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1. Introduction 

Punctuality is certainly a key performance indicator in the airline industry, and carriers 

with excellent on-time performance (OTP) record use it as a marketing tool by prominently 

displaying it on their websites.  Given increased competition that followed deregulation of the 

airline industry in 1978, many carriers have resorted to product quality differentiation as a key to 

long-term profitability.  Although airlines generally compete based on pricing, flight OTP is a 

very important component of airline service quality, which drives customer satisfaction and 

loyalty.  For example, in the 1990’s American Airlines ran ads calling itself “The On-Time 

Machine.”1 Likewise, airlines that produce excessive flight delays receive a great deal of 

negative publicity. 

In 1987, the U.S. Congress passed the flight on-time disclosure rule amidst chronic air 

traffic delays that stirred public outcry and media coverage.  The disclosure rule made it 

mandatory for airlines with at least one percent of all domestic traffic to publish flight-by-flight 

delay data.  Airlines are required to track and report five segments of travel time for each of their 

flights to the Federal Aviation Administration (FAA): i) departure delay, ii) taxi-out, iii) air time, 

iv) taxi-in, and v) arrival delay.  

Remarkably, even with the flight on-time disclosure rule of 1987, the industry’s OTP is 

still far below satisfactory levels.  A report from the U.S. Department of Transportation’s (DOT) 

Office of Aviation Enforcement and Proceedings2 revealed that the most prevailing consumer air 

travel complaint in the year 2000, stems from flight problems namely cancellations, delays and 

missed connections.  In fact, 1 out of 4 flights was either delayed, canceled or diverted (Rupp, 

                                                           
1 Boozer et al. (1990)  
2 US Department of Transportation Office of Aviation Enforcement and Proceedings (USDTOAEP) Feb. 

2001 p. 34 



2 
 

Owens, and Plumly, 2006).  According to Mayer and Sinai (2003), in year 2000, flights that 

arrived at their destination within 15 minutes of their scheduled arrival time and without being 

canceled or diverted, accounted for less than 70 percent.  Even more recently, the Bureau of 

Transportation statistics (BTS) showed that 23.02% of U.S. domestic flights were delayed3 in 

year 2014, an increase from 14.69% in year 2012.  The BTS maintains an archive of monthly and 

yearly OTP data that is also accessible through the Internet.4  Thus, passengers' most common 

source of frustration is flight delay.  

In the midst of these delay statistics, airlines often claim that air traffic delays are out of 

their control, placing the blame on adverse weather or air traffic control as the most common 

culprits.5  A good portion of delay can be attributed to extreme weather, air traffic control and 

security checks (U.S. DOT, 2015).  In June 2003, the Air Carrier On-Time Reporting Advisory 

Committee defined five broad categories for the cause of any flight delay:6 

1. Air Carrier: The cause of the cancellation or delay was due to circumstances within 

the airline’s control (e.g. maintenance or crew problems, aircraft cleaning, baggage 

loading, fueling, etc.). 

2. Extreme Weather: Significant meteorological conditions (actual or forecasted) that, 

in the judgment of the carrier, delays or prevents the operation of a flight (e.g. 

tornado, blizzard, hurricane, etc.). Weather delays are also included in the National 

Aviation System and late-arriving aircraft categories. 

                                                           
3 A flight is considered delayed if it arrived at (or departed) the gate 15 minutes or more after the scheduled arrival (departure) 

time. 
4 The BTS archived data are located at http://www.transtats.bts.gov/homedrillchart.asp  
5 http://www.washingtonpost.com/lifestyle/travel/what-to-do-when-airlines-blame-flight-problems-on-

circumstances-beyond-our-control/2015/02/12/7298b264-a57f-11e4-a7c2-03d37af98440_story.html  
6 http://www.rita.dot.gov/bts/help/aviation/html/understanding.html  

http://www.transtats.bts.gov/homedrillchart.asp
http://www.washingtonpost.com/lifestyle/travel/what-to-do-when-airlines-blame-flight-problems-on-circumstances-beyond-our-control/2015/02/12/7298b264-a57f-11e4-a7c2-03d37af98440_story.html
http://www.washingtonpost.com/lifestyle/travel/what-to-do-when-airlines-blame-flight-problems-on-circumstances-beyond-our-control/2015/02/12/7298b264-a57f-11e4-a7c2-03d37af98440_story.html
http://www.rita.dot.gov/bts/help/aviation/html/understanding.html
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3. National Aviation System (NAS): Delays and cancellations attributable to the 

National Aviation System that refer to a broad set of conditions—non-extreme 

weather conditions, airport operations, heavy traffic volume, air traffic control, etc. 

4. Late-arriving Aircraft: A previous flight with same aircraft arrived late, causing the 

present flight to depart late, and 

5. Security: Delays or cancellations caused by evacuation of a terminal or concourse, re-

boarding of aircraft because of security breach, inoperative screening equipment 

and/or long lines in excess of 29 minutes at screening areas. 

Although some of these factors are uncontrollable, airlines still have a substantial level of 

control over their OTP.  An airline can schedule a longer flight time to absorb potential delays on 

the taxiways, or choose a longer layover on the ground to buffer against the risk of a late 

incoming aircraft (Mayer and Sinai, 2003).  Figure 1 shows declining shares of flight delay 

caused by weather and air traffic control (NAS) over time, while over the same time period, the 

shares of delay caused by late-arriving aircraft and air carrier, continue to rise.  Figures 1 and 2 

suggest that OTP improvement potential within the reach of airlines is significant. 

The objective of this paper is twofold.  First, we examine the monetary value that 

consumers place on OTP.  In order to make our case about consumers valuing improved OTP, 

we estimate a discrete choice demand model, which allows us to quantify the opportunity cost of 

delays to consumers.  Thus, incorporating OTP into our demand model affords us the advantage 

of measuring how much OTP matters to consumers.  In essence, we estimate how much 

consumers are willing to pay to avoid each minute of delay. 
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Figure 1: Causes of Delay by Percent Share of Total Delay Minutes 

 

 

Figure 2: Weather’s Share of Total Delay Minutes 
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Second, if consumers do value OTP, to what extent may airlines benefit from improving 

their OTP?  How does improved OTP affect airlines’ variable profits in an oligopoly market 

structure, a strategic environment where few firms are competing with each other?  One way to 

answer these questions is by examining how airlines’ price-cost markup and demand for air 

travel respond to changes in OTP.  To facilitate this part of the analysis we specify a supply-side 

of the model assuming that multiproduct airlines set prices for their differentiated products 

according to a static Nash equilibrium.  The supply-side of the model is first used to generate 

estimates of product-level price-cost markups and airline-level variable profits, and then used to 

conduct counterfactual exercises to assess the extent to which improvements in arrival delay (i.e. 

improvements in OTP) influence variable profits of airlines.  The variations in airlines’ variable 

profit due to counterfactual improvements in OTP are used to assess the incentive a given airline 

has to improve OTP.  

The rationale for using variable profit changes as measures of airlines’ incentive to 

improve OTP is that airlines care about their bottom line, and if improving OTP leads to 

increases in variable profits, then improving OTP might be a worthwhile proposition for airlines.  

In addition, because variable profit is a function of price-cost markup and demand level, we are 

able to decompose the changes in variable profit into changes in its components and examine 

how these components drive the changes in variable profits.   

Over the last three decades, empirical studies on air travel have neglected to explicitly 

incorporate OTP measures of service quality into air travel demand estimation.  De Vany (1975) 

is among the first to incorporate service quality, proxied by flight frequency, in a demand model. 

Anderson and Kraus (1981), Ippolito (1981), Abrahams (1983) and De Vany (1975) estimated 
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air travel demand models with schedule delay7 as a measure of service quality.  Our present 

paper contributes to this literature. 

A novel feature of this study is that we model demand based on passenger origin-

destination8 markets rather than flight segments within a broader origin-destination market. 

Previous demand studies that are based on origin-destination markets have not incorporated 

flight delay,9 and studies that have incorporated delay (Abrahams, 1983; Anderson and Kraus, 

1981; De Vany, 1975; Douglas and Miller, 1974; Ippolito, 1981), model demand based on flight 

segments rather than passenger origin-destination markets.  Since much of air travel from 

passengers’ origin to their destination use several flight segments rather than a single non-stop 

flight, it is reasonable to model demand within an origin-destination framework, which captures 

the imperfect substitutability between non-stop and intermediate-stop products within an origin-

destination market.  In fact, our dataset shows that only 17.6 percent of itineraries are non-stop 

flights from the relevant passengers' origin to destination.  Travelers typically demand air 

transportation between a directional origin and destination pair rather than segment-by-segment 

flights.  Our focus on origin-destination markets not only helps to predict passengers’ behavioral 

intentions, but provides a more realistic structure for the measurement of consumer welfare 

effects of flight delay. 

Several conclusions emerge from the empirical analysis. First, other things equal, 

consumers value OTP and are willing to pay for it.  Our demand estimates show that consumers 

are willing to pay $1.56 per minute late to avoid delay.  Second, we find that, a 10% reduction in 

arrival delay minutes (improved OTP) results in an increase in variable profit by a mean 3.95 

                                                           
7 Defined as the sum of frequency delay and stochastic delay. Frequency delay is the gap between one's desired and 

the nearest offered departure time while stochastic delay is time lost due to the nearest offered departure being 

unavailable. 
8 Tickets are issued for the entire itinerary, which may include intermediate airport(s). 
9 Origin-destination passenger data contain no information on routings’ on-time performance. 
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percent.  Furthermore, we find that it is the increase in demand levels, as compared to increase in 

markup, that accounts for most of the increase in variable profits.  

Given the finding that reductions in arrival delay minutes (improved OTP) yield increases 

in variable profits, we are able to use the model to recover estimates of the cost per minute of 

delay improvement that rationalizes the level of delay minutes we observe in the data.  The 

model predicts that a 2.39% increase in OTP-related marginal investment cost per minute of 

improvement is necessary to achieve a 10% reduction in arrival delay minutes below their 

current levels.. 

The remainder of the paper is organized as follows.  The next section provides a review 

of the literature.  Section 3 describes the data used for analysis.  Section 4 describes variables 

used for estimation.  Section 5 discusses the research methodology and estimation procedure 

used to analyze the OTP effects.  Results are presented and discussed in Section 6, while 

concluding remarks are gathered in Section 7. 

2. Literature Review 

Researchers have written extensively on airline flight delays.  The literature on flight 

delays abounds in both operations management and economics.  The operations management 

literature uses models that attempt to explain flight delays from an operational standpoint of 

running an airline.  Shumsky (1995) contributed to the literature of airline scheduling 

performance analysis by examining U.S. air carriers’ response to the on-time disclosure rule of 

1987.  The rule creates incentives for carriers to improve their OTP by either reducing the 

amount of time to complete a flight or lengthening the amount of time scheduled for a flight.  

Shumsky (1995) shows that although actual flight times have fluctuated, scheduled flight times 

have increased significantly. Ramdas and Williams (2006) investigate the tradeoff between 
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aircraft utilization and OTP using queuing theory and found that flight delays increase with 

increasing aircraft utilization.   

In the economics literature, researchers have tried to explain variations in flight delays by 

estimating how flight delay relates to airline hub size and airport concentration (Mayer and Sinai, 

2003), competition (Mayer and Sinai, 2003; Mazzeo, 2003; Rupp et al., 2006), multimarket 

contact (Prince and Simon, 2009), prices (Forbes, 2008) and entry or threat of entry (Prince and 

Simon, 2014), among others. Mayer and Sinai (2003) found that as origin (destination) airport 

concentration increases, flight delays originating (arriving) from (to) that airport decrease.  On 

the other hand, for both origin and destination airports, flight delays increase with increasing 

airport hub size.  Mazzeo (2003) found that the prevalence and duration of flight delays are 

significantly greater on routes where only one airline provides direct service.  Rupp and Holmes 

(2006) examined the determinants of flight cancellations such as revenue, competition, aircraft 

utilization, and airline network.  Prince and Simon (2009) tested the mutual forbearance 

hypothesis (Edwards, 1955) using different measures of OTP.  This hypothesis suggests that 

firms that meet in multiple markets compete less aggressively because they recognize that a 

competitive attack in any one market may call for response(s) in all jointly contested markets.  

They conclude that multimarket contact increases delays and that the effect is substantially larger 

in less competitive markets.  

Forbes (2008) examines the effect of air traffic delays on airline fares and found that 

prices fall by $1.42 on average for each additional minute of flight delay, and that the price 

response is substantially larger the more competitive the markets are. Prince and Simon (2014) 

examine whether entry and entry threats by Southwest Airlines cause incumbent airlines to 

improve their OTP as a way to protect their market share.  Surprisingly, their results show that 
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incumbents’ delays increase with entry and entry threats by Southwest Airlines.  They provide 

two possible explanations for their findings: 1) incumbents worsen OTP in an effort to cut costs 

in order to compete against Southwest’s low costs/prices; or 2) incumbents worsen on-time 

performance to differentiate away from Southwest, a top-performing airline in on-time 

performance. 

3. Definitions and Dataset Construction  

3.1. Definitions 

A market is defined as a directional, round-trip between an origin and destination city 

during a specific time period. By directional, we mean that a round-trip air travel from Chicago 

to Boston is a distinct market from a round-trip air travel from Boston to Chicago. This 

directional definition of a market controls for heterogeneity in demographics across origin cities 

that may affect air travel demand (Berry, Carnall and Spiller, 2006; Gayle, 2007). 

An itinerary is a planned route from an origin city to a destination city. It entails one or 

more flights, each flight typically representing point-to-point travel between two airports.  

There are two types of carriers in the data—ticketing carrier and operating carrier.  The 

ticketing carrier is the airline that issues the flight reservation or ticket to consumers.  The 

operating carrier is the airline that operates the aircraft, i.e., the airline that actually transports the 

passengers. 

An air travel product is defined as an itinerary-carrier combination during a particular time 

period. We focus on products that use a single airline as both ticketing and operating carrier for 

all segments of the trip.  Table 1 reports the names and associated code of the carriers in our 

sample. 
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3.2. Dataset Construction 

We construct our dataset using data from two sources that span from the first quarter of 

2002 to the fourth quarter of 2012. First, we use data from the Airline Origin and Destination 

Survey (DB1B) collected by the Office of Airline Information of the Bureau of Transportation 

Statistics. The data are quarterly and represent a 10 percent sample of airline tickets from 

reporting carriers. Each record in this database contains the following information; (i) the 

identities of origin, destination, and intermediate stop(s) airports on an itinerary; (ii) the identities 

of ticketing and operating carriers on the itinerary; (iii) the price of the ticket; (iv) the number of 

passengers who bought the ticket at that price during the relevant quarter; (v) total itinerary 

distance flown from origin to destination; and (vi) the nonstop distance between the origin and 

destination. Regrettably, passenger-specific information, that would facilitate the estimation of a 

richer demand model than the one we use, is not available. Information on ticket restrictions such 

as advance-purchase and length-of-stay requirements are unavailable as well.  

Table 1: Airlines in Sample 

 
   Code       Airline  

AA American Airlines 

AQ Aloha Airlines 

AS Alaska Airlines 

B6 JetBlue Airways 

CO Continental Air Lines 
DH Independence Air  

DL Delta Air Lines  

F9 Frontier Airlines 

FL AirTran Airways  

HA Hawaiian Airlines 

HP America West Airlines 

NW Northwest Airlines  

OO SkyWest  

TZ ATA Airlines 

UA United Air Lines 

US US Airways  

VX Virgin America Inc. 

WN Southwest Airlines  

XE ExpressJet Airlines 

YX Midwest Airlines 
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Second, we also use the U.S. Department of Transportation (DOT) Bureau of 

Transportation Statistics (BTS) On-Time Performance database to construct our on-time 

performance measure of product quality. All U.S. domestic carriers with revenues from domestic 

passenger flights of at least one percent of total industry revenues must report flight OTP data. 

The data frequency is monthly and covers scheduled-service flights between points within the 

United States. So, a record in this survey represents a flight, where the given flight may contain 

passengers who are using very different routing itineraries that share this flight on a segment of 

each passengers’ multi-segment itinerary. Each record or fight10 contains information on the 

operating carrier, the origin and destination airports for the flight, miles flown, flight times, and 

departure/arrival delay information.  

Perhaps owing to the challenge of matching the two distinct databases described above, 

previous demand studies that are based on origin-destination data have not incorporated OTP 

data. A reason for the matching challenge is that the origin-destination database gathers 

information at the travel ticket level but contains no information at the operating flight level, 

while the OTP database gathers information at the operating flight level but contains no 

information at the travel ticket level. 

To construct a product quality variable from the OTP data, we compute the average 

departure (arrival) delay across flights for each carrier at any given origin (destination) airport in 

a quarter for a given year. This results in an aggregated on-time performance data in which a 

single observation is now at the carrier-airport-quarter level instead of being at the initial less 

aggregated level of operating flight-airport-month.  This aggregated OTP data is then matched to 

                                                           
10 Some flights could be segments of itineraries with intermediate stop(s) 
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the DB1B origin-destination dataset. The matching process is done at all airports of the 

passengers’ itineraries. 

In this study, we focus on carriers’ OTP at the itinerary’s final destination airport. In order 

to construct our data set, we place some restrictions on the raw data: 

(i) We confine our analysis to U.S. domestic flights operated by U.S. domestic carriers. 

(ii) Our analysis focuses on performed flights arriving at their destination and do not 

include cancellations or diversions since they do not accurately depict OTP. 

(iii) We focus on passengers purchasing round-trip, coach class tickets.  

(iv) We exclude real airfares less than $25 or greater than $2,000. Dropping real airfares 

that are too low gets rid of discounted airfares from passengers using their frequent-

flyer miles to offset the full price of the trip or employee travel tickets. Likewise, 

excluding real airfares that are too high gets rid of first-class or business-class tickets.  

(v) Our analysis is limited to air travel products possessing at least 9 passengers per 

quarter to exclude products that are not part of the regular offerings by an airline.  

(vi) Our analysis focuses on itineraries: (1) within the 48 states in U.S. mainland; (2) no 

more than one intermediate stop; and (3) with a single and the same ticketing and 

operating carrier. 

(vii) Following Aguirregabiria & Ho (2012), markets selection focuses on air travel 

amongst the 63 largest U.S. cities. City size is based on the Census Bureau's 

Population Estimates Program (PEP), which publishes estimates of U.S. population. 

Data are drawn from the category “Cities and Towns”. We use the size of population 

in the origin city as a proxy for potential market size. Unlike Aguirregabiria & Ho 

(2012), we do not group cities that belong to the same metropolitan areas and share 

the same airport since airport grouping will lessen the heterogeneity in OTP. 
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(viii) Given that there are often multiple records for the same itinerary because different 

passengers paid different prices, we construct the price and quantity variables by 

averaging the airfares and aggregating the number of passengers respectively based 

on our product definition and then collapse the data by product. So, in the collapsed 

data that we use for analyses, a product appears only once during a given time period. 

Our final working dataset includes a total of 63 airports representing 1,281,413 air travel 

products bought across 156,743 different directional city-pair markets. 

4. Variables used for Analysis 
 

4.1 On-Time Performance Measure 

 

Delay-based measures are obtained using on-time performance from the DOT BTS’ 

dataset. According to the U.S. DOT, flights that do not arrive at (depart from) the gate within 15 

minutes of scheduled arrival (departure) time are late arrivals (departures). This represents 

performance measured against airlines’ published schedules. For example, if your flight is 

scheduled to arrive at 3:30 p.m. and does not get in until 3:44 p.m., it is not late according to the 

U.S. DOT’s definition of flight lateness. With this measurement standard, 81.9 percent of flights 

arrived on time in April 2015.11 However, if we count all flights that arrive after their scheduled 

arrival time, including when they are one minute late, the industry’s “true” on-time performance 

drops to about 60 percent. 

The OTP measure used for analysis is “arrival minutes late” at the destination airport.  

There are other measures of OTP reported by the DOT BTS such as the percentage(s) of flights 

arriving at least 15 (or 30) minutes late that have been explored.12 However, a potential 

limitation of the percentage(s) of flights arriving at least 15 (or 30) minutes late is that it only 

                                                           
11 US Department of Transportation (2015) 
12 See Barnett et al. (2001), Rupp et al. (2006), Forbes (2008) and Prince and Simon (2009) amongst others 
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captures delay beyond a certain threshold. “Minutes late,” on the other hand, is a more relevant 

measure given that it is a continuous variable. 

 Table 2 summarizes OTP by carrier over the 2002 to 2012 time span. Hawaiian Airlines 

(HA) tops all carriers with the best arrival on-time performance.  Figure 3 shows that over the 

2002 to 2012 time span, airlines performed the worst in 2007.  

 

Table 2: Airlines’ Mean Arrival Delay 

Code 

 

Airline Mean Minutes 

Late 

HA Hawaiian Airlines 4.75 

AQ Aloha Airlines 9.23 

VX Virgin America Inc. 9.90 

WN Southwest Airlines  9.93 

AS Alaska Airlines 10.50 

HP America West Airlines 10.60 

US US Airways 10.93 

F9 Frontier Airlines 12.02 

DL Delta Air Lines  12.16 

CO Continental Air Lines 13.01 

NW Northwest Airlines  13.08 

TZ ATA Airlines 13.13 

FL AirTran Airways 13.22 

OO SkyWest 13.42 

XE ExpressJet Airlines 13.48 

UA United Air Lines 13.51 

AA American Airlines 13.73 

YX Midwest Airlines 14.48 

B6 JetBlue Airways 15.14 

DH Independence Air  15.49 

Overall Mean  12.31 
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Figure 3: Overall Airline On-Time Performance (2002:Q1—2012:Q4) 

 

 

 

4.2 Routing Quality Measure 

 

We constructed and include the distance-based measure, Routing Quality, into our 

analysis following the literature.13 Routing Quality is defined as the ratio of nonstop fight 

distance to the product’s itinerary fight distance used to get passengers from the origin to 

destination. Based on our routing quality measure, a nonstop flight between the origin and 

destination will have the shortest itinerary flight distance. Hence, air travel products that require 

intermediate airport stop(s) that are not on a straight path between the origin and destination, will 

have an itinerary flight distance that is longer than the nonstop flight distance. Our rationale for 

considering this measure is that the longer the itinerary flight distance of an intermediate-stop 

product relative to the nonstop flight distance, the lower the routing quality of the intermediate-

stop product. 

 

                                                           
13 See Reiss and Spiller (1989); Borenstein (1989); Ito and Lee (2007); Fare, Grosskopf and Sickles (2007); Gayle 

(2007 and 2013); Chen and Gayle (2013) and Gayle and Yimga (2015). 
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4.3 Creation of Other Variables 

In the collapsed and matched dataset, we create more variables to include in the empirical 

model. The observed product share variable is created by dividing product quantity sold by the 

market size. Measured non-price product characteristic variables include: Nonstop and Origin 

Presence. Nonstop is a zero-one indicator variable that takes the value one only if a product has 

no intermediate stop. This variable constitutes one measure of the travel inconvenience 

embodied in a product’s itinerary since, assuming all other product characteristics equal, 

passengers likely prefer a non-stop product to one with intermediate stop(s). The Origin 

Presence variable counts the number of different cities that an airline provides service to via a 

nonstop flight from the origin airport of the market.  

We include zero-one dummy variables for quarter, year, origin, destination, and carrier to 

capture product characteristics unobserved to us that vary across time periods, origins, 

destinations, and carriers.  Table 3 reports summary statistics for variables used in the analysis. 

Table 3: Summary Statistics 
 

Variables Mean Std. Dev. Min Max 

 Price
a 171.810 57.4635 51.579 1588.565 

 Quantity (Number of passengers that purchase the product) 166.841 511.468 9 11266 

 Observed Product Share
b
 0.00028 0.001 1.07e-06 0.095 

 Origin presence 21.162 24.103 0 142 

 Nonstop (dummy variable) 0.176 0.380 0 1 

 Itinerary distance flown (miles)
c
 1556.71 694.619 47 3982 

 Nonstop flight distance (miles) 1379.813 646.842 47 2724 

 Routing Quality
d 0.889 0.129 0.338 1 

Arrival On-Time Performance Variable:     

    Minutes Late 12.31 4.88 0 68.43 

     

Number of Products 1,281,413    
Number of Markets 

e 156,743    
a Adjusted for inflation 
b Observed Product Share is computed as product quantity sold divided by the population of origin city  
c Reported as “market miles flown” in the DB1B database 
d Defined as the ratio of non-stop distance to itinerary distance 
e A market is an origin-destination-time period combination 
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5. The Model 
 

5.1 Demand 

The nested logit model is used to specify air travel demand. A typical passenger i may either 

buy one of J products (air travel products), j=1,…,J, or otherwise choose the outside option  

(j=0), where the outside option includes driving or using other modes of transportation. Thus, 

passenger i makes a choice among Jmt+1 alternatives in market m during time period t. The 

nested logit model classifies products into G groups, and one additional group for the outside 

good. Therefore, products are organized into   G+1 mutually exclusive groups. We group 

products by carriers. A passenger solves the following utility maximization problem: 

Max
𝑗є{0,1,…𝐽𝑚𝑡}

 𝑈𝑖𝑗𝑚𝑡 = 𝛿𝑗𝑚𝑡 + 𝜎Ϛ𝑖𝑚𝑡𝑔 + (1 − 𝜎)𝜀𝑖𝑗𝑚𝑡      (1) 

 𝛿𝑗𝑚𝑡 = 𝑥𝑗𝑚𝑡𝛽 + 𝛼𝑝𝑗𝑚𝑡 + 𝜂𝑗 + 𝜐𝑡 + 𝑜𝑟𝑖𝑔𝑖𝑛𝑚 + 𝑑𝑒𝑠𝑡𝑚 + 𝜉𝑗𝑚𝑡    (1.1)  

where:  

- 𝑈𝑖𝑗𝑚𝑡: passenger 𝑖’s utility from choosing product 𝑗. 

- 𝛿𝑗𝑚𝑡 : mean level of utility across passengers that choose product 𝑗. 

- Ϛ𝑖𝑚𝑡𝑔: a random component of utility common across all products within the same group.   

- 𝜀𝑖𝑗𝑚𝑡: an independently and identically distributed (across products, consumers, markets 

and time) random error term assumed to have an extreme value distribution. 

- 𝑥𝑗𝑚𝑡 : vector of explicit product quality measures and other non-price product 

characteristics described below 

- 𝑝𝑗𝑚𝑡: price 

- 𝜂𝑗: airline-specific fixed effects 

- 𝜐𝑡: time period fixed effects 

- 𝑜𝑟𝑖𝑔𝑖𝑛𝑚: origin city fixed effects 

- 𝑑𝑒𝑠𝑡𝑚: destination city fixed effects 

- 𝜉𝑗𝑚𝑡 : unobserved (by the researcher) component of product characteristics that affects 

consumer utility. 
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Vector  𝑥𝑗𝑚𝑡  includes explicit product quality measures (OTP measure and Routing Quality), a 

measure of the size of an airline’s airport presence (Origin Presence), and a zero-one indicator 

variable, Nonstop, that equals to unity only if the product uses a nonstop flight to get passengers 

from the origin to destination.  

The vector 𝛽 measures the passenger’s marginal utilities associated with non-price 

product characteristics. The parameter α captures the marginal utility of price. The parameter 𝜎 

lies between 0 and 1 and measures the correlation of consumer utility across products belonging 

to the same airline.  The correlation of preferences increases as 𝜎 approaches 1.  In the case 

where 𝜎 is 0, the model collapses to the standard logit model where products compete 

symmetrically. For notational convenience, we drop the market and time subscripts to complete 

the derivation of the model. 

  Let there be 𝐺𝑔 products in group 𝑔.  If product 𝑗 is in group 𝑔 then the conditional 

probability of choosing product 𝑗 given that group 𝑔 is chosen is given by: 

𝑠𝑗/𝑔 =
𝑒

(1−𝜎)−1𝛿𝑗

𝐷𝑔
 where 𝐷𝑔 = ∑ 𝑒(1−𝜎)−1𝛿𝑗

𝑗є𝐺𝑔
      (2) 

The probability of choosing group or group ’s predicted share is given by: 

𝑠𝑔 =
𝐷𝑔

1−𝜎

𝐷0
1−𝜎+∑ 𝐷𝑔

1−𝜎𝐺
𝑔=1

           (3)  

The outside good is the only good in group 0.  Therefore, 𝐷0
1−𝜎 = 𝑒𝛿0.  We normalize the mean 

utility of the outside good to zero.  This implies 𝐷0
1−𝜎 = 1 .  Equation (3) can be rewritten as: 

𝑠𝑔 =
𝐷𝑔

1−𝜎

1+∑ 𝐷𝑔
1−𝜎𝐺

𝑔=1
           (4) 

The unconditional probability of choosing product 𝑗, or the market share of product 𝑗 is: 

g g



19 
 

𝑠𝑗 = 𝑠𝑗/𝑔 ∗ 𝑠𝑔 =
𝑒

(1−𝜎)−1𝛿𝑗

𝐷𝑔
 

𝐷𝑔
1−𝜎

1+∑ 𝐷𝑔
1−𝜎𝐺

𝑔=1
  or equivalently 𝑠𝑗 =

𝑒
(1−𝜎)−1𝛿𝑗

𝐷𝑔
𝜎[1+∑ 𝐷𝑔

1−𝜎𝐺
𝑔=1 ]

  (5) 

Therefore, the demand for product is given by: 

𝑑𝑗 = 𝑀 ∗ 𝑠𝑗(𝐱, 𝐩, 𝛏; 𝛼, 𝛽, 𝜎)         (6) 

where 𝑀 is a measure of market size—the population in the origin city.  The market share of 

product 𝑗 predicted by the model is represented compactly as 𝑠𝑗(𝐱, 𝐩, 𝛏; 𝛼, 𝛽, 𝜎), where 𝐱, 𝐩 and 𝛏 

are vectors of observed non-price product characteristics, price, and product characteristics 

unobserved to us the researchers, respectively.  𝛼, 𝛽 and 𝜎 are parameters to be estimated.  The 

specific functional form for 𝑠𝑗(𝐱, 𝐩, 𝛏; 𝛼, 𝛽, 𝜎) is given above in equation (5). 

 

5.2 Variable Profits and Product Markups 

We assume that carriers simultaneously choose prices as in a static Bertrand-Nash model 

of differentiated products. Let each carrier f offer for sale a set 𝐹𝑓𝑚 of products in market m. 

Firm f's variable profit in market m is given by: 

𝑉𝑃𝑓𝑚 = ∑ (𝑝𝑗𝑚 − 𝑚𝑐𝑗𝑚)𝑞𝑗𝑚,𝑗є𝐹𝑓𝑚
                                          (7) 

where 𝑞𝑗𝑚 = 𝑑𝑗𝑚(𝐩) in equilibrium, 𝑞𝑗𝑚  is the quantity of travel tickets for product j sold in market 

m, 𝑑𝑗𝑚(𝐩) is the market demand for product j in equation (6), 𝐩 is a vector of prices for the J 

products in market m, and 𝑚𝑐𝑗𝑚 is the marginal cost to provide product j in market m.  

The corresponding first-order conditions are: 

∑ (𝑝𝑟 − 𝑚𝑐𝑟)
𝜕𝑠𝑟

𝜕𝑝𝑗
+ 𝑠𝑗 = 0𝑟є𝐹𝑓

  for all 𝑗 = 1, … , 𝐽      (8) 

where the market subscript m is suppressed only for notational convenience.  Equation (8) can be 

rewritten in matrix notation as: 

j
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 (Ω ∗ 𝛥) × (𝐩 − 𝐦𝐜) + 𝑠(𝐩) = 0       (9) 

where p, mc, and s(∙) are 𝐽×1 vectors of product prices, marginal costs, and predicted product 

shares respectively, while Ω ∗ 𝛥 is an element-by-element multiplication of two matrices. Δ is a 

𝐽×𝐽 matrix of first-order derivatives of model predicted product market shares with respect to 

prices, where element 𝛥𝑗𝑟 =
𝜕𝑠𝑟(·)

𝜕𝑝𝑗
 .  Ω is a 𝐽×𝐽 matrix of appropriately positioned zeros and ones 

which describes carriers’ ownership structure of the 𝐽 products. For example, let Ω𝑗𝑟denote an 

element in Ω, where 

Ω𝑗𝑟 = {
1 if there exists 𝑓: {𝑗, 𝑟} ⊂ 𝐹𝑓

0 otherwise                               
 

That is, Ω𝑗𝑟 = 1 if products j and r are offered for sale by the same carrier, otherwise Ω𝑗𝑟 = 0. 

 Based on equation (9), product-level markups can be obtained as: 

𝑀𝑘𝑢𝑝(𝐱, 𝛏; 𝛼̂, 𝛽̂, 𝜎̂) = 𝐩 − 𝐦𝐜 = (Ω ∗ 𝛥)−1 × 𝑠(𝐩)     (10) 

where 𝛼̂, 𝛽̂ and 𝜎̂ are estimates of the demand parameters.  Let 𝑚𝑎𝑟𝑘𝑢𝑝𝑗(𝐱, 𝛏; 𝛼̂, 𝛽̂, 𝜎̂) be an 

element in 𝑀𝑘𝑢𝑝(𝐱, 𝛏; 𝛼̂, 𝛽̂, 𝜎̂).  Note that 𝑚𝑎𝑟𝑘𝑢𝑝𝑗(𝐱, 𝛏; 𝛼̂, 𝛽̂, 𝜎̂) is a product markup function 

which depends exclusively on demand-side variables and parameter estimates. 

With computed product markups in hand, variable profit can be computed by: 

 

𝑉𝑃𝑓𝑚 = ∑ 𝑚𝑎𝑟𝑘𝑢𝑝𝑗𝑚(𝐱, 𝛏; 𝛼̂, 𝛽̂, 𝜎̂) × 𝑑𝑗𝑚𝑗𝜖𝐹𝑓𝑚
(𝐱, 𝐩, 𝛏; 𝛼̂, 𝛽̂, 𝜎̂)    (11) 

where the demand function 𝑑𝑗𝑚(𝐱, 𝐩, 𝛏; 𝛼̂, 𝛽̂, 𝜎̂) is based on equations (5) and (6). 

5.3 Estimation of Demand 

The estimation strategy of the demand parameters (𝛼, 𝛽, 𝜎) is such that the observed 

market shares 𝐒𝑗𝑚𝑡 are equal to the market shares predicted by the model 𝑠𝑗𝑚𝑡. A well-known 
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result in empirical industrial organization is that the demand model presented above results in the 

following linear equation: 

ln(𝐒jmt) − ln(𝐒0mt) = 𝑥𝑗𝑚𝑡𝛽 + 𝛼𝑝𝑗𝑚𝑡 + σln(𝐒jmt/g) + 𝜂𝑗 + 𝜐𝑡    

     +𝑜𝑟𝑖𝑔𝑖𝑛𝑚 + 𝑑𝑒𝑠𝑡𝑚 + 𝜉𝑗𝑚𝑡.                                (12) 

 𝐒𝑗𝑚𝑡  is the observed share of product 𝑗 computed from the data by 𝐒𝑗𝑚𝑡 =
𝑞𝑗𝑚𝑡

𝑀
, where 𝑞𝑗𝑚𝑡 is 

the quantity of air travel product 𝑗 sold, and 𝑀 is the population of the origin city. 𝐒0𝑚𝑡 = 1 −

∑ 𝑆𝑗𝑚𝑡𝑗∈𝐽𝑚
 is the observed share of the outside good. 𝐒jmt/g is the observed within-group share 

of product j, and the other variables are as previously described in equation (1.1). Equation (12) 

can be estimated using Two Stage Least Squares (2SLS) since price 𝑝𝑗𝑚𝑡 and ln(𝐒jmt/g) are 

endogenous. 

5.4 Instruments for Endogenous Variables in Demand Equation 

To construct instruments for price and within group product shares we exploit the fact 

that the set of product choices offered by airlines in a market is predetermined at the time of 

exogenous shocks to demand, and the non-price characteristics of the menu of products offered 

are primarily determined by the pre-existing route network structure of the airline.14  

The instrument variables we use for the 2SLS estimation are: (1) number of competing 

products offered by other airlines that a given product faces, where the competing products each 

have the same number of intermediate stops as the given product; (2) the product’s itinerary 

distance flown; and (3) the deviation of a product’s itinerary flying distance-based routing quality 

measure from the mean routing quality measure across the set of products offered by the 

                                                           
14 Unlike price and within group product share, airline route network structure is fixed in the short run, which 

mitigates the influence of demand shocks on the menu of products offered and their associated non-price 

characteristics (Gayle and Thomas, 2016). 
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carrier.15 The rationale for using these instruments is discussed in Gayle and Thomas (2016). (1) 

and (2) instrument for price and are motivated by supply theory which predicts that a product’s 

price is affected by changes in its markup and marginal cost. By rearranging Equation (10), it can 

be shown that price is a function of markup and marginal cost. Instrument (1) captures the degree 

of competition facing a product in a market, which in turn affects the size of a product's markup. 

Instrument (2) follows from the notion that flying distance is likely to be correlated with the 

marginal cost of providing the product.  (3) instruments for the within group product share. The 

intuition for instrument (3) is as follows. Recall that we group products by airline in the nested 

logit demand model. So, instrument (3) is likely to be correlated with the within group product 

share because, all else equal, among the products offered by an airline in a given origin-

destination market consumers are likely to prefer the product with the most direct routing, i.e., 

the product with the highest routing quality measure (Chen and Gayle, 2013 and Gayle and 

Thomas, 2016).  

6. Empirical Results 
 

6.1   Demand Results 

 

We estimate the demand equation using both Ordinary Least Square (OLS) and Two-

stage Least Squares (2SLS). Table 4 shows the demand regression results. As stated in Section 

5.3, price 𝑝𝑗𝑚𝑡 and within-group product shares 𝐒jmt/g are endogenous variables in the demand 

equation. Thus, OLS estimation produces biased and inconsistent estimates of the price 

coefficient and σ. A Hausman test confirms by rejecting the exogeneity of price and within-

group product share at conventional levels of statistical significance.   

                                                           
15 For instances where the routing quality of a given product is equal to the mean routing quality of all products 

offered by the carrier in a market, the deviation of routing quality instrument variable is constructed to take the 

maximum value of the routing quality measure of 1. 
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To confirm the validity of instruments used in the 2SLS regression, we estimate first-

stage reduced-form regressions for each of the endogenous variables. First-stage reduced-form 

regressions where we regress 𝑝𝑗𝑚𝑡 and ln (𝐒jmt/g) against the instruments suggest that the 

instruments explain variations in the endogenous variables. 𝑅2 measures for the regressions of 

price and within-group product share against the instruments are 0.1210 and 0.2281 respectively. 

Since the use of instruments is justified, we only discuss the 2SLS estimates. We also performed 

the Stock and Yogo’s (2005) test for weak instrument. Here, we can reject the null hypothesis 

that the instruments are weak, because the test statistic of 2147.17 exceeds the critical values of 

conventional rejection rates of a nominal 5% Wald test. On the basis of this test, we do not have 

a weak-instrument problem. 

The coefficient estimate on the price variable has the expected negative sign. All else 

equal, an increase in the product’s price reduces the probability that a typical passenger will 

choose the product. The coefficient estimate on  ln (𝐒jmt/g), which is an estimate of σ should lie 

between zero and one and measures the correlation of consumers’ preferences for products 

offered for sale by the same airline. Given that we nest products by airlines and σ is statistically 

significant, this suggests that passenger choice behavior shows some level of brand-loyalty to 

airlines. However, since the estimate of σ is closer to zero than it is to one, evidence of brand-

loyal behavior is not very strong. Even though airlines use customer loyalty programs to 

strengthen relationships with their customers, such programs do not provide exceptional 

advantages when potential gain can be quickly eroded by competitive forces (Dowling and 

Uncles, 1997). 

The coefficient estimate on Origin Presence is positive. This result is consistent with our 

expectations and suggests that travelers prefer to fly with airlines, ceteris paribus, that offer 
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services to more destinations from the travelers’ origin city. Chen and Gayle (2013), Gayle and 

Le (2013) and Berry (1990) among others, obtained similar findings. 

 

Table 4: Demand Estimation Results 

 OLS 2SLS 

 

(1) (2) 

   

Price 0.0003*** -0.0070*** 

 

(1.58e-05) (0.0001) 

ln(Sj/g) 0.4372*** 0.1409*** 

 

(0.0006) (0.0017) 

Origin Presence 0.0143*** 0.0148*** 

 

(4.52e-5) (0.0001) 

Nonstop 1.0206*** 1.0835*** 

 

(0.0025) (0.0032) 

Routing Quality 1.8849*** 1.9991*** 

 

(0.0072) (0.0083) 

Arrival Minutes Late -0.0110*** -0.0109*** 

 

(0.0002) (0.0002) 

Constant -10.6880*** -9.7242*** 

 

(0.0118) (0.0156) 

  

 
Carrier Fixed Effects   

Quarter and Year fixed effects    

Market Origin fixed effects   

Market Destination fixed effects    

No. of Obs. 1,281,413 1,281,413 

Endogeneity Test.  H0: Price and 

are exogenous. Wu-Hausman:  

F(2, 1281250)= 

36437.2***        

(p = 0.0000) 

Note: Standard errors are in parentheses.  

 ***p < 0.01; **p < 0.05; *p < 0.10 

 

The positive coefficient estimate on the Nonstop variable suggests that direct flights are 

associated with higher levels of utility compared to connecting flights. Since we only consider 

nonstop products and products with one intermediate stop, passengers prefer products with 

nonstop flight itineraries to those with one intermediate stop when traveling from origin to 

|ln( )jmt gS
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destination. In fact, the ratio of the coefficient estimates on price and Nonstop suggest consumers 

are willing to pay up to $155 extra16, on average, to obtain a product with a nonstop itinerary in 

order to avoid products with intermediate stop. 

The positive coefficient estimate on Routing Quality suggests that passengers prefer the 

most direct route to the destination. Consumers show preference for products with itinerary flight 

distances as close as possible to the nonstop flight distance between the origin and destination. 

So, consumer choice behavior is consistent with the premise that better routing quality is 

associated with a more passenger-desirable itinerary. In fact, consumers are willing to pay up to 

$286 extra17, on average, for each percentage point increase that the nonstop flight distance is of 

the actual itinerary flight distance. 

The negative coefficient estimates on Arrival Minutes Late indicate that consumer choice 

behavior is consistent with our expectations that products with longer arrival delays at the 

destination airport are less desirable. The ratio of coefficient estimates of “Minutes late at 

destination” and price in column 2 of Table 4 suggests that consumers are willing to pay $1.56 

on average for each additional minute of flight arrival delay to avoid delay. This implies 

substantial welfare effects knowing that on average a product is purchased by 167 passengers, is 

12 minutes late and that our dataset consists of 1,281,413 products. So, extrapolating yields an 

estimated consumer welfare cost due to arrival minutes late of approximately $4 billion.18 

This extrapolation is very conservative since it only accounts for delay at the final 

destination. In reality, costs borne by passengers may include: potential loss of business due to 

                                                           
16 This is obtained by dividing the coefficient estimate on the Nonstop dummy variable by the coefficient estimate 

on Price from column 2 of Table 4. 
17 This is obtained by dividing the coefficient estimate on the Routing Quality variable by the coefficient estimate on 

Price from column 2 of Table 4. 
18 Welfare costs to consumers = $1.56 × 12 minutes × 1,281,413 products × 167 passengers   
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late arrival at a meeting; partial loss of social activity (Cook, Tanner, Williams and Meise, 2009); 

disrupted ground travel plans; forgone pre-paid hotel accommodations; and missed vacation 

times (Schumer and Maloney, 2008). 

Studies that have examined consumers’ reactions to product problems (Curren and 

Folkes, 1987; Folkes, 1984) show that passengers would be less willing to fly an airline again 

when delays are perceived to be controllable (e.g. caused by poor management) than when they 

are perceived to be uncontrollable (e.g. caused by bad weather). Also, even when passengers 

think that a delay may have arisen from an uncontrollable mechanical failure, they still 

nevertheless believe that the airline could take action to solve the problem (e.g., substitute 

another plane), and so refuse to fly that airline again (Folkes, Koletsky, and Graham, 1987). 

Using the estimated demand model we can compute the own, as well as cross, demand 

elasticity of arrival delay minutes.  To the best of our knowledge this is the first formal attempt 

in the economics literature to compute estimates of own and cross demand elasticities of any 

OTP measure in commercial aviation.  The own elasticity of arrival delay minutes captures the 

extent to which consumers are willing to decrease their demand for a given air travel product 

when its arrival delay minutes increases.  The mean own elasticity of arrival delay minutes is -

0.256, which implies that for each percentage point increase in arrival delay minutes for a given 

product, consumers decrease their demand for the said product by 0.256%.  This own elasticity 

estimate also implies that a 10% increase in a product's arrival delay minutes causes consumers 

to decrease their demand for the product by 2.56%.  Since in our sample on average a product 

has 12 minutes of arrival delay and is purchased by 167 passengers per period, a 10% increase in 

arrival delay minutes corresponds to an additional delay of 1 minute and 12 seconds, which 
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according to our own elasticity estimate of -0.256 causes 4 (= 0.025 × 167) fewer passengers per 

period to choose the product.    

The cross elasticity of arrival delay minutes captures the extent to which consumers are 

willing to switch to substitute products when arrival delay increases for a given product.  The 

mean cross elasticity of arrival minutes late is 0.004, which implies that for each percentage 

point increase in arrival delay minutes for a given product, consumers increase their demand for 

substitute products by 0.004%.  In other words, an airline's worsening OTP will cause some of its 

customers to switch to competing airlines, ceteris paribus.       

6.2 Counterfactual Analysis 

We conduct counterfactual experiments to assess the extent to which improvements in 

arrival delay (i.e. improvement in OTP) influence variable profits of airlines.  Furthermore, since 

variable profit is a function of product markup and demand level as shown in equation (7), we 

are able to decompose the change in variable profit and examine how these components drive the 

change in variable profits. 

The counterfactual experiments are done by assuming each carrier experiences a 

reduction in arrival delay minutes (improvement in OTP) in each sample market.  Assuming that 

the previously estimated preference parameters are unchanged, we use the supply-side of the 

model to solve for new product-level markups and predicted demand levels after each airline 

experiences: (1) a counterfactual 10% reduction in arrival delay minutes; (2) a counterfactual 

25% reduction in arrival delay minutes; (3) a counterfactual 50% reduction in arrival delay 

minutes; (4) a counterfactual 75% reduction in arrival delay minutes; and (5) a counterfactual 

100% reduction in arrival delay minutes.  A comparison of the model’s predicted product-level 

markup and demand level before and after counterfactual reductions in arrival delay minutes, 
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reveals the extent to which OTP improvement influences product-level markup, demand level 

and ultimately variable profits.  

 

6.2.1 Predicted Percent Change in Product-level Markup, Demand Levels and Variable 

Profits 

Table 5 reports the predicted percent changes in markup, demand and variable profit assuming 

counterfactual reductions in arrival delay minutes.  The model predicts that a 10% reduction in 

arrival delay minutes (improved OTP) results in an increase in product markup by a mean 1.51 

percent, an increase in demand levels by a mean 2.39 percent, and an increase in variable profit 

by a mean 3.95 percent.  Results in Table 5 reveal that as the percentage reductions in arrival 

delay minutes get larger, the percentage increase in product markup remains relatively stable at 

approximately 1.5 percent, but percentage increases in demand levels and ultimately variable 

profit become larger.  For example, a 50% reduction in arrival delay minutes results in product 

markup increasing by approximately 1.52 percent, but an increase in demand levels by 12.64 

percent, and an increase in variable profit by 14.43 percent.  However, a 75% reduction in arrival 

delay minutes still results in an increase in product markup by 1.53 percent, but more substantial 

increases in demand levels and variable profits of 19.66 percent and 21.52 percent, respectively.   

In summary, the pattern of results in Table 5 suggests that even though increases in 

markup and demand levels jointly drive increases in variable profits, the variable profit increases 

resulting from improved OTP are primarily driven by increases in product demand levels.  This 

pattern of results is still evident when broken out by airlines, as revealed in Tables A1 and A2, 

which are located in the Appendix.19 

                                                           
19 We thank an anonymous referee for this suggestion. 
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Table 5: Predicted Percent Change in Product Markup, Demand, and Variable Profit Assuming 

Counterfactual Reductions in Arrival Delay Minutes 
Assumed 

Counterfactual 

Reduction in Arrival 

Delay Minutes 

Mean Percent Change 

in Markup 

(Std. error of mean) 

Mean Percent Change 

in Demand 

(Std. error of mean) 

Mean Percent Change 

in Variable Profit 

(Std. error of mean) 

10% 

1.51*** 

(0.000014) 

2.39*** 

(0.0012) 

3.95*** 

(0.0013) 

25% 

1.51*** 

(0.000035) 

6.10*** 

(0.0025) 

7.739*** 

(0.0034) 

50% 

1.52*** 

(0.000075) 

12.64*** 

(0.0053) 

14.43*** 

(0.0073) 

75% 

1.53*** 

(0.00012) 

19.66*** 

(0.0085) 

21.52*** 

(0.0118) 

100% 

1.53*** 

(0.00017) 

27.21*** 

(0.0122) 

29.35*** 

(0.0171) 

Note: Standard errors are in parentheses.  

*** Indicates statistical significance at the 1% level. 

 

6.2.2 Recovering an Estimate of the Cost per minute of Delay Improvement  

The natural question to raise at this point is: If improvements in OTP results in higher 

levels of variable profits for airlines, why don't airlines undertake the investments necessary to 

substantially mitigate airline-related delays? A reasonable answer to this question is that the 

increase in variable profits induced by OTP improvements may not be sufficiently high to cover 

additional cost the airline will need to incur to achieve improved OTP.   In other words, it is 

reasonable to assume that airlines are profit maximizing in their decision-making, and that this 

behavior extends to their decisions on the extent of flight delays under their control to tolerate.  

As such, airlines incur costs to reduce each minute of delay, and this cost per minute of reduced 

delay rationalizes the level of delay minutes we observe in the data.  A key objective in this 
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subsection is to use our model to recover an estimate of the cost per minute of delay 

improvement that airlines face. 

Let the profit of airline f in market m be given by: 

Π𝑓𝑚 = 𝑉𝑃𝑓𝑚 − 𝐹𝐶𝑓𝑚,                (13)    

where specification of the variable profit function 𝑉𝑃𝑓𝑚 is given in equation (11), while 𝐹𝐶𝑓𝑚 

represents the sum of recurrent fixed and sunk costs that airline f incurs in market m.  We assume 

that 𝐹𝐶𝑓𝑚 can be decomposed into two components, where one component is a function of OTP-

related investment activities for reducing arrival delay minutes (improved OTP), while the other 

component is not a function of such investment activities.  Let such decomposition of 𝐹𝐶𝑓𝑚 be 

specified as follows:           

FC𝑓𝑚 = Γ𝑓𝑚 + ∑ g𝑗𝑚(𝐼𝑗𝑚)𝑗𝜖𝐹𝑓𝑚
,      (14) 

where 𝐼𝑗𝑚 is a measure of the level of OTP-related investment activities attributed to product j in 

market m, and 𝑔𝑗𝑚(𝐼𝑗𝑚) is the function that translates OTP-related investment activities into 

economic cost (explicit cost plus opportunity cost).  We assume that function 𝑔𝑗𝑚(∙) has the 

following properties: 
𝜕𝑔𝑗𝑚

𝜕𝐼𝑗𝑚
> 0 and 

𝜕2𝑔𝑗𝑚

𝜕𝐼𝑗𝑚
2 > 0.  Therefore, 𝑔𝑗𝑚(∙) is increasing and convex in 

𝐼𝑗𝑚.  Γ𝑓𝑚 represents the portion of  𝐹𝐶𝑓𝑚 that is invariant to OTP-related investment activities.   

 Let ℎ𝑗𝑚(𝐼𝑗𝑚) be a function that characterizes the relationship between OTP-related 

investment activities and arrival delay minutes, i.e.: 

𝐿𝑗𝑚 = ℎ𝑗𝑚(𝐼𝑗𝑚),          (15) 

where 𝐿𝑗𝑚 measures arrival delay minutes of product j in market m.  We assume that  
𝜕𝐿𝑗𝑚

𝜕𝐼𝑗𝑚
=

𝜕ℎ𝑗𝑚

𝜕𝐼𝑗𝑚
< 0  and 

𝜕2𝐿𝑗𝑚

𝜕𝐼𝑗𝑚
2 =

𝜕2ℎ𝑗𝑚

𝜕𝐼𝑗𝑚
2 > 0, i.e. ℎ𝑗𝑚(∙) is decreasing and convex in 𝐼𝑗𝑚 suggesting that 
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increasing OTP-related investment activities can lower arrival delay minutes, but the marginal 

impact diminishes at higher levels of  OTP-related investment activities.  

 Substituting the right-hand-sides of equation (14) into equation (13) yields: 

Π𝑓𝑚 = 𝑉𝑃𝑓𝑚(𝑳(𝑰)) − Γ𝑓𝑚 − ∑ g𝑗𝑚(𝐼𝑗𝑚)𝑗𝜖𝐹𝑓𝑚
,    (16) 

where L and I are a J ×1 vectors of arrival delay minutes and OTP-related investment activity 

levels associated with the J products in market m, respectively.  Assume each airline chooses 

levels of OTP-related investment activities across its menu of products in a market to maximize 

its profit.  A Nash equilibrium in OTP-related investment activities must satisfy the following 

first-order conditions implied by maximization of equation (16): 

𝜕𝑉𝑃𝑓𝑚(𝑳)

𝜕𝐿𝑗

𝜕𝐿𝑗

𝜕𝐼𝑗
−

𝜕𝑔𝑗𝑚

𝜕𝐼𝑗𝑚
= 0 for all 𝑗 = 1, … , 𝐽      (17) 

Equation (17) implies that:  

𝜕𝑉𝑃𝑓𝑚(𝑳)

𝜕𝐿𝑗
=

𝜕𝑔𝑗𝑚

𝜕𝐼𝑗𝑚
𝜕𝐿𝑗

𝜕𝐼𝑗

⁄   for all 𝑗 = 1, … , 𝐽       (18) 

The right-hand-side of equation (18) measures OTP-related marginal investment cost per minute 

of improvement in arrival delay minutes, while the left-hand-side of equation (18) measures the 

marginal increase in variable profit generated from improvements/reduction in arrival delay 

minutes.   

 Note that we the researchers do not have information on OTP-related investment 

activities, 𝐼𝑗𝑚, and have not assumed any functional forms for 𝑔𝑗𝑚(∙) and ℎ𝑗𝑚(∙), respectively, 

which imply that we cannot directly compute the right-hand-side of equation (18).  Fortunately, 

we do have a functional form for 𝑉𝑃𝑓𝑚(𝑳)  from our previously specified structural model, and 

we do observe arrival delay minutes, L, for all products.  Therefore, we can directly compute  
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𝜕𝑉𝑃𝑓𝑚(𝑳)

𝜕𝐿𝑗
  for all products, which according to equation (18) reveals the value of   

𝜕𝑔𝑗𝑚

𝜕𝐼𝑗𝑚
𝜕𝐿𝑗

𝜕𝐼𝑗

⁄   in 

equilibrium.  In other words, we can obtain estimates of OTP-related marginal investment costs 

per minute of improvement in arrival delay minutes by computing 
𝜕𝑉𝑃𝑓𝑚(𝑳)

𝜕𝐿𝑗
 from our structural 

model.  From equation (11) we know that  𝑉𝑃𝑓𝑚 = ∑ 𝑚𝑎𝑟𝑘𝑢𝑝𝑗𝑚(𝐋) × 𝑑𝑗𝑚𝑗𝜖𝐹𝑓𝑚
(𝐋), which 

implies that: 

𝜕𝑉𝑃𝑓𝑚(𝑳)

𝜕𝐿𝑗
= ∑

𝜕𝑑𝑟(𝑳)

𝜕𝐿𝑗
𝑚𝑎𝑟𝑘𝑢𝑝𝑟(𝑳) + ∑

𝜕𝑚𝑎𝑟𝑘𝑢𝑝𝑟(𝑳)

𝜕𝐿𝑗
𝑑𝑟(𝑳)𝑟𝜖𝐹𝑓𝑟є𝐹𝑓

    (19) 

Based on equations (18) and (19), we find that the mean OTP-related marginal 

investment cost per minute of improvement in arrival delay minutes is $568.13.  In other words, 

the current levels of arrival delay minutes observed in our data are rationalized by a mean OTP-

related marginal investment cost per minute of improvement equal to $568.13.  Achieving lower 

levels of arrival delay minutes would require larger OTP-related investment activities and larger 

marginal investment costs.   

We further use the model to predict OTP-related marginal investment costs per minute of 

improvement necessary to achieve a ten percent reduction in arrival delay minutes from the 

current levels of arrival delay minutes observed in the data.  As we previously reported, on 

average, a product has arrival delay of approximately 12 minutes.  So, on average, a 10% 

improvement in OTP corresponds to a 1 minute and 12 seconds reduction in arrival delay.   

While a mean marginal investment cost per minute of improvement of $568.13 sustains the 

current levels of  arrival delay minutes observed in the data, a higher mean marginal investment 

cost per minute of improvement of  $581.68 is required to sustain arrival delay minutes that are 

10% less than their current levels. Put another way, a 2.39% increase in OTP-related marginal 
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investment cost per minute of improvement (from $568.13 to $581.68) is necessary to achieve a 

10% reduction in arrival delay minutes below their current levels. The intuition is that 

reductions, i.e. improvements, in arrival delay minutes will require higher levels of OTP-related 

investment activities, which in turn pushes up the marginal investment cost per minute of 

improvement.  

The model prediction above regarding the increase in OTP-related marginal investment 

cost required to achieve a reduction in arrival delay minutes can also be interpreted from a policy 

perspective.  The estimates suggest that for airlines to achieve a 10% reduction in their arrival 

delay minutes, they will need to increase OTP-related investment activities, which will push the 

marginal investment cost per minute of improvement from $568.13 to $581.68.  Knowing such 

information, policymakers could incentivize airlines to undertake the increase in OTP-related 

investment activities by offering an OTP-related investment credit to each airline of $13.55 (= 

$581.68 - $568.13) for each minute of improvement in arrival delay.  However, the feasibility of 

such a policy relies on the ability of policymakers to verify with relative ease each airline’s 

"true" OTP improvement.        

7. Conclusion 

Researchers have long been interested in explaining why airlines are late.  To answer this 

question, most researchers have resorted to a reduced-form estimation approach where they 

explain variations in on-time performance (OTP) through a set of explanatory variables.  This 

approach yields a set of parameters that describes the marginal impact of an explanatory variable 

on on-time arrival performance.  In contrast, we use a structural estimation approach. 

First, using a demand model, we measure the welfare cost of delay borne by consumers 

in terms of how much monetary value they are willing to pay to avoid delay.  We find that 
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consumers are willing to pay $1.56 per minute late to avoid arrival delay, which after 

extrapolation amounts to consumer welfare cost of $4 billion.  Second, with consumers having a 

preference for flights that arrive at destination on time, we measure the incentive for airlines to 

provide on-time arrivals using counterfactual experiments.  We find that, a 10% reduction in 

arrival delay minutes (improved OTP) results in an increase in variable profit by a mean 3.95 

percent.  Furthermore, we find that it is the increase in demand levels, as compared to increase in 

markup, that accounts for most of the increase in variable profits.  

Given the finding that reductions in arrival delay minutes (improved OTP) yield increases 

in variable profits, we are able to use the model to recover estimates of the cost per minute of 

delay improvement that rationalizes the level of delay minutes we observe in the data.  The 

model predicts that a 2.39% increase in OTP-related marginal investment cost per minute of 

improvement is necessary to achieve a 10% reduction in arrival delay minutes below their 

current levels. 

Stronger conclusions may be drawn from future work about the underlying mechanisms 

through which product quality may impact product markup, demand and variable profit.  OTP is 

one among other product quality dimensions such as mishandled baggage, oversold flights, in-

flight amenities etc.  Examining changes in these other quality dimensions along with OTP may 

provide insights about how airlines engage in overall quality differentiation in a strategic 

environment where few firms are competing with each other. 
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Appendix 

Table A1: Predicted Percent Change in Product Markup, Demand, and Variable Profit Assuming a 10% Counterfactual 

Reduction in Arrival Delay Minutes – By Airline 

Code Airline 

Mean Percent 

Change in 

Markup 

Standard 

Error of 

mean 

Mean 

Percent 

Change in 

Demand 

Standard 

Error of 

mean 

Mean Percent 

Change in 

Variable 

Profit 

Standard 

Error of 

mean 

AA American Airlines 1.507*** 0.000017 2.718*** 0.002 4.273*** 0.003 

AQ Aloha Airlines 1.508*** 0.000151 1.544*** 0.090 3.084*** 0.182 

AS Alaska Airlines 1.509*** 0.000108 1.933*** 0.015 3.509*** 0.017 

B6 JetBlue Airways 1.511*** 0.000264 2.838*** 0.010 4.418*** 0.013 

CO Continental Air Lines 1.507*** 0.000040 2.424*** 0.003 3.943*** 0.004 

DH Independence Air  1.511*** 0.000793 3.030*** 0.039 4.652*** 0.044 

DL Delta Air Lines  1.509*** 0.000063 2.322*** 0.003 3.790*** 0.003 

F9 Frontier Airlines 1.506*** 0.000074 2.270*** 0.008 3.799*** 0.009 

FL AirTran Airways  1.506*** 0.000031 2.550*** 0.006 4.108*** 0.007 

HA Hawaiian Airlines 1.504*** 0.000002 0.706*** 0.043 2.221*** 0.044 

HP America West Airlines 1.505*** 0.000013 2.027*** 0.005 3.533*** 0.007 

NW Northwest Airlines  1.506*** 0.000014 2.580*** 0.004 4.128*** 0.005 

OO SkyWest  1.505*** 0.000240 2.609*** 0.568 4.153*** 0.577 

TZ ATA Airlines 1.506*** 0.000073 2.429*** 0.020 3.982*** 0.024 

UA United Air Lines 1.507*** 0.000016 2.603*** 0.003 4.189*** 0.004 

US US Airways  1.505*** 0.000008 2.150*** 0.003 3.662*** 0.004 

VX Virgin America Inc. 1.507*** 0.000179 1.642*** 0.038 3.151*** 0.045 

WN Southwest Airlines  1.506*** 0.000010 1.968*** 0.004 3.522*** 0.002 

XE ExpressJet Airlines 1.504*** 0.000012 2.751*** 0.243 4.470*** 0.576 

YX Midwest Airlines 1.505*** 0.000043 2.723*** 0.060 4.268*** 0.064 

*** Indicates statistical significance at the 1% level. 
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Table A2: Predicted Percent Change in Product Markup, Demand, and Variable Profit Assuming a 25% Counterfactual 

Reduction in Arrival Delay Minutes – By Airline 

Code Airline 

Mean Percent 

Change in 

Markup 

Standard 

Error of 

mean 

Mean 

Percent 

Change in 

Demand 

Standard 

Error of 

mean 

Mean Percent 

Change in 

Variable 

Profit 

Standard 

Error of 

mean 

AA American Airlines 1.511*** 0.00004 6.956*** 0.006 8.588*** 0.008 

AQ Aloha Airlines 1.513*** 0.00038 3.927*** 0.234 5.518*** 0.471 

AS Alaska Airlines 1.517*** 0.00028 4.923*** 0.038 6.613*** 0.044 

B6 JetBlue Airways 1.521*** 0.00068 7.266*** 0.026 8.969*** 0.035 

CO Continental Air Lines 1.511*** 0.00010 6.194*** 0.008 7.734*** 0.010 

DH Independence Air  1.520*** 0.00202 7.776*** 0.102 9.590*** 0.115 

DL Delta Air Lines  1.515*** 0.00016 5.925*** 0.006 7.331*** 0.007 

F9 Frontier Airlines 1.509*** 0.00019 5.795*** 0.022 7.361*** 0.023 

FL AirTran Airways  1.509*** 0.00008 6.520*** 0.016 8.165*** 0.019 

HA Hawaiian Airlines 1.504*** 1.73E-06 1.774*** 0.109 3.305*** 0.111 

HP America West Airlines 1.507*** 0.00003 5.158*** 0.014 6.668*** 0.018 

NW Northwest Airlines  1.508*** 0.00004 6.596*** 0.009 8.214*** 0.012 

OO SkyWest  1.505*** 0.00062 6.700*** 1.496 8.306*** 1.520 

TZ ATA Airlines 1.510*** 0.00018 6.205*** 0.053 7.836*** 0.064 

UA United Air Lines 1.510*** 0.00004 6.657*** 0.007 8.373*** 0.010 

US US Airways  1.507*** 0.00002 5.485*** 0.009 7.006*** 0.011 

VX Virgin America Inc. 1.510*** 0.00046 4.166*** 0.097 5.682*** 0.116 

WN Southwest Airlines  1.510*** 0.00002 4.994*** 0.006 6.632*** 0.006 

XE ExpressJet Airlines 1.505*** 0.00003 7.044*** 0.644 9.138*** 1.528 

YX Midwest Airlines 1.506*** 0.00011 6.986*** 0.160 8.596*** 0.170 

*** Indicates statistical significance at the 1% level. 
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