analogue to the strategy of lemma 2.1 works for the

post treatment assignment variable D, i.e., whether

E[Y |T = 1, D = d]− E[Y |T = 0, D = d]

identifies the ATT. However, this quantity is not interpretable. This is known as the

bad control problem (Angrist and Pischke, 2009).

Consider the case of one-sided non-compliance. First note that the above formula

is not even well-defined for D = 1 as E[Y |T = 0, D = 1] does not exist. It is also
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generally invalid for D = 0 as

E[Y |T = 1, D = 0]− E[Y |T = 0, D = 0]

=E[Y10|T = 1, D = 0]− E[Y0|T = 0, D = 0]

=E[Y11 − Y0|T = 1, D = 0]︸ ︷︷ ︸
a causal effect

+E[Y0|T = 1, D = 0]− E[Y0|T = 0]︸ ︷︷ ︸
selection bias

when D is endogenous to Y0.

2.4 How the Identification Fails: T as an Invalid Instrument

Concerning the bad control problem due to the endogeneity of D, researchers often

use T as an instrument of D. For the purpose of identifying the ATT, the instrument

T must satisfy three conditions: (a) independence: (Y11, Y10, Y0) |= T , (b) relevancy:

D ̸ |= T , and (c) exclusion Y10 = Y0 almost surely. While the randomization implies

that the first independence assumption holds, and we can verify the second rele-

vancy assumption, the third condition of the exclusion will not hold if the treatment

assignment T has a direct impact on the outcome Y .

If the three conditions are satisfied, then the ATT is identified by the IV strategy.

Using random assignment as an instrument for treatment take-up, the probability

limit of the IV estimator can be shown to equal E[Y1−Y0]
P (D=1|T=1)

.11 By the total law of

expectation,

E[Y1 − Y0]

P (D = 1|T = 1)

= E[Y1 − Y0|T = 1, D = 1]
P (D = 1|T = 1)

P (D = 1|T = 1)
+ E[Y1 − Y0|T = 1, D = 0]

P (D = 0|T = 1)

P (D = 1|T = 1)

= E[Y11 − Y0|T = 1, D = 1] + E[Y10 − Y0|T = 1, D = 0]
P (D = 0|T = 1)

P (D = 1|T = 1)
.

When the exclusion condition holds so that Y10 − Y0 = 0 almost surely, the above

11Note that the probability limit of the IV estimator Cov(Y,T )
Cov(D,T ) , which can be shown to equal

E[Y1−Y0]P (T=1)P (T=0)
P (D=1|T=1)P (T=1)P (T=0) =

E[Y1−Y0]
P (D=1|T=1) .
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expression equals the ATT, E[Y11 − Y0|T = 1, D = 1].

What if the average direct effect of T , E[Y10 − Y0|T = 1, D = 0], does not equal

zero? In this case, the IV estimator is biased by the term

E[Y10 − Y0|T = 1, D = 0]
P (D = 0|T = 1)

P (D = 1|T = 1)
.

It is important to note that the magnitude of the bias is not just the size of the

direct effect, E[Y10 − Y0|T = 1, D = 0], but the multiplicative form with P (D=0|T=1)
P (D=1|T=1)

.

This form is less of a concern if the take-up probability P (D = 1|T = 1) is high as

it reduces the bias if P (D = 1|T = 1) > 0.5. However, this form becomes a serious

concern when the take-up probability is low.

The microcredit applications are one of these concerning experiments as the take-

up probability usually is as small as 15%. Therefore, the IV estimator is subject to

an inflated bias from the direct effect by 0.85/0.15 ≈ 5.6, and the small violation to

the exclusion restriction may generate enormous bias in the estimate of the ATT.

3 Identification

3.1 Identification Assumption

The primary goal of this paper is to provide an identification strategy with endoge-

nous post-treatment covariates D without relying on instruments or specific designs.

The key idea is the use of an additional variable Yb from a baseline survey as a

proxy for the control outcome Y0. The baseline survey is data collected before the

experiment starts. Collecting a baseline survey is a common practice primarily for

attaining more precise estimates or studying the subgroup effects with the baseline

covariates W . Although I require certain similarity in the proxy variable Yb and the

control outcome Y0, these two random variables Yb and Y0 may have entirely different

distribution functions. Instead, I impose a restriction that the rankings of the two
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random variables Yb and Y0 to be similar. First, let me introduce the concept of the

rankings.

Definition 3.1 (Latent Rank Variables). Let W be a vector of baseline covariates.

A random variable Uw ∼ U [0, 1] indexed by each W = w is called (conditional) latent

rank variable for a random variable Y if

Y = QY |W (UW |W )

where QY |W (u|w) = inf{y : FY |W (y|w) ≤ u}.

Remark. Note that the existence of the latent ranking variable Uw is not an assump-

tion, such a variable exists whether Y is finitely supported or continuous.

We can always construct such a conditional latent variable Uw as

Uw = FY |W=w(Y−) + V · (FY |W=w(Y )− FY |W=w(Y−))

where V ∼ U [0, 1] and V |=W . The existence of such a conditional latent variable can

be shown as an extension to the unconditional latent variable existence of Proposition

2.1 in Rüschendorf (2009).

For the identification, I need two requirements on the relation between the proxy

variable Yb and the control outcome Y0. First, I need to learn the complete latent

ranking of Yb, Ub,w, over the whole support of [0, 1]. In order to achieve the require-

ment, I assume Yb has a strictly increasing distribution function over its support.

Assumption 3.1 (Unique quantile and random assignment to the proxy). Assume

for every w ∈ W, FYb|W (·|w) is strictly increasing over its conditional support.12

Furthermore, I assume the treatment assignment is also independent from the proxy

variable

Yb |= T |W.
12This condition is equivalent to the conditional quantile function satisfies

QYb|W (FYb|W (y|w)|w) = y for every value of y in the support of Yb conditional on W = w.
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This assumption is required for the point identification of the parameter of in-

terest.13 Although I rely on a continuous proxy variable Yb, I do not restrict the

nature of potential outcomes Y1 and Y0 and they are allowed to be finitely sup-

ported. The latter conditional independence is not essential, but the interpretation

of the identification assumption becomes straightforward.

Second, I assume the latent ranking of Yb has the same distribution as the latent

ranking of Y0 conditional on W = w, T = 1, D = d. This restriction is called the

rank similarity assumption.

Assumption 3.2 (Conditional Rank Similarity). Let Ub,w be the latent ranking of

Yb, and U0,w be the latent ranking of Y0 as defined in definition 3.1. Suppose

Ub,w ∼ U0,w|W = w, T = 1, D = d

for each d ∈ {0, 1}, w ∈ W1, where W1 is the support of W conditional on T .

This assumption says that the conditional latent rankings of Yb and Y0 have the

same distribution for the subgroup which was assigned to treatment (T = 1) and

chose D = d. It is important to note that the distribution of the levels of the

proxy Yb and the control outcome Y0 may differ arbitrarily. After the discussion

of the identification formula, I will revisit this assumption in the case of one-sided

non-compliance as it has a straightforward interpretation.

In addition to these two requirements, I assume the randomization assumption

2.1, as well as following assumption on the support of the covariates W ,14

Assumption 3.3. Let W1 be the support of W conditional on T = 1, and W0 be the

support of W conditional on T = 0. Suppose W1 = W0 ≡ W.

13The partial identification can be possible with a finitely supported proxy variable Yb, but I do
not discuss in this paper.

14This assumption is stronger than necessary as I only require that the support W1 is a subset
of the support W0.
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3.2 Identification Result

The parameter of interest is the counterfactual distribution FY0|T,D(y|1, d) and the

counterfactual mean computed from the distribution.

Theorem 3.1. If the assumptions 2.1, 3.1, 3.2, and 3.3 hold, then

FY0|W,T,D(y|w, 1, d) = FYb|W,T,D(QYb|W,T (τy,w|w, 1)|w, 1, d)

for every d ∈ {0, 1}, w ∈ W and y ∈ Y0 where

τy,w ≡ FY0|W,T (y|w, 0).

The mean of the post-treatment subgroup effect is identified as

E[Y1|T = 1, D = d]− E[Y0|T = 1, D = d]

as well as the subgroup quantile difference is identified as

QY1|T,D(τ |1, d)−QY0|T,D(τ |1, d)

for every d ∈ {0, 1} where

E[Y0|T = 1, D = d] =

∫
ydFY0|T,D(y|1, d),

FY0|T,D(y|1, d) =
∫
FY0|W,T,D(y|w, 1, d)dFW |T,D(w|1, d),

and

QYt|T,D(τ |1, d) = inf{y ∈ Yt : FYt|T,D(y|1, d) ≥ τ}

for every τ ∈ [0, 1].

The idea of the formula is summarized in the following figure 3.1.
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Figure 3.1: Graphical representation of the formula

For the simplicity, consider the case without covariates W . As in the panel A, first

note that the events {Y0 ≤ y} and {U0 ≤ FY0(y0)} are equivalent almost surely

for every y0 in the support of Y0.
15 Rank similarity equates the events {U0 ≤

FY0(y0)} and {Ub ≤ FY0(y0)} in expectation conditional on {T = 1, D = d}. As

in the panel B, we may find the quantile of Yb, QYb
(FY0(y0)), which corresponds to

the value of the random variable Ub, FY0(y0), such that the events {Ub ≤ FY0(y0)}

{Yb ≤ QYb
(FY0(y0))} have the same probability conditional on {T = 1, D = d}. Such

a quantile QYb
(u) can be found for every u ∈ [0, 1] from the continuity of Yb, and the

final procedure is the formula for the identification shown in the theorem.

Proof. The counterfactual cdf FY0|W,T,D(y|w, 1, d) is expressed as

FY0|W,T,D(y|w, 1, d) =E[1{Y0 ≤ y}|W = w, T = 1, D = d]

=E[1{FY0|W,T (Y0|w, 0) ≤ FY0|W,T (y|w, 0)}|W = w, T = 1, D = d]

=E[1{FY0|W (Y0|w) ≤ FY0|W (y|w)}|W = w, T = 1, D = d]

=E[1{U0,w ≤ FY0|W (y|w)}|W = w, T = 1, D = d]

15Y0 may have positive mass in the support of Y0 for this relation as long as y0 is evaluated in
the support of Y0.
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in terms of the conditional latent rank U0,w. In the third equality, I use the assump-

tion that Y0 |= T |W . The conditional rank similarity assumption implies

E[1{U0,w ≤ FY0|W (y|w)}|W = w, T = 1, D = d]

=E[1{Ub,w ≤ FY0|W (y|w)}|W = w, T = 1, D = d]

=E[1{FYb|T,W (Yb|1, w) ≤ FY0|W (y|w)}|W = w, T = 1, D = d].

In the last equality, I use the assumption Yb |= T |W . From the unique quantile trans-

formation with Yb, we have

E[1{FYb|T,W (Yb|1, w) ≤ FY0|W (y|w)}|W = w, T = 1, D = d]

=E[1{Yb ≤ QYb|T,W (FY0|W (y|w)|1, w)}|W = w, T = 1, D = d]

=FYb|W,T,D(QYb|T,W (FY0|T,W (y|0, w)|1, w)|w, 1, d)

One may think of this use of the proxy variable Yb in an analogy to the control

function approach. (For example, Imbens and Newey, 2009, D’Haultfoeuille and

Février, 2015, Torgovitsky, 2015, and Ishihara, 2017). I use the reduced form varia-

tion in Yb conditional on W to back out the scalar unobservable Ub,w in the reduced

form equation. Unlike the triangular equations model, the structural error U0,w has,

by assumption, a direct relation to the reduced form error Ub,w. From the direct con-

nections in the errors, we can achieve the shape of the conditional quantile function

of Y0 as a function of the ranking U0,w without employing an excluded instrument.

3.3 The Case of One-Sided Non-Compliance

The one-sided non-compliance structure reduces the rank similarity to a fairly straight-

forward restriction. To fix ideas, consider the case of the microcredit experiment.

Let Y be the sales value of the production output two years after the experiment. Yb
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is the same sales value of the production output but measured before the experiment.

To rationalize the rank similarity between Yb and Y0, consider there are scalar

latent productivity Ub,w and U0,w which determine the rankings of the variables Yb and

Y0 conditional on other baseline exogenous determinants W . Such scalar rankings

exist by definition 3.1. I need to assume that the rankings Ub,w and U0,w have the

same meaning as the productivity. In other words, people with higher Ub,w and U0,w

should represent people with higher latent productivity.

This increasing property helps the justification of the rank similarity assumption.

The rank similarity assumption holds if the sorting of the two latent productivity

Ub,w and U0,w conditional on the take-up decision D are the same. In order to further

understand the restriction, consider that there is common latent productivity U such

that Ub,w = U and U0,w = U almost surely, then the rank similarity trivially holds.

This extreme example is called the rank invariance restriction.16 While this speci-

fication is an extreme example, this is a fair starting point to relax the restriction.

In particular, I may accept the random permutations to the rankings Ub,w and U0,w

called “slippages” (Heckman et al., 1997). For example, let Ũb,w and Ũ0,w be a pair

of identically distributed random variables. Let D ≡ g(W,V ) for some measurable

function g and the vector of unobserved determinants of the post-treatment choice

D. This unobserved determinants V may include U . If the slippages (Ũb,w, Ũ0,w)

are independent of V , then the rank similarity may be maintained for the latent

productivity of the forms

Ub,w ≡ U + Ũb,w, U0,w ≡ U + Ũ0,w. (1)

This form shares similarity to a factor model where a single factor of productivity

and independent shocks determine the two latent productivity.

16While the rank invariance assumption restricts the joint copula of two random variables, the
rank similarity imposes assumptions on the marginal distributions of two random variables. In
particular, Ub,w and U0,w may have arbitrary positive correlation under the rank similarity, while
Ub,w and U0,w must have correlation of 1 under the rank invariance.
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Let F (Ub,w) and F (U0,w) be the latent rankings where F is the common distribu-

tion function of U + Ũb,w and U + Ũ0,w.

Proposition 3.2. Let F (Ub,w) and F (U0,w) be the latent rank variables for Yb and

Y0 conditional on W constructed as in (1). Let V be the vector of unobserved de-

terminants of D. If (Ũb,w, Ũ0,w) |= (V, T )|W then the rank similarity assumption 3.2

holds.

Proof. Statement immediately follows from the fact that the determinants of the la-

tent rankings are either Ũb,w, Ũ0,w, which are independent of unobserved determinants

of D, or the common term U .

P (F (Ub,w) ≤ τ |W = w,D = d, T = 1) = P (F (U + Ũb,w) ≤ τ |W = w,D = d, T = 1)

=P (F (U + Ũb,w) ≤ τ |W = w, V ∈ VD=d,T=1,W=w, T = 1)

=P (F (U + Ũ0,w) ≤ τ |W = w, V ∈ VD=d,T=1,W=w, T = 1)

=P (F (U0,w) ≤ τ |W = w,D = d, T = 1)

where VD=d,T=1,W=w is the set of V which is compatible with D = d conditional on

T = 1 and W = w.

3.4 Flexibility of the Rank Similarity Assumption on D,Y1

The rank similarity assumption imposes restrictions on the marginal distributions

of Y0 and Yb. On the other hand, the remaining observed variables (D,Y1) are left

flexible. For example, the common latent ranking U may arbitrarily correlate with

(D,Y1) as long as the slippages (Ũb,w, Ũ0,w) are independent of (D,Y1). This flexibility

implies that D may be endogenous to the potential outcomes Y1 and Y0 as well as D

may be exogenous to these potential outcomes. The conditional exogeneity may be

possible under the rank similarity assumption, although they are not nested.

Furthermore, the flexibility implies that Y1 may be left unrestricted as long as the

slippages of Y0 and Yb are independent of Y1. It is worth noting two desirable facts
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on this flexibility. First, this rank similarity does not necessarily restrict the form

of the gains from T , Y1 − Y0. This absence of the restriction on the gain is a sharp

distinction from other bounding approaches based on restrictions such as monotone

treatment response assumptions Y1 ≥ Y0 such as Manski (1997).

Second, this model flexibly accepts peer effects or equilibrium effects due to the

treatment exposure T = 1 as in the following example.

Example 3.1. Consider every unit i faces his/her reference group Ni which would

affect his/her outcome as an equilibrium response to the common treatment assign-

ment T = 1 within Ni.

For every unit i, suppose that there are underlying potential outcomes Y11,i, Y10,i

such that

Y1i = DiY11,i + (1−Di)Y10,i

whereas Di is determined as a measurable function of Y11,i, Y1,0i and a vector of other

unobservables Vi.

The reference group may be observed or unobserved. In either cases, his/her

treatment response outcome Y11,i, Y10,i are determined not just by his/her own base

latent ranking Ui and shocks Ũi, but also affected through these peers latent rankings

{Uj}j∈Ni
and shocks {Ũ1j}j∈Ni

.

In summary, such structure reduces the post-intervention choice treatment as a

measurable function of all the unobservables

Di = δ(Ui, Ũ1i, {Uj, Ũ1j}j∈Ni
, Vi).

Nevertheless, the proposition 3.2 applies to maintain the rank similarity as long as

(U0i, Ubi) |= (Ui, Ũ1i, Vi, {Uj, Ũ1j}j∈Ni
).
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4 Estimation

4.1 Estimation for discrete post-treatment covariates D

For justifying the conditional rank similarity, it is desirable to condition on pre-

treatment covariates W . The curse of dimensionality becomes a serious issue when

we estimate conditional quantities for each subsample {T = 1, D = d,W = w} non-

parametrically. Melly and Santangelo (2015) and Callaway et al. (2018) proposes

an extension to the Athey and Imbens (2006) estimator allowing us to incorporate

covariates as a semi-parametric model. As my major focus is the mean effects rather

than the quantile effects, I consider a distribution regression-based approach rather

than following a quantile regression approach of Melly and Santangelo (2015). Fur-

thermore, a different data generating process in my model relative to the Change-in-

Change needs a modified theory on the inference. Nevertheless, my inference strategy

closely follows the strategies in Melly and Santangelo (2015) as well as Chernozhukov

et al. (2013).

First consider an estimation of semi-parametric conditional distribution func-

tions. For the estimation of the parameter of interest, I need the distribution func-

tions FYb|T=1,W , FYb|T=0,W , {FYb|T=1,D=d,W}d∈{0,1}. From now on, let W be a vector

of transformation of the original pre-treatment covariates such as polynomials or

B-splines. Following Foresi and Peracchi (1995) and Chernozhukov et al. (2013), I

estimate conditional distribution functions for Y conditional on a subgroup k out of

K and W as

F̂Y |W,K(y|w, k) = Λ(w′β̂k(y))

for some known link function Λ(·)17 and

β̂k(y) = arg max
b∈RdW

n∑
i=1

{[1{Yi ≤ y} log[Λ(w′b)]] + [1{Yi > y} log[1− Λ(w′b)]]} I{Ki = k}

17Theoretically, the link functions can be different across subgroups k. I use logit link function
throughout the application but the robustness to other choice of link functions such as probit link
or complementary log-log link are shown in the appendix.
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for each y ∈ Yk where Yk is the support of Y conditional on the subgroup k, and

dW is the dimension of W . The subgroup can be either {T = 1}, {T = 1, D = d} or

{T = 0}.

Once these estimators are obtained, the conditional counterfactual distribution

is obtained as

F̂Y0|W,T,D(y|w, 1, d) = F̂Yb|W,T,D(Q̂Yb|W,T (F̂Y0|W,T (y|w, 0)|w, 1)|w, 1, d)

where

Q̂Yb|W,T (τ |w, 1) = inf
{
y ∈ Y1,w

b : F̂Yb|W,T (y|w, 1) ≥ τ
}
,

where Yk
b is the support of Yb conditional on a subgroup k, and therefore the uncon-

ditional distribution is obtained by

F̂Y0|T,D(y|1, d) = n−1
1,d

n∑
i=1

F̂Y0|W,T,D(y|Wi, 1, d)I{Ti = 1, Di = d}

where n1,d ≡
∑

i 1{Ti = 1, Di = d}. The mean effect of interest is then obtained as

follows

µ̂d =
1

n1,d

∑
i:Ti=1,Di=d

Yi −
∫
Y0

ydF̂Y0|T,D(y|1, d)

and the quantile difference is obtained by inverting the distribution functions

Q̂Y1|T,D(τ |1, d)− Q̂Y0|T,D(τ |1, d).

4.2 Asymptotic Normality and Bootstrap Validity

Assume following data generating process,

Assumption 4.1 (DGP). The sample {Yi, Yb,iDi,Wi, Ti}ni=1 is an iid draw from the

probability law P over the support {Y × Yb × {0, 1} ×W × {0, 1}}.

Let Y0 be a support of Y conditional on T = 0, and let Y1,d
b and Wd be supports

of Yb and W conditional on T = 1 and D = d for each d ∈ {0, 1}. Suppose Y0 ×W
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and Y1,d
b ×Wd are compact subsets of R1+dw for each d ∈ {0, 1}. If Y0 is absolutely

continuous with respect to the Lebesgue measure, then suppose the conditional density

fY |W,T (y0|w, 0) is uniformly bounded and uniformly continuous in (y0, w) ∈ Y0 ×W.

Also suppose that fYb|W,T (yb|w, 1) and fYb|W,T,D(yb|w, 1, d) are uniformly bounded, and

uniformly continuous in and (yb, w) ∈ Yb × W for each d ∈ {0, 1}. Furthermore,

n1,d

n
≡ 1

n

∑
i 1{Ti = 1, Di = d} →p α1,d ≡ Pr(Ti = 1, Di = d) > 0 for each d ∈ {0, 1},

and n0

n
= 1

n

∑
i 1{Ti = 0} →p α0 ≡ Pr(Ti = 0) > 0.

Assume also that the conditional distribution functions have the following semi-

parametric forms

Assumption 4.2 (Distribution Regression). Suppose we have

FY |W,T (y|w, 0) = Λ(w′β0(y)),

for some link function Λ(·) for all y, w. Assume also that the minimal eigenvalue of

J0(y) ≡ E
[

λ(W ′β0(y))2

Λ(W ′β0(y))[1−Λ(W ′β0(y))]
WW ′

]
is bounded away from zero uniformly over y.

And the analogous restriction holds for

FYb|W,T (y|w, 1) = Λ(w′β1(y))

and

FYb|W,T,D(y|w, 1, d) = Λ(w′β1,d(y))

for every d ∈ {0, 1}.

Assume further that E∥W∥2 <∞.

This is a standard regularity condition for distribution regression models (Cher-

nozhukov et al., 2013). Under these assumptions, these conditional distribution
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functions weakly converge jointly. Let

Ĝ1,d(y1,db , w) =
√
n
(
F̂Yb|W,T,D(y

1,d
b |w, 1, d)− FYb|W,T,D(y

1,d
b |w, 1, d)

)
,∀y1,db ∈ Yw,{1,d}

b

Ĝ1(y1b , w) =
√
n
(
F̂Yb|W,T (y

1
b |w, 1)− FYb|W,T (y

1
b |w, 1)

)
, ∀y1b ∈ Yw,1

b

Ĝ0(y0, w) =
√
n
(
F̂Y0|W,T (y0|w, 0)− FY0|W,T (y0|w, 0)

)
,∀y0 ∈ Yw,0,

for every w, d ∈ W × {0, 1}.

Lemma 4.1. Under assumptions 2.1, 3.1, 3.2, 3.3, 4.1 and 4.2,

(
Ĝ1(y1b , w), Ĝ

1,d(y1,db , w), Ĝ0(y0, w)
)
⇝
(
G1(y1b , w),G1,d(y1,db , w),G0(y0, w)

)

in l∞(Yb×W×Y1,d
b ×Wd×Y0×W), where Gk(y, w) for every k ∈ {1, {1, d}d∈{0,1}, 0}

are tight zero-mean Gaussian processes with each covariance function of the form

Vk,k(y, w, ỹ, w̃) = α−1
k w′J−1

k (y)λk(w
′βk(y))Σk(y, ỹ)λk(w̃

′βk(ỹ))J−1
k (ỹ)w̃

V1,{1,d}(y, w, ỹ, w̃) = α−1
1,dw

′J−1
1 (y)λ1(w

′β1(y))Σ1,{1,d}(y, ỹ)λ1,d(w̃
′β1,d(ỹ))J−1

1,d (ỹ)w̃

where

Σk(y, ỹ) =E[I{K = k}WH(W ′βk(y))

×{min{Λ(W ′βk(y)),Λ(W ′βk(ỹ))} − Λ(W ′βk(y))Λ(W ′βk(ỹ))}

×H(W ′βk(ỹ))]W ′,

Σ1,{1,d}(y, ỹ) =E[I{T = 1, D = d}WH(W ′β1(y))

×{min{Λ(W ′β1(y)),Λ(W ′β1,d(ỹ))} − Λ(W ′β1(y))Λ(W ′β1,d(ỹ))}

×H(W ′β1,d(ỹ))W ′]

for each k ∈ {1, {1, d}d∈{0,1}, 0} and V1,0(y, w, ỹ, w̃) = V{1,d},0(y, w, ỹ, w̃) = 0.

Given the weak convergence of the distribution regressions, the conditional esti-
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mator

F̂Yb|W,T,D(Q̂Yb|W,T (F̂Y0|W,T (y|w, 0)|w, 1)|w, 1, d)

is in the form of following map: for distribution functions F1,d, F1, F0,

m(F1,d, F1, F0) = F1,d ◦Q1 ◦ F0.

where Q1 is the quantile function from F1. In a parallel argument to Melly and

Santangelo (2015) based on quantile regressions, the above map is Hadamard differ-

entiable from the Hadamard-differentiability of the quantile function (Lemma 21.4

(ii), van der Vaart, 1998) and the chain rule of the Hadamard-differentiable maps

(Lemma 20.9, van der Vaart, 1998).

Lemma 4.2. Let F1 and F1,d be uniformly continuous and differentiable distribution

functions with uniformly bounded densities f1 and f1,d. Let F0 be also a distribution

function. Suppose F1 has a support [a, b] as a bounded subset of real line, and F1 ◦

Q1(p) = p for every p ∈ [0, 1].

Then the map m(F1,d, F1, F0) is Hadamard differentiable at (F1,d, F1, F0) tangen-

tially to a set of functions h1,d, h1, h0 with the derivative map

h1,d ◦Q1 ◦ F0 − f1,d(Q1 ◦ F0)
h1 ◦Q1 ◦ F0

f1(Q1 ◦ F0)
+ f1,d(Q1 ◦ F0)

h0
f1(Q1 ◦ F0)

.

Proof. See the appendix.

Next, let

Ĝ(f) =
√
n

(∫
fdF̂W,T,D −

∫
fdFW,T,D

)
where F̂W,T,D(w, t, d) = n−1

∑n
i=1 1{Wi ≤ w, T = t,D = d} for f ∈ F where F is a
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class of suitably measurable functions18 including

{FY |W,K(y|·, k), y ∈ Yk, k ∈ K ≡ {{T = 1}, {T = 0}, {T = 1, D = d}d∈{0,1}}

and all the indicators of the rectangles in R̄dW .

From the derivative expression in the lemma above and the joint weak conver-

gence of the empirical processes, the counterfactual conditional distribution weakly

converges.

Theorem 4.3. Under assumptions 2.1, 3.1, 3.2, 3.3 , 4.1 and 4.2,

Ĝ(f)⇝ G(f)

in l∞(F) for F specified earlier where G(f) is a Brownian bridge, and

√
n
(
F̂Y0|W,T,D(y|w, 1, d)− FY0|W,T,D(y|w, 1, d)

)
⇝ GWCF

1,d (y, w), in l∞(Y0 ×W)

18Suitably measurability or P -measurability can be verified by showing the class is pointwise
measurable.
A class F of measurable functions is pointwise measurable if there is a countable subset G ⊂ F

such that for every f ∈ F there is a sequence {gm} ∈ G such that

gm(x) → f(x)

for every x ∈ X .
For example, the class F ≡ {1{x ≤ t}, t ∈ R} is pointwise measurable. This is because we can

take
G = {1{x ≤ t} : t ∈ Q}

which is countable, and for arbitrary t0 ∈ R which characterise the arbitrary function f(x) =
{1{x ≤ t0}}, and the sequence of functions

gm(x) = 1{x ≤ tm}

such that tm ≥ t0, tm → t0 converges to f(x). Therefore, the relevant class used here is shown to
be pointwise measurable.
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where GWCF
b,d (y, w) is a tight zero mean Gaussian process indexed by (y, w) such that

GWCF
1,d (y, w)

=G1,d(QYb|W,T (FY0|W,T (y|w, 0)|w, 1), w)

−f1,d(y, w)
f1(y, w)

(
G1(QYb|W,T (FY0|W,T (y|w, 0)|w, 1), w) +G0(y, w)

)
.

where

f1,d(y, w)

f1(y, w)
≡
fYb|W,T,D(QYb|W,T (FY0|W,T (y|w, 0)|w, 1)|w, 1, d)
fYb|W,T (QYb|W,T (FY0|W,T (y|w, 0)|w, 1)|w, 1)

Proof. From lemma A.2 in Appendix, we can choose F satisfying the requirement

defined earlier so that F satisfies the DKP condition (Chernozhukov et al., 2013,

Appendix A.). Then assumptions of Lemma E.4 in Chernozhukov et al. (2013) is

satisfied to conclude the first statement.

For the second statement, note that

√
n
(
F̂Y0|T,W,D(y|1, w, d)− FY0|T,W,D(y|1, w, d)

)
=

√
n
(
m(F̂Yb|W=w,D=d, F̂Yb|W=w, F̂Y0|W=w)−m(FYb|W=w,D=d, FYb|W=w, FY0|W=w)

)
.

Therefore, the functional delta method and the Hadamard differentiability of the

transformation m(·, ·, ·) implies the above process weakly converges to the process

shown in the statement.

The unconditional counterfactual distribution is attained by applying the Lemma

D.1 from Chernozhukov et al. (2013) showing the Hadamard differentiability of the

counterfactual operator

ϕC(F,G) =

∫
F (y|w)dG(w)
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Theorem 4.4. Under assumptions 2.1, 3.1, 3.2, 3.3, 4.1 and 4.2,

√
n
(
F̂Y0|T,D(y|1, d)− FY0|T,D(y|1, d)

)
⇝ GCF

1,d (y), in l∞(Y0).

where GCF
1,d (y) is a tight mean zero Gaussian process such that

GCF
1,d (y) ≡α−1

1,d

∫
GWCF

1,d (y, w)I{T = 1, D = d}dFW,T,D(w, 1, d)

+ α−1
1,dG(FY0|W,T,D(y|w, 1, d)I{T = 1, D = d}).

Proof. Note that
√
nF̂Y0|T,D(y|1, d) =

√
n
F̂Y0,T,D(y, 1, d)

n1,d/n

and
√
nFY0|T,D(y|1, d) =

√
n
FY0,T,D(y, 1, d)

α1,d

.

Also we have,

√
n(F̂Y0,T,D(y, 1, d)− FY0,T,D(y, 1, d))

=
√
n

(
1

n

n∑
i=1

F̂Y0|W,T,D(y|Wi, 1, d)1{Ti = 1, Di = d} −
∫
FY0|W,T,D(y|W, 1, d)1{T = 1, D = d}dP

)

=
√
n

(∫
F̂Y0|W,T,D(y|W, 1, d)1{T = 1, D = d}dPn −

∫
FY0|W,T,D(y|W, 1, d)1{T = 1, D = d}dP

)
.

From the Slutzky lemma (Theorem 18.10 (v) in van der Vaart, 1998), Functional

delta method, and the Hadamard differentiability of the operator ϕC(F,G) (Cher-

nozhukov et al., 2013, Lemma D.1), we have

(√
n(F̂Y0,T,D(y, 1, d)− FY0,T,D(y, 1, d)), n1,d/n

)
⇝
(
G̃(y, w, d), α1,d

)

where

G̃(y, w, d) ≡
(∫

GWCF
1,d (y, w)dFW,T,D(w, 1, d) +G(FY0|W,T,D(y|·, 1, d)

)
I{T = 1, D = d})
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Therefore, continuous mapping theorem (Theorem 18.11 in van der Vaart, 1998)

implies the statement.

Corollary 4.5. Under assumptions 2.1, 3.1, 3.2, 3.3, 4.1 and 4.2,

√
n
(
Q̂Y0|T,D(y|1, d)−QY0|T,D(y|1, d)

)
⇝ −

GCF
1,d (QY0|T,D(y|1, d))

fY0|T,D(QY0|T,D(y|1, d)|1, d)
, in l∞(Y0)

for every d ∈ {0, 1}.

Proof. Immediate from the Hadamard-differentiability of the quantile function (Lemma

21.4 (ii), van der Vaart, 1998).

Corollary 4.6. Under assumptions 2.1, 3.1, 3.2, 3.3, 4.1 and 4.2,

√
n

(∫
ydF̂Y0|T,D(y|1, d)−

∫
yFY0|T,D(y|1, d)

)
⇝
∫
ydGCF

1,d (y)

Proof. Let µ(F ) =
∫
ydF (y) be the mapping µ : F → R. Let ht → h as t → 0 and

let Ft = F + tht. Then it is Hadamard differentiable at F tangentially to a set of

functions h such that

1

t

(∫
ydFt −

∫
ydF

)
=

∫
ydht →t→∞

∫
ydh.

Since
√
n(F̂Y0|T,D(y|1, d)− FY0|T,D(y|1, d))⇝ GCF

1,d (y),

the statement holds.

Given the asymptotic normality, I propose an inference based on a bootstrap

procedure. Suppose the bootstrap draws are exchangeable.

Assumption 4.3 (Exchangeable bootstrap). Let (w1, . . . , wn) is an exchangeable,

non-negative random vector independent of the data {Yi, Yb,i, Di,Wi, Ti}ni=1 such that
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for some ϵ > 0,

E[w2+ϵ
1 ] <∞, n−1

n∑
i=1

(wi − w̄)2 →P 1, w̄ →P 1

where w̄ = n−1
∑n

i=1wi, and P is an outer probability measure with respect to P .19

Let F̂ ∗
Yb|W,T,D(y|w, 1, d), F̂ ∗

Yb|W,T (y|w, 1), F̂ ∗
Y0|W,T (y|w, 0) be the bootstrapped ver-

sion of the estimators using

β̂∗,k(y) = arg max
b∈RdW

n∑
i=1

wiI{Ki = k} [1{Yi ≤ y} log Λ(W ′
i b) + 1{Yi > y} log(1− Λ(W ′

i b))]

and let

F̂ ∗
W,T,D(w, 1, d) = (n∗)−1

n∑
i=1

wi1{Wi ≤ w, Ti = 1, Di = d}, w ∈ W

where n∗ =
∑n

i wi.

Corollary 4.7. Let

Ĝ∗(f) =
1√
n

n∑
i=1

(wi − w̄)f

for f ∈ F , and let

Ĝ∗,k(y, w) =
√
n
(
F̂ ∗
Y |W,K(y|w, k)− F̂Y |W,K(y|w, k)

)

Then under assumptions 2.1,3.1, 3.2, 3.3, 4.1, 4.2, and 4.3

(
Ĝ∗,1,d(y, w), Ĝ∗,1(y, w), Ĝ∗,0(y, w), Ĝ∗(f)

)
⇝P (G1,d(y, w),G1(y, w),G0(y, w),G(f)

)
in l∞(Y1,d

b ×Wd × Y1
b ×W ×Y0 ×W)× l∞(F). Therefore,

√
n
(
F̂ ∗
Y0|T,D(y|1, d)− F̂Y0|T,D(y|1, d)

)
⇝P GCF

1,d (y).

19For an arbitrary maps D : Ω 7→ D on a metric space D and a bounded function f : D 7→ R,
Pf(D) = inf{PU : U : Ω 7→ R is measurable , U ≥ f(D), PU exists.}
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Proof. Argument follows from Theorem 3.6.13 of van der Vaart and Wellner (1996)

as employed in Chernozhukov et al. (2013), Theorem 5.1 and 5.2.

4.3 Cluster-robust results

Assumption 4.4 (Cluster DGP). Let j = 1, . . . , C̄ denote clusters, and an index

(j, i) denote individual i’s observation in a cluster j. Let {Nj, {Yj,i, Yb,j,i, Dj,i,Wj,i, Tj,i}i≥1}j≥1

be exchangeable, namely, for any permutation π of N,

{Nj, {Yj,i, Yb,j,i, Dj,i,Wj,i, Tj,i}i≥1}j≥1 ∼ {Nπ(j), {Yπ(j),i, Yb,π(j),i, Dπ(j),i,Wπ(j),i, Tπ(j),i}i≥1}j≥1.

and clusters {Nj, {Yj,i, Yb,j,i, Dj,i,Wj,i, Tj,i} are independent across j. Suppose further

that E[N1] > 0, E[N2
1 ] <∞ and C̄ → ∞. As before, assume T is supported for {0, 1}

and D has a finite support {0, 1}.

Suppose also that the same support and density conditions as in assumption 4.1.

Furthermore, α̂1,d ≡ 1
C̄

∑
1≤j≤C̄

1
Nj

∑Nj

i=1 1{Ti = 1, Di = d} → α1,d where α1,d ≡

E
[

1
N1

∑N1

i=1 1{Ti = 1, Di = d}
]
> 0 for each d ∈ {0, 1} , and α̂0 =

1
C̄

∑
1≤j≤C̄

1
Nj

∑Nj

i=1 1{Ti =

0} → α0 ≡ E[ 1
N1

∑N1

i=1 1{Ti = 0}] > 0.

Assumption 4.5 (Distribution Regression and Cluster Moment Condition). Sup-

pose for each k ∈ K,

FY k|W,K(y|w, k) = Λ(w′βk(y)),

for some link function Λ(·) for all y, w. Assume also that the minimal eigenvalue of

Jk(y) ≡ E
[∑N1

i=1
λ(W ′

iβ
k(y))2

Λ(W ′
iβ

k(y))[1−Λ(W ′
iβ

k(y))]
WiW

′
i

]
is bounded away from zero uniformly

over y respectively for k ∈ {0, 1, {1, d}d∈{0,1}}, where λ is the derivative of Λ. Assume

further that E
[
N1

∑N1

i=1 ∥Wi∥2
]
<∞.

Remark. The additional assumption of E[N1

∑N1

i=1 ∥Wi∥2] < ∞ is replacing the

square integrability of the envelope function const · ∥Wi∥ for a class of Z-maps as

the first order conditions of the semiparameteric distribution regressions. See the

appendix for the exact argument of the envelope function of the class of Z-maps.
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From the linearity of the expectation operator, it is sufficient to have the cluster

size finite N1 < ∞ as well as the previous moment condition E[∥Wi∥2] < ∞ for

every i ∈ N1.

Let

ĜC(f) =
√
C̄

 1

C̄

∑
1≤j≤C̄

Nj∑
i=1

f(Wj,i, Tj,i, Dj,i)− E

[
N1∑
i=1

f(W1,i, T1,i, D1,i)

]
and

ĜC,1,d(y1,dw) =
√
C̄
(
F̂C
Yb|W,T,D(y

1,d|w, 1, d)− FYb|W,T,D(y
1,d|w, 1, d)

)
,∀y1,d ∈ Yw,{1,d}

b

ĜC,1(y1, w) =
√
C̄
(
F̂C
Yb|W,T (y

1|w, 1)− FYb|W,T (y
1|w, 1)

)
, ∀y1 ∈ Yw,1

b

ĜC,0(y0, w) =
√
C̄
(
F̂C
Y0|W,T (y

0|w, 0)− FY0|W,T (y
0|w, 0)

)
,∀y0 ∈ Yw,0,

where

F̂C
Y |W,K(y|w, k) = Λ(w′β̂C,k(y))

and

β̂C,k(y) = arg max
b∈RdW

C̄∑
j=1

Nj∑
i=1

{ [1{Yj,i ≤ y} log[Λ(w′b)]]

+ [1{Yj,i > y} log[1− Λ(w′b)]]} I{Kj,i = k}

for each y ∈ Yk.

Corollary 4.8. Under assumptions 2.1, 3.1, 3.2, 3.3, 4.4 and 4.5, we have

(
ĜC,1(y, w), ĜC,1,d(y, w), ĜC,0(y, w)

)
⇝
(
GC,1(y, w),GC,1,d(y, w),GC,0(y, w)

)
in l∞(Yb×W×Y1,d

b ×Wd×Y0×W), where Gk(y, w) for every k ∈ {{1, d}d∈{0,1}, 1, 0}
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are tight zero-mean Gaussian processes with each covariance function of the form

V C
k,k(y, w, ỹ, w̃) = α−1

k w′J−1
k (y)λk(w

′βk(y))Σk(y, ỹ)λk(w̃
′βk(ỹ))J−1

k (ỹ)w̃

V1,{1,d}(y, w, ỹ, w̃) = α−1
1,dw

′J−1
1 (y)λ1(w

′β1(y))Σ1,{1,d}(y, ỹ)λ1,d(w̃
′β1,d(ỹ))J−1

1,d (ỹ)w̃

where

ΣC
k (y, ỹ) =E[

N1∑
i=1

I{K1,i = k}W1,iH(W ′
1,iβ

k(y))

×{min{Λ(W ′
1,iβ

k(y)),Λ(W ′
1,iβ

k(ỹ))} − Λ(W ′
1,iβ

k(y))Λ(W ′
1,iβ

k(ỹ))}

×H(W ′
1,iβ

k(ỹ))]W ′
1,i,

ΣC
1,{1,d}(y, ỹ) =E[

N1∑
i=1

I{T1,i = 1, D1,i = d}W1,iH(W ′
1,iβ

1(y))

×{min{Λ(W ′
1,iβ

1(y)),Λ(W ′
1,iβ

1,d(ỹ))} − Λ(W ′
1,iβ

1(y))Λ(W ′
1,iβ

1,d(ỹ))}

×H(W ′
1,iβ

1,d(ỹ))W ′
1,i]

for each k ∈ {{1, d}d∈{0,1}, 1, 0} and V C
1,0(y, w, ỹ, w̃) = V C

{1,d},0(y, w, ỹ, w̃) = 0, and we

have

ĜC(f)⇝ GC(f)

in l∞(F) for suitably measurable F specified earlier where GC(f) is a tight zero-mean

Gaussian process with the covariance kernel

V C(f1, f2) = Cov

(
N1∑
i=1

f1(W1,i, D1,i, T1,i),

N1∑
i=1

f2(W1,i, D1,i, T1,i)

)

Proof. It is sufficient to verify conditions for Theorem 3.1 in Davezies et al. (2018).

Assumption 1 is guaranteed by the exchangeable cluster assumption. Assumption 2

is assumed and can be verified to be pointwise measurable. For the assumption 3 in

Davezies et al. (2018), it is sufficient to show that the envelope function of the class
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of Z-functions F satisfies

E[N1

N1∑
i=1

F (Y1,i,W1,i, D1,i, T1,i)
2] <∞

In fact, the envelope function is const · ∥Wi∥ and therefore it is sufficient to have

E[N1

N1∑
i=1

∥W1,i∥2] <∞

which is guaranteed by the assumption. Finally, the finiteness of the uniform entropy

integral is also guaranteed by the lemma A.1 so that all the assumptions hold.

As the weak convergences of the Z-function processes are guaranteed, Functional

Delta method guarantees the statement to hold.

5 Application

5.1 Background of the Microcredit Experiment in Morocco

Crépon et al. (2015) ran an experiment in rural areas of Morocco. Authors choose

targeted areas so that villagers in the areas had not experienced the microcredit

services before this experiment. This location choice is an innovative feature of

this microcredit study that allowed the authors to successfully estimate the effect

of the access to the microcredit services rather than the effect of the expansion of

the microcredit services. As is introduced in the identification section, let T denote

the binary access to the microcredit service, and let D be the binary take-up of

the credit. By construction, the units in the control villages T = 0 have D = 0

automatically. The administrative observation of the take-up decision verifies the

successful implementation of this procedure.

The most feature of Crépon et al. (2015) that is most relevant to the analysis

of this paper is that they collect a detailed baseline survey before the experimental

intervention. As a result, the dataset contains the market values of the production

34



output before and after the experiment. More precisely, the study collects the output

measure in the baseline survey before the experiment as well as in the follow-up survey

two years after the experiment. Let Yb denote the baseline sales value output and

Y = TY1 + (1− T )Y0 = T (DY11 + (1−D)Y10) + (1− T )Y0 denote the endline sales

value output.

In the experiment, a local microfinance institution called Al Amana entered ran-

domly selected treatment villages. The flow of the experiment is as follows. Initially,

Al Amana opened new branches at the beginning of the study. After the opening of

the branches, the study took a baseline survey from villages. This baseline survey

contains all the outcome measures that the study is interested in as the final outcome

measures. Once the study completed the baseline survey, randomization separated

162 villages into 81 pairs of similar villages in observed characteristics and one of

each pair was randomly assigned to be a treatment village and the other to be a

control villages. For the treatment villages, Al Amana agents visited the villages

and promoted the microcredit participation. At the time of the intervention, all

the new branches were fully functional in their services. On the other hand, the

control villages had no access to the microcredit. We can verify this feature of the

one-sided non-compliance as the administrative report of the fraction of Al Amana

clients is zero for the control. The study collected baseline survey observations of

4465 households from 162 villages.

The table 5.1 below shows the ITT estimates using regression analysis to control

for covariates. The covariates include number of household members, number of

adults, head age, does animal husbandry, does other non-agricultural activity, had

an outstanding loan over the past 12 months, HH spouse responded to the survey,

and other HH member responded to the survey.20 As the column (1) shows, there is

a positive and significant effect of the microcredit intervention on the sales value of

the production outputs. As my method requires a continuous Yb, I need to restrict

20These linear regression analysis also condition on strata dummies (paired villages). For my pro-
cedures, these paired village dummies are not included in order to prevent the incidental parameter
problem for non-linear estimators.
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Table 5.1: Intention to Treatment Effects on Business Outcomes
Outcome: output output log output †

(1) (2) (3)
Treatment 6061.3*** 5888.8* 0.3215***

(2166.8) (3038.7) (0.1167)
self-employed self-employed
at baseline at baseline

control mean 30,450 33,554 8.7079
Obs 4,934 2,453 2,453

Note: Standard errors reported in parenthesis are clustered in village levels. *, **
and *** indicate statistical significance of 10%, 5%, 1% sizes respectively. Units
in levels are Moroccan Dirham, 1MAD ≈ 0.106 USD.

† : inverse hyperbolic sine transformation, log(x +
√
x2 + 1), is applied instead

of the log to prevent ill-defined value for output value equals to zero.

the study sample to the individuals who have positive sales values in the baseline

survey.21 The columns (2) and (3) show the same estimates but for the self-employed

individuals at the baseline. This procedure reduces the sample to about a half of the

original sample. The column (2) shows the effect on the level of the output and the

column (3) shows the effect on the log of the output. 22Both effects are positive and

Table 5.2: Quantiles of the outcome measures

output output log output
whole subsample subsample

min 0 0 0
25% 505 1,816 8.198
median 6,960 9,706 9.883
75% 26,412 30,238 11.010
max 1,387,053 1,231,900 14.717

precisely measured.

5.2 Original Use of the Baseline Survey

Crépon et al. (2015) collected the baseline survey for the similar purpose to mine.

21As emphasized earlier, Y0 and Y1 do not need to be continuous. Conditional on Yb > 0, there
are observations with Y = 0 which represents exit behaviors during the study period.

22As the output values contain zero, the inverse hyperbolic sine transformation, log(x+
√
x2 + 1),

is applied instead of the natural log. Therefore, the estimates have an interpretation of the ap-
proximated semi-elasticities for small effects. Although we need to convert larger effects through
hyperbolic sine formula, standard exponential approximation works well for the evaluation at large
mean, which is the case for this study. Bellemare and Wichman (2018) explores detailed discussion.
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The purpose is to assess the heterogeneity in the ITT of the microcredit access by

its take-up decision. In particular, our shared concern is the possibility of the direct

effect of the microcredit access for those who do not take-up the credit.

There are many reasons why the access to the microcredit may have a direct effect

even though units do not take-up the credit. For example, promotion of the credit

company may encourage small business owners to continue their business. Because

of the new access, the owners expect to have an additional credit available in the

future even though they are not borrowing right now. The nature of the village

level assignment also generates equilibrium effects and peer effects. The expanded

credit use in the treatment village would alter the interest rates of informal lending

and product prices within the village as an equilibrium realization. Furthermore,

non-borrowing units may receive transfers from relatives and friends who succeed in

their business due to borrowing, while the units may also need to cover the payment

for the debt of failing relatives.

The idea of the original study is to estimate the propensity to borrow the credit

using covariates from a baseline survey. As the observations from the baseline survey

are not affected by the randomization, there is no complication to the identification

of the treatment effect conditional on the propensity to borrow. In other words, the

parameter

E[Y1 − Y0|P (D = 1|W = w) = p] = E[Y1 − Y0|W ∈ Wp]

is identified, where Wp ≡ {w ∈ W : P (D = 1|W = w) = p}. With this parameter,

one may test the following hypotheses

HHigh
0 : E[Y1−Y0|P (D = 1|W = w) ≥ pH ] = 0, HHigh

1 : E[Y1−Y0|P (D = 1|W = w) ≥ pH ] ̸= 0,
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and

HLow
0 : E[Y1−Y0|P (D = 1|W = w) < pL] = 0, HLow

1 : E[Y1−Y0|P (D = 1|W = w) < pL] ̸= 0.

Table 5.3 shows the results in the original article based on a regression analysis.

The results suggest that the units with top 30% of the propensity score have a more

substantial and significant effect, while the units with bottom 30% have a small and

insignificant effect.

Table 5.3: Heterogeneity by High/Low Propensities

Outcome: output output log output
(1) (2) (3)

Treatment 15773.7*** 13647.2** 0.4736**
High 30% (4153.6) (6095.3) (0.1985)
Treatment 646.6 1818.3 0.2739
Low 30% (2701.1) (4088.1) (0.1900)

self-employed self-employed
at baseline at baseline

control mean 30,450 33,554 8.7079
Obs 4,934 2,453 2,453

Note: Standard errors reported in parenthesis are clustered in village levels. *,

** and *** indicate statistical significance of 10%, 5%, 1% sizes respecively.

There are two concerns with this procedure as the primary interest is the test of

a different null hypothesis

H0 : E[Y1 − Y0|D = 0, T = 1] = E[Y10 − Y0|D = 0, T = 1] = 0

which is the sufficient condition for the average treatment effect on treated (ATT)

E[Y1 − Y0|D = 1, T = 1] = E[Y11 − Y0|D = 1, T = 1]

to be identifiable from the IV strategy with T as an instrument for D.

There are two concerns with testing HHigh
0 and HLow

0 in order to evaluate H0.

First, the event of the low propensity score {P (D = 1|W = w) < pL} is different
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from the event of no take-up under treatment {D = 0, T = 1}. One needs to pick

an arbitrary threshold for the low propensity score pL which is set to the bottom

30% of the distribution. However, there is no reasonable threshold to conclude the

conditioning group of low propensity is similar to the subgroup of non-borrowers in

the treatment village, which consists of 85% of the treated individuals. Furthermore,

the subgroup of non-borrowers (D = 0, T = 1) are sorted on unobservables by

D. On the other hand, the above procedure sorts the individuals only by observed

characteristics W .

Second, as we saw in the discussion of the identification section, a small violation

to the exclusion restriction may result in a large magnitude of the bias in the ATT

when the take-up probability is low. Therefore, a small violation to the null H0,

which is not detectable, may generate a huge bias in the ATT.

Following table 5.4 shows the original and additional IV estimates which are valid

only if the direct effect is zero. Under the conventional assumption, the estimated

ATT may overestimate the effect for those who took the credit, and the policymakers

may have been overly encouraged to promote the entry of the microcredit services.

The main question of this section is if these numbers are valid.

Table 5.4: ATT under assumption of no direct effect

Outcome: output output log output
(1) (2) (3)

Treatment 36252.6*** 42025.7* 2.2949***
(12494.2) (21525.0) (0.8494)

self-employed self-employed
at baseline at baseline

control mean 30,450 33,554 8.7079
Obs 4,934 2,453 2,453

Note: Standard errors reported in parenthesis are clustered in village levels. *,

** and *** indicate statistical significance of 10%, 5%, 1% sizes respecively.
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5.3 Estimation of Direct and ATT of the Microcredit

With the baseline outcome Yb being the proxy for the control outcome Y0, we may

identify the counterfactual distribution of Y0 conditional on the endogenous subgroup

{T = 1, D = d} for each d ∈ {0, 1}. See the detail of this procedure for section 3.

Outcomes Yb and Y0 are sales values of production outputs from small business

activities. By the random assignment of the credit access T and the fact that the

microcredit had not been available for the baseline period and the control villages,

these two outcomes Yb and Y0 should be similar but the random shocks realized over

two years of the study. If we assume that the changes over time, the slippages, in the

rank orders from Ub,w to U0,w do not depend on their counterfactual credit take-up

decision D, then we may justify the rank similarity assumption.

Table 5.5 shows the estimates of the unconditional subgroup effects. Column (1)

is for the direct effect of not taking the credit D = 0 in the treatment village T = 1.

Column (2) is for the ATT as the combined effect of the treatment take-up D = 1

and the access T = 1.

Table 5.5: Estimates with baseline proxy Yb
Method: Rank Similar 2SLS Unconditional
Label: Direct ATT ATT ITT

(1) (2) (3) (4)
Treatment 0.2933 0.9871** 2.2949** 0.4569
Effect (0.2595) (0.4248) (0.8494)
exp(TE) - 1 0.3408 1.6834 8.9234 0.5792
Obs 2453 2453 2453 2453

Note: Standard errors reported in parenthesis are generated from 300 bootstrap

draws clustered in village levels for (1)-(4). *,**,*** indicates statistical signifi-

cance of 10%,5% and 1% sizes respectively. Logit link is used for (1) and (2). (3)

is the 2SLS estimate of the ATT under the assumption of no direct effect.

The ATT of the microcredit use and access for those who take-up the credit

is shown in column (2). The ATT is strongly positive and significant. However,

the magnitude of the ATT is less than 40% of the 2SLS estimate which should be

comparable if the direct effect is zero.23 The direct effect of the microcredit for those

23They are not precisely comparable to the estimate in (2) is the unconditional subgroup effect,
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who do not borrow the credit shown in column (1). This direct effect estimate itself

is similar to the magnitude of the low propensity group estimate in Table 5.3 of

column (3). Although the estimated direct effect is not significant, the magnitude of

the ATT (2) indicates that the direct effect must be positive.

It is worth emphasizing that the findings in Table 5.5 may change the decision

of the policymakers. In order to better inform the policy makers, it is encouraged

to use this approach when the direct effect is of direct interest. For the purpose, I

encourage the experimental designers to collect a detailed baseline survey.

6 Extensions

6.1 The Case of Two-Sided Non-Compliance

I have demonstrated the usefulness of this methodology for an experiment with one-

sided non-compliance. With an additional assumption, I show that this approach

also applies to an experiment with two-sided non-compliance.

Consider a two-sided incompliance case where the treatment D may be available

before the experimental assignment of the treatment T . Let D1 and D0 denote the

potential choice under the treatment assignment T so that D = TD1 + (1 − T )D0.

As is usually assumed, suppose the monotonicity holds. Suppose D1 ≥ D0 almost

surely as the treatment assignment let more people taking-up the treatment D.

In this case, the outcome of interest takes the form

Y = T (D1Y11 + (1−D1)Y10) + (1− T )(D0Y01 + (1−D0)Y00)

where Ytd represents the outcome if the treatment assignment is T = t and the

treatment take-up is D = d.

while the estimate in (3) is the conditional subgroup effect from the regression analysis. Neverthe-
less, the unconditional ATT by integrating out the covariates produces higher magnitudes which
instead reinforces the issue I raise here.
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The subgroup effects are now harder to interpret without additional assumptions.

Here I propose a weaker version of no direct effect assumption.

Assumption 6.1 (Homogeneous direct effect). Suppose

Y11 − Y01 = Y10 − Y00

almost surely, and

E[Y11 − Y01|T = 1, D = 1] = E[Y11 − Y01|T = 1, D = 0]

This restriction assumes the direct effect of having the treatment assignment is

homogeneous with or without the actual treatment take-up D = 1 or D = 0. This

assumption is strong. However, the homogeneity restriction is substantially weaker

than the no direct effect assumption, which assumes the direct effect is constant and

the constant is zero. This feature is essential to the case when the direct effect is

concerning and compatible with behavioral and equilibrium effects to generate the

direct effect.

Let

DE ≡ Y11 − Y01 = Y10 − Y00.

Let me also specify

Ỹ1 ≡ Y01, Ỹ0 ≡ Y00

so that

Y11 = Ỹ1 +DE, Y10 = Ỹ0 +DE.

Here Ỹd represents the outcome of taking the treatment D or not.
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Under this assumption, the subgroup effects take following forms

E[Y1 − Y0|T = 1, D = 1] =E[(1−D0)(Ỹ1 − Ỹ0) +DE|T = 1, D1 = 1]

=E[(1−D0)(Ỹ1 − Ỹ0)|T = 1, D1 = 1] + E[DE|T = 1],

and

E[Y1 − Y0|T = 1, D = 0] = E[DE|T = 1, D1 = 0] = E[DE|T = 1].

Note that

E[(1−D0)(Ỹ1 − Ỹ0)|T = 1, D1 = 1]

=E[1 ∗ (Ỹ1 − Ỹ0)|T = 1, D1 = 1, D0 = 0]P (D0 = 0|D1 = 1)

+ E[0 ∗ (Ỹ1 − Ỹ0)|T = 1, D1 = 1, D0 = 1]P (D0 = 1|D1 = 1)

=E[Ỹ1 − Ỹ0|T = 1, D1 > D0]
P (D1 > D0)

P (D1 = 1)

where P (D1 > D0) = 1− P (D1 = 0)− P (D0 = 1), and

E[Ỹ1 − Ỹ0|D1 > D0]

is the local average treatment effect (LATE).

The subgroup effects themselves have an interpretation, but it is more straight-

forward to estimate the direct effect

E[Y1 − Y0|T = 1, D = 0] = E[DE|T = 1]

as well as the LATE

E[Ỹ1 − Ỹ0|D1 > D0] =
E[Y1 − Y0|T = 1, D = 1]− E[DE]

P (D0 = 0|D1 = 1)
.

For the identification, rank similarity of Y0 and Yb, may be reasonable if they are
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comparing the same kinds of outcomes. Here suppose we have proxy Yb which is

similar to the control outcome without treatment take-up Y00.

One possibility is that the treatment is not available before the experiment.

Therefore, Yb is similar to the outcome under no treatment is taken under the control

group. Namely use Yb as the proxy for the outcome Y00.

Theorem 6.1. Consider two-sided non-compliance model

(Y11, Y10, Y01, Y00, D1, D0,W, Yb) as specified above. Suppose assumption 2.1 holds

and, assumptions 3.1 and 3.3 hold for a baseline variable Yb. Let νb0 be the la-

tent ranking of Yb conditional on T = 0, D = 0,W = w and assume νb0 accepts

strictly increasing distribution function as well.

Suppose further that assumption 3.2 holds as νb0|D1 = 0 ∼ ν00|D1 = 0, and the

monotonicity in the form of D1 ≥ D0 almost surely holds. Then

FY0|D1=0(y) =

∫
FYb|D1=0,W (QYb|D0=0,W (FY00|W (y)))dFW |D1=0

Proof. For the proof, we omit the covariates as the same argument goes through

under the common support assumption.

The formula is achieved in the following steps:

FY0|D1=0(y) = P (Y0 ≤ y|D1 = 0) = P (Y00 ≤ y|D1 = 0, D0 = 0)

=P (ν00 ≤ FY00(y)|D1 = 0, D0 = 0) = P (νb0 ≤ FY00(y)|D1 = 0, D0 = 0)

=P (Yb ≤ QYb|D0=0(FY00(y))|D1 = 0, D0 = 0) = P (Yb ≤ QYb|D0=0(FY00(y))|D1 = 0)

=P (Yb ≤ QYb|D0=0(FY00(y))|D = 0, T = 1).

Let me walk through each equality. The second equality is by the definition of

Y0 ≡ D0Y01 + (1 − D0)Y00 and the monotonicity. The monotonicity implies that

every unit under T = 0 with D1 = 0 must not receive the treatment, namely D0 = 0.

This fact is shown in the following lemma A.4 in the appendix. The third equality is

from the definition of ν00 as a ranking within D0 = 0. For the fourth equality,
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I applied the rank similarity conditional on D1 = 0 between νb0 and ν00. The

fifth inequality converts νb0 back into the level. In order to do so, we need strictly

monotone QYb|D0=0 which is the quantile function for νb0. Finally, monotonicity is

applied again to conclude that we observe the quantity as D1 = 0.

Remark. It is worth noting the identification itself does not require the homogeneous

direct effect assumption. Also, the monotonicity itself is not used, but the fact that

P (Yb ≤ y|D1 = 0) = P (Yb ≤ y|D1 = 0, D0 = 0)

and

P (Y0 ≤ y|D1 = 0) = P (Y00 ≤ y|D1 = 0, D0 = 0)

while the latter may be rationalized well only in the monotonicity, as otherwise it

requires equivalence in distributions of Y01 and Y00. See these statements are in fact

necessary conditions for the monotonicity in the appendix lemma A.4.

Once we get

E[Y00|D1 = 0, T = 1],

we have

E[Y10 − Y00|D1 = 0, T = 1] = E[DE]

so that

LATE =
ITT −DE

P (D0 = 0|D1 = 1)

where ITT = E[Y1 − Y0] = E[Y |T = 1]− E[Y |T = 0].

6.2 Differential Attrition Problem

The similar argument may apply to the differential attrition. Consider the case

of potential outcomes Y1, Y0 are sample selected values of true potential outcomes
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Y ∗
1 , Y

∗
0 so that

Y1 = D1Y
∗
1 , Y0 = D0Y

∗
0

Let Y ∗
1 , Y

∗
0 > 0 so that 0 is taken only by the missing values. This definition is a

normalization available for the bounded supported Y ∗
t by adding the minimum of Y ∗

t

to make it positive.

Suppose the case where D1 ≤ D0 almost surely. In other words, the treatment

T requires some actions which may reduce the take-up rate for the survey D1 in

treatment relative to the control D0.

Contrary to the previous argument of general case of two-sided non-compliance,

we are interested primary in

E[Y1 − Y0|T = 1, D1 = 1] = E[Y1 − Y0|T = 1, D1 = 1, D0 = 1] = E[Y ∗
1 − Y ∗

0 ]

from the monotonicity, and there is no role of the homogeneous direct effect. Finally,

assume we have baseline observation Yb for the proxy of Y0.

Corollary 6.2. Consider the differential attrition model (Y ∗
1 , Y

∗
0 , D1, D0,W, Yb) as

specified above. Suppose assumption 2.1 holds and, assumptions 3.1 and 3.3 hold for

a baseline variable Yb. Let νb1 be the latent ranking of Yb conditional on T = 0, D =

1,W = w and assume νb1 accepts strictly increasing distribution function as well.

Suppose further that assumption 3.2 holds as νb1|D1 = 1 ∼ ν∗0 |D1 = 1, and the

monotonicity in the form of D0 ≥ D1 almost surely holds. Then

FY ∗
0 |D1=1(y) =

∫
FYb|D1=1,W (QYb|D0=1,W (FY ∗

0|W (y)))dFW |D1=1

so that we have identification of

E[Y ∗
1 − Y ∗

0 |D1 = 1].

Proof. The proof immediately follows as a special case of theorem 6.1 by flipping the
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order of the monotonicity from D1 ≥ D0 to D0 ≥ D1, and focused on the case of

D1 = 1 which implies D0 = 1 almost surely.

Remark. As in the case of two-sided non-compliance, the conditional independence

statements

P (Yb ≤ y|D1 = 1) = P (Yb ≤ y|D1 = 1, D0 = 1)

and

P (Y0 ≤ y|D1 = 1) = P (Y ∗
0 ≤ y|D1 = 1, D0 = 1)

are sufficient for the identification. In fact, for the differential attrition, these re-

strictions may be substantially weaker than the monotonicity as the former may allow

shocks independent from Yb, Y
∗
0 conditional on D1 = 1 to deviate D0 from 1 and it

does not generate the complication in the case of the general two-sided non-compliance

as the missing value has the known ranking of the bottom.

The same approach may not work if the differential attrition works in the other

way, namely D1 ≥ D0. Nevertheless, if we may assume the rank similarity in νb and

ν∗1 conditional on T = 1, D = 1,W = w, then the same argument works to identify

E[Y ∗
1 − Y ∗

0 |D0 = 1].

7 Conclusion

This paper presents a method to identify treatment effect heterogeneity across en-

dogenous decisions in a randomized experiment that does not require any additional

instruments or specific experimental design. Instead, I use a variable from a baseline

survey to proxy for control outcomes. This method only requires that the proxy

variable and the control outcome to be similar in rank order.

For one-sided non-compliance case of the microcredit experiment, I identify the

average treatment effect on the treated (ATT) while allowing access to the micro-

credit to have a direct effect (DE). The identification of the ATT uses the proxy
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variable of the same outcome measure in the baseline survey. I find that the ATT

estimate under the conventional assumption of no direct effect produces estimates

2.3 times larger than that of my preferred estimate.

It is worth noting that this subgroup effects and the procedure for the identifica-

tion of the subgroup effect apply flexibly to a variety of randomized policy evaluation

problems. First flexibility appears in the type of outcome measures. Although the

most natural proxy variable is the baseline survey version of the endline outcomes

of interest, the proxy variable is not necessarily the same measure of the outcome of

interest. This feature expands the flexibility of the application to the binary outcome

measures such as an event of survival or attainment of degrees. Second flexibility is

the applicability to other forms of experiments. This paper demonstrates the use of

the strategy to the two-sided non-compliance problem. For the general case of the

two-sided non-compliance, I show the identification of the LATE and the DE addi-

tional assumptions of monotonicity and homogeneous direct effect. The differential

attrition is an important special case where I show the identification of the attrition

free average effect under the monotonicity assumption. Both cases of the two-sided

non-compliance process the same argument under the similar type of proxy variables

for the control outcomes without any taking-up the treatment.

As the microcredit application suggests an enormous bias in the ATT due to a

failure of the no DE assumption, this paper shows the importance of identifying the

treatment effect heterogeneity directly. This study enables such a direct procedure

with the help of proxy variables from the baseline survey. For better policy guidance

and better understanding of the treatment, applied researchers should use the pro-

posed methods, and this study encourages the baseline data collection for this vital

purpose.

Although the identification is fully non-parametric, the estimation procedure fol-

lows a specific semi-parametric distribution regression. The parametric assumption

imposed may not be an innocuous restriction as well as the proposed procedure may
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have a small sample problem when there are many discrete covariates. The current

procedure excludes unbounded support of the outcome variables which may be not

be appreciated. Tackling these estimation issues are future research interest.
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A Appendix

A.1 Proofs of main results

Proof of Lemma 4.1. Step 1: Weak convergences of Z-functions

For the proof of the lemma 4.1, we would like to introduce approximate Z-map

notations.

For every y ∈ Y , let Ψ(y, β) be dW -vector of population moment equations such

that the true parameter β∗ ∈ RdW solves the moment condition Ψ(y, β) = 0. Let

Ψ̂(y, β) be an empirical analogue. Let an estimator β̂(y) satisfies

∥Ψ̂(y, β̂(y))∥2 ≤ inf
β∈RdW

∥Ψ̂(y, β)∥2 + r̂(y)2

where r̂(y) is a numerical tolerance parameter with ∥r̂∥Y = op(n
−1/2).

Let ϕ(Ψ(y, ·), r(y)) : l∞(R)dW × R 7→ RdW be an approximate Z-map which

assigns one of its r(y)-approximate zeros to each element Ψ(y, ·) so that

β̂(·) = ϕ(Ψ̂(·, ·), r̂(·)), β∗(·) = ϕ(Ψ(·, ·), 0).

For each q = 1, . . . , dW , let

ψ0,q
y,β0(Y,W, T ) = I{T = 0}

[
Λ(W ′β0)− 1{Y ≤ y}

]
H(W ′β0)Wq,

ψ1,q
y,β1(Y,W, T ) = I{T = 1}

[
Λ(W ′β1)− 1{Yb ≤ y}

]
H(W ′β1)Wq,

ψ
{1,d},q
y,β1,d (Y,W, T,D) = I{T = 1, D = d}

[
Λ(W ′β1,d)− 1{Yb ≤ y}

]
H(W ′β1,d)Wq,

and for each d ∈ D1. Also let ψ0
y,β0 , ψ1

y,β1 and ψ1,d
y,β1,d be dW -vector valued functions

with each q-th coordinate being ψ0,q
y,β0 , ψ

1,q
y,β1 and ψ

{1,d},q
y,β1,d .
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In the lemma A.1 below, it is shown that the union of classes of functions

∪d∈D1,q∈{1,...,dW}{ψ0,q
y,β0(Y,W, T ) : (y, β

0) ∈ Y × RdW )}

∪ {ψ1,q
y,β1(Y,W, T ) : (y, β

1) ∈ Y × RdW )}

∪ {ψ{1,d},q
y,β1,d (Y,W, T ) : (y, β1,d) ∈ Y × RdW )},

is P -Donsker with a square-integrable envelope function. Let Ψ̂t = Pnψ
t
y,βt , Ψ̂1,d =

Pnψ
1,d
y,β1,d and Ψt = Pψt

y,βt ,Ψ1,d = Pψ1,d
y,β1,d for each t ∈ {0, 1}, then the Donskerness

implies

(√
n(Ψ̂1 −Ψ1),

√
n(Ψ̂0 −Ψ0),

√
n(Ψ̂1,d −Ψ1,d)

)
⇝ (G(ψ1

y1,β1),G(ψ0
y0,β0),G(ψ1,d

y1,d,β1,d))

in l∞(Y1
b ×RdW )dW × l∞(Y0 ×RdW )dW × l∞(Y1,d

b ×RdW )dW where G(ψk
y,βk) for each

k ∈ {1, 0, {1, d}} are P -Brownian bridges.

Step 2: Applying Functional Delta method through Stacking rule

From the first order conditions, β̂k(y) = ϕk(Ψ̂k(y, ·), r̂k(y)), r̂k(y) = max1≤i≤n ∥Wi∥dW/n

for each y ∈ Yk and n1/2∥r̂∥Yk →P 0, and βk(y) = ϕk(Ψk(y, ·), 0) for each y ∈ Yk for

every k ∈ {1, 0, {1, d}}.

Following the argument of Chernozhukov et al. (2013), the three kinds of approx-

imate Z-maps ϕ1, ϕ0, ϕ1,d are Hadamard differentiable for each case, and from the

Stacking Rule as in Lemma B.2 of Chernozhukov et al. (2013), we have

(√
n(β̂1(y1)− β1(y1)),

√
n(β̂0(y0)− β0(y0)),

√
n(β̂1,d(y1,d)− β1,d(y1,d))

)
⇝
(
−J−1

1 G(ψ1
y1,β1(y1)),−J−1

0 G(ψ0
y0,β0(y0)),−J−1

1,dG(ψ1,d
y1,d,β1,d(y1,d)

)
)

in l∞(Y1
b )

dW × l∞(Y0)dW × l∞(Y1,d
b )dW by the functional delta method.

Step 3: Applying another Hadamard differentiable map to conclude the statement
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Finally, consider the mapping νk : Dνk ⊂ l∞(Yk)dW 7→ l∞(Yk ×W) such that

b 7→ νk(b), νk(b)(w, y) = Λ(w′b(y))

for every k ∈ {1, 0, {1, d}}. From the Hadamard differentiability of νk at bk(·) =

βk(y) tangentially to C(Yk)dW with the derivative map α 7→ ν ′
βk(·)(α)(w, y) =

λ(w′βk(y))w′α(y). From the stacking rule, applying the mapping for each process,

the statement of the lemma holds.

Lemma A.1. Under the assumptions of the lemma 4.1, the class of functions

∪d∈D1,q∈{1,...,dW}{ψ0,q
y,β0(Y,W, T ) : (y, β

0) ∈ Y0 × RdW )}

∪ {ψ1,q
y,β1(Y,W, T ) : (y, β

1) ∈ Y1
b × RdW )}

∪ {ψ{1,d},q
y,β1,d (Y,W, T ) : (y, β1,d) ∈ Y1,d

b × RdW )},

is P -Donsker with a square-integrable envelope.

Proof. From Theorem 19.14 in van der Vaart (1998), a suitable measurable class of

measurable functions G is P -Donsker if the uniform entropy integral with respect to

an envelope function G

J(1,G, L2) =

∫ 1

0

√
log sup

Q
N[](ϵ∥G∥Q,2,G, L2(G))dϵ

is finite and the envelope function G satisfies P1G
2 <∞.

Consider classes of functions

F1 = {W ′β : β ∈ RdW},F2,k = {1{Y ≤ y}, y ∈ Yk}, {Wq : q = 1, . . . , dw}

which are VC classes of functions. Note that the target class of functions is the union

of

{I{T = t}(Λ(F1)−F2,t)H(F1)Wq : q = 1, . . . , dw}
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for each t ∈ {0, 1} and

{I{T = 1, D = d}(Λ(F1)−F2,{1,d})H(F1)Wq : q = 1, . . . , dw}

for each d ∈ D1. These are Lipschitz transformation of VC-class of functions and

finite set of functions I{T = t} and I{T = 1, D = d} where the Lipschitz coefficients

bounded by const · ∥W∥. Therefore, from Example 19.19 of van der Vaart (1998),

the constructed class of functions has the finite uniform entropy integral relative to

the envelope function const · ∥W∥ which is square-integrable from the assumption.

Suitable measurability is granted as it is a pointwise measurable class of functions.

Thus, the class of functions is Donsker.

Lemma A.2. Under assumptions 3.1, 3.3 and 4.1, it is possible to construct a class

of measurable functions F including

{FY |W,K(y|·, k), y ∈ Yk, k ∈ K ≡ {{T = 1}, {T = 0}, {T = 1, D = d}d∈D1}

and all the indicators of the rectangles in R̄dW such that F is DKP class (Cher-

nozhukov et al., 2013, Appendix A.).

Proof. As in Step 2 in the proofs of Theorem 5.1 and 5.2 in Chernozhukov et al.

(2013), F1 = {FY |W,T (y|·, 1), y ∈ Y1
b },F0 = {FY |W,T (y|·, 0), y ∈ Y0} and F1,d =

{FY |W,T,D(y|·, 1, d), y ∈ Y1,d
b } are uniformly bounded “parametric” family (Example

19.7 in van der Vaart (1998)) indexed by y ∈ Yk for each k ∈ {1, 0, {1, d}} respec-

tively. From the assumption that the density function fY |W,K(y|·, k) is uniformly

bounded,

|FY |W,K(y|·, k)I{K = k} − FY |W,K(y
′|·, k)I{K = k}| ≤ L|y − y′|

for some constant L for every k ∈ {1, 0, {1, d}}. The compactness of Yk implies the

uniform ϵ-covering numbers to be bounded by const/ϵ independent of FW so that
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the Pollard’s entropy condition is met. As noted in footnote in the section 4, the

class of F is suitably measurable as well. As indicator functions of all rectangles

in R̄dW form a VC class, we can construct F that contains union of all the families

F0,F1 and F1,d and the indicators of all the rectangles in R̄dW that satisfies DKP

condition.

For the proof of the Hadamard derivative expression, I show the following lemma.

Lemma A.3. Suppose F1 is a uniformly continuous and differentiable distribution

function with uniformly bounded density function f1 with its support [a, b] where

0 < a < b < 1. Let ψF1(p) = Q1(p) for all p ∈ [0, 1].

Let F0 be a distribution function over a support Y0, then ψF1 is Hadamard dif-

ferentiable at F0 tangentially to a set of function h0 with the derivative map

h0
f1 ◦Q1 ◦ F0

.

Proof. From the assumption, we have

F1 ◦Q1 ◦ (F0 + th0t)− F1 ◦Q1 ◦ F0 = (F0 + th0t)− F0 = th0t.

Let h0t → h0 uniformly in Y0 as t→ 0, and let gt ≡ ψF1 ◦ (F0+h0t) and g ≡ ψF1 ◦F0.

Then gt → g uniformly in Y0 as t→ 0 by the assumption.

Thus, we have

F1(gt)− F1(g)

gt − g

gt − g

t
= h0t

so that we have

gt − g

t
=

h0t
F1(gt)−F1(g)

gt−g
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whereas the RHS has a limit

h0t
F1(gt)−F1(g)

gt−g

→t→0 h0
f1 ◦Q1 ◦ F0

by the uniform differentiability of F1.

Proof of Lemma 4.2. First, let ϕ(F1, F0) ≡ Q1 ◦ F0 so that m(F1,d, F1, F0) = F1,d ◦

ϕ(F1, F0). From the lemma A.3 and the lemma 21.4 (ii) from van der Vaart (1998),

ϕ is Hadamard differentiable at (F1, F0) tangentially to the set of functions (h1, h0)

with the derivative map

−h1 ◦Q1 ◦ F0

f1 ◦Q1 ◦ F0

+
h0

f1 ◦Q1 ◦ F0

.

Therefore, from the Chain rule of the Hadamard differentiability (lemma 20.9, van der

Vaart, 1998), the map m is Hadamard differentiable with the derivative map shown

in the lemma.

A.2 Monotonicity Fact

Lemma A.4. Suppose D0 ≤ D1 almost surely and (Y01, Y00, Yb, D1, D0) are measur-

able with respect to the same probability space (Ω,A, P ). Then

P (Yb ≤ y|D1 = 0) = P (Yb ≤ y|D1 = 0, D0 = 0)

and

P (Y0 ≤ y|D1 = 0) = P (Y00 ≤ y|D1 = 0, D0 = 0)

where Y0 = D0Y01 + (1−D0)Y00.
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Proof. From the assumption, for P -almost every ω ∈ Ω,

D0(ω) ≤ D1(ω)

therefore if D1(ω) = 0 then it must be D0(ω) = 0 for P -almost every ω. Thus, for

Ω0 ≡ {ω : D1(ω) = 0}, Ω00 ≡ {ω : D1(ω) = 0, D0(ω) = 0}, P (Ω0\Ω00) = 0. Let

Ω̃ ≡ Ω0\Ω00.

As a result,

P ({ω : Yb(ω) ≤ y} ∩ Ω0)

P (Ω0)
=
P ({ω : Yb(ω) ≤ y} ∩ (Ω00 ∪ Ω̃))

P (Ω0)

=
P ({ω : Yb(ω) ≤ y} ∩ Ω00)

P (Ω0)
+
P ({ω : Yb(ω) ≤ y} ∩ Ω̃)

P (Ω00)

=
P ({ω : Yb(ω) ≤ y} ∩ Ω00)

P (Ω00)

where the second equality is by the disjointness of Ω00 and Ω̃, and finally equality is

from the fact that the second term has measure zero as well as P (Ω0) = P (Ω00).

Similarly,

P ({ω : Y0(ω) ≤ y} ∩ Ω0)

P (Ω0)
=
P ({ω : Y0(ω) ≤ y} ∩ (Ω00 ∪ Ω̃))

P (Ω0)

=
P ({ω : Y00(ω) ≤ y} ∩ Ω00)

P (Ω0)
+
P ({ω : Y01(ω) ≤ y} ∩ Ω̃)

P (Ω00)

=
P ({ω : Y00(ω) ≤ y} ∩ Ω00)

P (Ω00)
.
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A.3 Quantile Difference Plots

−0.5

0.0

0.5

1.0

0.3 0.4 0.5 0.6 0.7

Quantile

TE

plots LB Estimates UB

Figure A.1: Quantile difference for D = 0 with Uniform 95% CI
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Figure A.2: Quantile difference for D = 1 with Uniform 95% CI
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A.4 Robustness to other link functions

Table A.1: ATT estimates with other link functions
Link: Logit Probit comp LogLog Cauchy

(1) (2) (3) (4)
Treatment 0.9871** 0.9954** 0.9895** 0.8722*

(0.4248) (0.4215) (0.4569) (0.4508)

Obs 2453 2453 2453 2453

Note: Standard errors reported in parenthesis are generated from 300 bootstrap

draws clustered in randomization cluster levels for (1)-(4). *,**,*** indicates

statistical significance of 10%,5% and 1% sizes respectively.

Table A.2: Direct effect estimates with other link functions
Link: Logit Probit comp LogLog Cauchy

(1) (2) (3) (4)
Treatment 0.2933 0.2926 0.2913 0.2693

(0.2593) (0.2599) (0.2623) (0.2709)

Obs 2453 2453 2453 2453

Note: Standard errors reported in parenthesis are generated from 300 bootstrap

draws clustered in randomization cluster levels for (1)-(4). *,**,*** indicates

statistical significance of 10%,5% and 1% sizes respectively.
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A.5 Map of Al Amana Branches

Source: Al Amana and Crépon, Devoto, Duflo and Parienté (2015)
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