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Abstract 

 
We demonstrate how a non-nested statistical test developed by Vuong (1989) can be used to assess the suitability of 
alternate order-of-entry assumptions used for identification purposes in empirical entry models.  As an example, we 
estimate an entry model of McDonald’s and Burger King restaurant outlets in United States.  The data set focuses on 
relatively small “isolated” markets.  For these markets, the non-nested tests suggest that order-of-entry assumptions 
that give Burger King outlets a first-mover advantage are statistically preferred.  Last, a Monte Carlo experiment 
provides encouraging results suggesting that the Vuong-type test yields reliable results within the entry model 
framework. 
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1. Introduction 

Static econometric entry models with heterogeneous firms often pose estimation 

challenges due to the presence of multiple Nash equilibria.  One way researchers have dealt with 

these challenges is to invoke one of many alternate equilibrium selection assumptions to render 

identification and estimation feasible.  While econometrically convenient, such equilibrium 

selection assumptions are not always easy to justify.  However, at a minimum it may provide 

more comfort to readers of this type of research if researchers provide statistical evidence that 

discriminate among alternative equilibrium selection assumptions.  As such, the main 

contribution of this paper is to show how Vuong-type non-nested tests [see Vuong (1989)] can 

be used to choose between alternate equilibrium selection assumptions that are commonly made 

when using static entry models.  To illustrate the implementation of non-nested tests, we use data 

on the presence of Burger King and McDonald’s restaurant outlets in a cross-section of local 

markets in the United States.  We also use the opportunity to provide inference on competition 

between Burger King and McDonald’s restaurant outlets in the United States, which is another 

contribution of our paper. 

Static entry models can be divided into two categories: (i) entry models of complete 

information; and (ii) entry models of incomplete information.  The complete information 

assumption in entry models implies that all parts of each firm’s profit function are common 

knowledge to rival firms.  In contrast, an incomplete information assumption implies that part of 

each firm’s profit function is private information for the firm.  Multiple Nash equilibria in the 

entry game can occur irrespective of whether complete or incomplete information is assumed for 
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the profit functions of firms.1  However, in this paper we focus on static entry games of complete 

information.2

Researchers have used various methods to deal with the challenges posed by multiple 

Nash equilibria in static entry models of complete information.  For example, Bresnahan and 

Reiss (1991) proposed that the model be restricted to predict the total number of entering firms 

but not firm identities.  However, a caveat with this approach is that the researcher will not be 

able to make use of information that captures the heterogeneity of firms.  Berry (1992), Mazzeo 

(2002), Tamer (2003), Einav (2010), and Cleeren et al. (2010), among others,
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An alternative estimation strategy that can handle situations of multiple equilibria, and 

does not require invoking an order-of-entry assumption, is the “bounds-type” approach outlined 

in Ciliberto and Tamer (2009).  However, the bounds-type estimation approach has its own 

challenges.  For example, parameters might only be set identified rather than point identified 

 provide an 

alternative method to obtain unique equilibrium while still allowing for firm heterogeneity.  In 

particular, these papers exploit the fact that a unique equilibrium of the entry model can be 

obtained by assuming that firms enter the relevant market sequentially.  Since first-movers 

preempt other players in an entry game, an order-of-entry assumption essentially is an 

equilibrium selection assumption when multiple equilibria differ based on the identity of firms 

that ultimately enter.  It must be noted however, that while the sequential entry assumption may 

be used to obtain a unique equilibrium of the entry model, the order-of-entry assumption does 

not further imply that price and output determination follow this assumed order. 

                                                 
1 In a dynamic entry/exit game setting, Doraszelski and Satterthwaite (2010) argue that an equilibrium might not 
exist when firms are not allowed to choose mixed entry/exit strategies in an entry/exit game of complete 
information.  The authors further show that, instead of allowing mixed strategies, an incomplete information 
assumption is an alternate way to guarantee that an equilibrium exists in the entry/exit game.     
2 For examples of entry models of incomplete information, see Seim (2006), Einav (2010) and Yang (2012). 
3 See Berry and Reiss (2007) for an excellent review of this literature. 
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when using the bounds-type estimation approach, but invoking an order-of-entry assumption 

approach makes it possible to point identify parameters.  So some researchers may still opt to go 

the route of invoking an order-of-entry assumption to estimate parameters of the entry model.  

Our paper illustrates to these researchers one way to formally test competing order-of-entry 

assumptions if their preferred estimation strategy is to invoke an order-of-entry assumption. 

First, we use the empirical entry model framework developed by Cleeren et al. (2010) to 

identify a unique equilibrium in a multi-player, multi-equilibrium, entry game.  This framework 

easily allows for estimation of the entry model under alternate order-of-entry assumptions.  We 

then focus on statistical selection of the most appropriate order-of-entry assumption for the entry 

model.  The basic framework for the non-nested maximum likelihood statistical selection test is 

developed by Vuong (1989), but we implement it in the context of long-run strategic entry 

decisions of firms, while Gasmi, Laffont, and Vuong (1992) implement it to distinguish between 

different assumptions about the nature of short-run product market competition between firms.   

Across the types of markets in the McDonald’s-Burger King data set we use, we find that 

order-of-entry assumptions that give Burger King outlets first-mover advantage are statistically 

favored.  Furthermore, there is evidence that order-of-entry assumptions matter for the resulting 

parameter estimates of the type of entry model we consider, which can prove crucial in settings 

where policy conclusions need to be drawn based on estimated parameters.  In the data section 

we discuss the characteristics of markets present in our data set.  We also run a small-scale 

Monte Carlo experiment to assess the power of the test in distinguishing between alternate order-

of-entry assumptions.  The experiment reveals that the test gives correct results in 77 out of 100 

simulations. 
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Since our econometric analysis is applied to data on Burger King and McDonald’s 

restaurant outlets in United States, it is instructive to briefly review previous work on the fast-

food industry.  Most papers in this literature conclude that there is significant difference between 

McDonald’s and Burger King’s response to various market characteristics and therefore these 

two chains are not considered perfectly substitutable.  Some researchers such as Lafontaine 

(1995) and Kalnins and Lafontaine (2004) focus on the franchising feature of the industry.  They 

identify different factors that affect franchisee and franchisor’s decision-making.  Graddy (1997) 

focuses on price discrimination within the fast-food industry, while Stewart and Davis (2005) are 

more generally concern about price dispersion of different fast-food chains.  Kalnins (2003) 

applies spatial econometrics to hamburger price data to assess the degree of substitutability of 

products and locations of spatially dispersed franchised chains.  Thomadsen (2005) uses spatial 

econometric models to analyze how ownership structure and market geographic characteristics 

jointly influence the pricing decision of McDonald’s and Burger King restaurant outlets and 

found that McDonald’s outlets give a statistically significant higher utility to consumers than do 

Burger King outlets.  Thomadsen (2007) examines the optimal product positioning decision of 

McDonald’s and Burger King restaurant outlets and finds that the equilibrium depends crucially 

on market size.  

Standard models of entry, which include the type of entry model we use in this paper, 

capture the competitive effects of entry, i.e. reduction in profits due to additional entry, but not 

the effects of learning.  Toivanen and Waterson (2005) constructed an entry model designed to 

capture the effects of learning.  Specifically, they design their entry model to identify a positive 

spillover effect between competitors when there is at least one store of the competing firm 

already present in the market.  The authors estimate their model using panel data on the 
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presences of McDonald’s and Burger King restaurant outlets in local markets in the United 

Kingdom (U.K.).  They find that existing rival presence in a market increases the probability of 

entry by increasing expected market size.  This result suggests that a potential entrant can learn 

about the profitability of a market by observing the existing rival’s performance. 

Yang (2012) uses the same dataset as Toivanen and Waterson (2005) and further 

explored the learning aspects of firms’ entry strategy, but in contrast, Yang (2012) uses a 

framework in which firms have incomplete information about each other’s profitability.  The 

positive spillover effect result persists even under incomplete information.  Importantly, Yang 

(2012) distinguishes between hidden information on cost or demand.  He finds that significant 

positive spillover effects for both restaurant chains can only be found in the hidden cost 

specification, while a learning effect is significant and positive for Burger King under all 

specifications. 

The rest of the paper is organized as follows:  Section 2 outlines the econometric model 

as well as the non-nested test procedure used for selecting the appropriate order-of-entry 

assumption.  In Section 3 we discuss our data and descriptive statistics.  Section 4 presents 

estimation results from our model as well as results of the non-nested test.  The last section 

concludes. 

 

2. The Model 

Let the numbers of McDonald’s (M or MAC) and Burger King (B or BK) restaurant 

outlets in a market be denoted by MN  and BN , respectively.  Profit for an outlet of chain type 

( ),f M B=  is given by a latent variable fΠ  such that 

( ) ( ), ,f M B f M B fN N N Nπ εΠ = − ,      (1) 
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where ( ),f M BN Nπ  is the deterministic part, and fε  is the part that is unobservable to 

researchers but observed by all firms (complete information assumption) and therefore we 

assume this part of profit is random.  We assume that outlets of the same brand/chain are 

homogeneous.4

Three standard assumptions are employed here for the deterministic part of restaurant 

outlets’ profit: 

 

ASSUMPTION 1 

 ( ) ( )1, ,M M B M M BN N N Nπ π+ <  

 ( ) ( )BMBBMB NNNN ,1, ππ <+  

ASSUMPTION 2 

 ( ) ( ), 1 ,M M B M M BN N N Nπ π+ ≤  

 ( ) ( )BMBBMB NNNN ,,1 ππ ≤+  

ASSUMPTION 3 

 ( ) ( )1, 1 ,M M B M M BN N N Nπ π+ − <  

 ( ) ( )BMBBMB NNNN ,1,1 ππ <+− . 

 Assumptions 1 and 2 are derived from the fact that restaurant outlets within any particular 

market, either of the same chain or not, compete with each other and thus a new entrant lowers 

the profitability of existing outlets of either chain.  Assumption 3 states that the negative profit 

impact due to the new entry of within chain restaurant outlet is greater than the negative profit 

impact due to entry of a different type chain outlet.  In other words, intra-chain competition is 

more intensive than inter-chain competition. As mathematically shown and proven in Cleeren et 

                                                 
4See Thomadsen (2005) for a discussion of the justification of this homogenous assumption.  
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al. (2010),5

 With these assumptions, an observed market structure 

 each of these three assumptions is needed to derive a generalized probability 

expression (see equation (3) below) that deals with all the possible cases in which multiple Nash 

equilibrium might arise.  In other words, together, these three assumptions are necessary to 

ensure a well defined probability space on which to build the likelihood function. 

( ),M Bn n  is a Nash equilibrium if 

( ) ( )
( ) ( )BMBBBMB

BMMMBMM

nnnn
nnnn

,1,
,,1

πεπ
πεπ

≤<+
≤<+

.      (2) 

Conditions in (2) will admit multiple Nash equilibria without additional structure on the entry 

game.  Furthermore, these conditions will yield a unique Nash if we assume that outlets enter 

according to a certain sequence.  In addition, Cleeren et al. (2010) argue that when looking at a 

market structure with totally n competing firms, “only the number of players of each type during 

these first n  moves matters, and their exact order of entry is otherwise irrelevant (p.462).”   

Let Mn  be the number of McDonald’s outlets during the first n moves in the assumed 

sequence of entry, the probability of observing market structure ( ),M Bn n  as a Subgame Perfect 

Nash Equilibrium (SPNE) is given by: 

( )

( )
( )
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( )

( )

( ) ( )
( )
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( )

( )
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( )

( )
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π π
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+ −
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− +
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= =

=

− −

− −

∫ ∫

∫ ∫

∫ ∫





   (3) 

where ( )I x  is an indicator function that takes the value 1 if 0x > , and 0 otherwise.  ( )φ ⋅  

denotes the standardized bivariate normal density function specified as: 

                                                 
5 In Cleeren et al. (2010), see Assumptions 1, 2A and 2B on page 460, Claims 1, 2 and 3 and the discussion of these 
claims on page 461, as well as the formal proof of these claims in the Appendix. 
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 ( )
2 2

22

21 1, exp
2 12 1

M B

M B M B
M B

u u

u u u uu u ρφ
ρπσ σ ρ

  + −
= −  −−   

,  (4) 

where ρ  is a parameter that measures the correlation of shocks across chain-type profits with 

1 1ρ− < < .  When 0ρ ≠ , equations (3) and (4) together yield a bivariate ordered probit model 

with endogenous variables ( ),M Bn n .  However, if we impose the restriction 0ρ = , then shocks 

to chain-type profits are assumed independent and the model reduces to two separate ordered 

probit models - one for each chain-type. 

Suppose in a market there are two McDonald’s outlets and two Burger King outlets.  If 

the assumed sequence of entry for up to 6 outlets is given either by MBMBMB, MMBBMB, or 

BBMMMB, based on equation (3) the probability of observing market structure 

( ) ( ), 2,  2M Bn n =  is given by the same expression, 

( ) ( )
( )

( )

( )

( ), ,

1, , 1
, ,M M B B M B

M M B B M B

n n n n

M M B B M B M Bn n n n
P N n N n u u du du

π π

π π
φ

+ +
= = = ∫ ∫ . 

This is because for all three of these assumed entry sequences, there are exactly two McDonald’s 

outlets in the first 4 M Bn n= +  entries, i.e. 2~ =Mn , which implies that indicator function ( )•I  in 

equation (3) yields the following: ( ) ( ) ( ) 022~~ =−=−=− InnInnI MMMM .6

( ) ( )1 ,1, =BM nn

  However, for those 

same assumed sequences of entry, the probability of observing market structure  

is computed using a different expression in each case.   

Considering market structure ( ) ( )1 ,1, =BM nn  and assumed order-of-entry MBMBMB, 

there is only 1 McDonald’s outlet in the first BM nn +=2  entries, which implies, 1~ =Mn  and the 

indicator function ( )•I  in equation (3) yields the following: 

                                                 
6 Since our exposition draws heavily from Cleeren et al. (2010), the reader is referred to that paper for additional 
examples and discussion. 
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( ) ( ) ( )1 1 0M M M MI n n I n n I− = − = − =  .  Therefore, assuming entry sequence MBMBMB, the 

appropriate probability expression for the ( ) ( )1 ,1, =BM nn  market structure that is implied by 

equation (3) is: 

( ) ( )
( )

( )

( )

( ), ,

1, , 1
, ,M M B B M B

M M B B M B

n n n n

M M B B M B M Bn n n n
P N n N n u u du du

π π

π π
φ

+ +
= = = ∫ ∫ . 

Considering market structure ( ) ( )1 ,1, =BM nn  and assumed order-of-entry MMBBMB, 

there are 2 McDonald’s outlets in the first 2 entries, which implies 2~ =Mn ; 

( ) ( ) 112~ =−=− InnI MM ; and ( ) ( ) 021~ =−=− InnI MM .  Therefore, assuming entry sequence 

MMBBMB, the appropriate probability expression for the ( ) ( )1 ,1, =BM nn  market structure that 

is implied by equation (3) is: 
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Last, considering market structure ( ) ( )1 ,1, =BM nn  and assumed order-of-entry 

BBMMMB, there is 0 McDonald’s outlet in the first 2 entries, which implies, 0~ =Mn ; 

( ) ( ) 010~ =−=− InnI MM ; and ( ) ( ) 101~ =−=− InnI MM .  Therefore, assuming entry sequence 

BBMMMB, the appropriate probability expression for the ( ) ( )1 ,1, =BM nn  market structure that 

is implied by equation (3) is: 
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 Once the probability expression for each market structure is constructed, we can easily 

compile these market structure probabilities to construct a well-defined log likelihood function: 

   ( )[ ] ,,log
1

,

0,0

maxmax

,∑ ∑
= ==

===
T

t

nn

nn

Dt
B

t
B

t
M

t
M

BM

t
B

t
M

t
t
BNt

MNnNnNPLL     (5) 

where superscript t  indexes markets and t
NN t

B
t
M

D ,
 is a zero-one indicator variable that equals one 

if t
M

t
M nN =  and t

M
t
M nN =  but zero otherwise.  Note that the log likelihood function in equation 

(5) is a function of the correlation parameter, ρ , via equations (3) and (4).  Additional 

parameters will be introduced once the profit function is specified.   

 

Specification of Profit Function 

For any given market with market structure ( ),M BN N , the deterministic part of profit is 

specified as: 

( )
1

, ,
1 1

,
f fN N

f M B f f i f j
i j

N N Xπ β δ γ
−−

= =

= + +∑ ∑ ,     (6) 

where X  is a vector of market-specific characteristics including population and other socio-

demographic variables, while fβ  is the associated chain-specific vector of parameters that 

capture how the profit of a restaurant outlet of a given chain-type is affected by a marginal 

change in the relevant market-specific characteristic.  fδ  measures the marginal profit effect due 

to entry of same chain-type restaurant outlets (intra-chain competition), while fγ  measures the 

marginal profit effect due to entry of different chain-type restaurant outlets (inter-chain 

competition).  fβ , fδ , and fγ  are chain-specific parameters to be estimated. 
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Note that we assume 0fπ =  when 0fN = .  Thus there are only 1fN −  intra-chain 

marginal competitive effect parameters starting from the second same chain-type restaurant 

outlet in the particular market.  Also, from Assumptions 1-3, we must have, 

0fδ < ; 0fγ < ; f fδ γ< ; , , 1f i f iδ δ +< ; , , 1f i f iγ γ +< , ( ),f M B= . 

In our estimation, we impose these restrictions. 

 Given the functional form specification of the profit function in equation (6) and the log 

likelihood equation in equation (5), we estimate the parameters of the model via Maximum 

Likelihood, that is, we estimate the parameters by solving the following optimization problem:7

( )ργδβ
ργδβ

,,,;
,,,

XLLMax

 

.      (7) 

 

Non-nested Test Procedure 

The non-nested test procedure we use in this paper is an application of tests developed by 

Vuong (1989).  Gasmi, Laffont, and Vuong (1992) also applied the non-nested test procedures in 

a different setting.  For each pair of assumed order-of-entry model specifications ( ),p qS S , the 

likelihood ratio statistic is: 

 ( )1

T p q
t tt

LR LL LL
=

≡ −∑ ,      (8) 

where T is the total number of observations in the sample, while p
tLL  and q

tLL  are the optimal 

values at observation t taken by the log likelihood functions for order-of-entry model 

specifications pS  and qS  respectively.  Vuong (1989) argues that the likelihood ratio statistic in 

equation (8) can be normalized by its variance: 

                                                 
7 We numerically optimize the log likelihood function over the parameter space using the fminsearch algorithm in 
the MATLAB computer software. 
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 ( ) ( )
222 1 1

1 1

T Tp q p q
t t t tT Tt t

LL LL LL LLω
= =

 = − − − ∑ ∑ ,    (9) 

so that the following non-nested test statistic: 

 0.5 LRNNT T
ω

−= ,         (10)  

is asymptotically distributed standard normal under the null hypothesis of equal fit.8

A one-tale statistical test at the 5% significance level for the standard normal distribution 

has critical values 

  

1.64± .  If 1.64 1.64NNT− < <  we conclude the data are unable to 

discriminate between the two order-of-entry models, and therefore the null hypothesis cannot be 

rejected.  If 1.64NNT < − , we conclude that order-of-entry specification qS  better explains the 

data compared to specification pS , but if 1.64NNT > , we conclude that specification pS  better 

explains the data compared to specification qS . 

 One of the very important features of this type of non-nested normalized likelihood ratio 

test is that, as noted by Gasmi, Laffont, and Vuong (1992), it can be used to test between two 

different models even though one or both of them are mis-specified.  In other words, without 

committing to declare a “true” model, the test allows the researcher to conclude which, if any, of 

the two models being compared better fits the data. 

 

3. Data 

We obtained our dataset via the Internet in the spring of 2011. For store location 

information, we rely on McDonald’s and Burger King online restaurant locator on their 

homepage.  We collect market structure data for the 48 contiguous states of the United States.  

                                                 
8 The equations used here for the LR statistic; the variance of the LR statistic; and the non-nested test statistic, 
correspond to equations (3.1), (4.2) and (5.6) on pages 312, 314 and 318 respectively in Vuong (1989). 
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Local “markets” are delineated at the city level.  Socio-demographic characteristic data of each 

city are obtained from the U.S. Census Bureau Census 2000 Summary File 3.  Google Map is 

used to ensure each city in our sample can reasonably be treated as a “single local market”.  A 

single local market is defined as an “isolated city” that is more than 10 miles away from the 

closest neighboring city.  It is well known in the literature that static entry models of the type we 

consider in this paper are better suited for data with a cross-section of individually “isolated 

markets”. 

 

Figure 1: Geographical Distribution of Markets 

 

 
In our data, we have included 2,506 isolated city areas.  Figure 1 shows a geographical 

distribution of the cities/markets in our sample throughout the 48 contiguous states of the United 

States, where each market is designated with a black dot on the map.  These cities each have at 

least one McDonald’s (MAC) or Burger King (BK) restaurant outlet, but neither restaurant chain 
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has more than 3 outlets.  The total number of McDonald’s restaurants in our sample is 3083, 

while the total number of Burger King restaurants is 2004.9

 

  The observed numbers of 

occurrences of each market structure in the data are reported in Table 1, while Table 2 presents 

definitions and simple descriptive statistics of all socio-demographic variables that we use in the 

analysis. 

 
Table 1: Observed Market Configurations 

Market Structure:  
( ),M BN N  

Number of Markets Percent of Total (%) 

(1, 0) 728 29.05 
(2, 0) 39 1.56 
(3, 0) 7 0.28 
(0, 1) 219 8.74 
(1, 1) 924 36.87 
(2, 1) 261 10.42 
(3, 1) 99 3.95 
(0, 2) 6 0.24 
(1, 2) 34 1.36 
(2, 2) 76 3.03 
(3, 2) 70 2.79 
(0, 3) 0 0 
(1, 3) 1 0.04 
(2, 3) 10 0.4 
(3, 3) 32 1.28 
Total 2506 100 

 

Static entry models better fit industries that can reasonably be described as being in a 

long-run equilibrium state.  According to the U.S. Securities and Exchange Commission (SEC) 

                                                 
9 By year-end of 2011, McDonald’s and Burger King have 14098 and 7204 outlets, respectively, in the United 
States.  Thus our sample has 21.9% of all McDonald’s outlets and 27.8% of all Burger King outlets in the U.S. 
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filings of McDonald’s and Burger King, McDonald’s outlets in the United States has gone from 

13492 to 14157 between 2002 and 2012, an increase of less than 5% in 10 years, while Burger 

King outlets in the U.S. and Canada has gone from 7534 to 7476, a decrease of less than 1% in 6 

years. 10

 

  These numbers show that there are minimal changes in McDonald’s and Burger King 

restaurant outlets over this 10-year period, and therefore it is reasonable to argue that during this 

period the industry in North America is approximately in a long-run equilibrium state. 

Table 2: Definition and Descriptive Statistics for Variables used in our Analysis 

Name Definition Mean Min Max S. D. 
Pop Population (in 1K) 9.923 0.112 117.083 11.318 
PCI Per Capita Income (in 1K$) 17.645 6.967 62.131 4.711 
White Percentage of Pop that is white (%) 83.16 1.67 100 18.15 
Male Percentage of Pop that is male (%) 47.71 33.51 68.62 2.87 
Family a Percentage of households reported as 

family (%) 
65.91 27.47 97.25 7.96 

BA Percentage of population that has 

Bachelor’s degree or above (%) 
17.97 0.48 69.19 9.4 

a From the definition of U.S. Census Bureau, “A family includes a householder and one or more 
other people living in the same household who are related to the householder by birth, marriage, or 
adoption…Thus, the number of family households is equal to the number of families.”  See 
documentation for Census 2000 Summary File 3 for detail. 

 

Information in Table 1 provides some support for the three assumptions outlined in the 

model section of the paper.  One challenge to those assumptions is the idea that restaurant outlets 

already present in a market can positively influence subsequent entry, an effect Toivanen and 

Waterson (2005) refer to as a positive spillover effect, which they found when analyzing the 

expansions of McDonald’s and Burger King outlets in the United Kingdom.  If there are strong 

                                                 
10 The SEC filing documents are available only back to 2006 for Burger King when it first went IPO in that year.  In 
addition, from 2006 to 2012, Burger King’s K10 annual reports only provide numbers of outlets for U.S. and 
Canada combined. 
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positive spillover effects in our U.S. data set, we should expect the vast majority of markets to 

contain both McDonald’s and Burger King outlets, and the correlation between outlets of both 

chain-types being in a given market should be high.  However, only 60.14% of the markets in 

our sample contain both McDonald’s and Burger King outlets.  Moreover, the correlation 

between the presence of both in a given market is only 0.3618.11

Judging from the standard deviations of the variables in Table 2, one can see that socio-

demographic variations across our sample cities are not trivial.  Not surprisingly, consistent with 

population density, Figure 1 shows that more markets are concentrated in the eastern and western 

regions of the United States compared to the central region. 

  These characteristics of our 

data are appropriate for the model framework we use. 

We follow Mazzeo (2002) and transform socio-demographic variables in the following 

manner: 









= ∑

=

T

t
ttt x

T
xx

1

* 1ln , 

where T is the total number of observations of the full sample (2506 in our paper).  This 

transformation implies that when the untransformed variable takes on a value equal to its mean, 

the associated transformed variable will take on a value of zero.  These transformations should 

not affect the qualitative impact of variables since each variable’s ordinal property is preserved.  

So for example, the transformed population variable still remains a valid index of market size. 

As discussed in Mazzeo (2002) and confirmed by our own experience, the advantage of such a 

transformation of the variables helps with making estimation of the nonlinear entry model easier.   

                                                 
11 After putting information in Table 1 into a 2506-by-2 matrix, we calculate the correlation of the two columns to 
obtain the correlation of 0.3618. 
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In Table 3, we present three reduced-form regression specifications in which number of 

McDonald’s restaurant outlets, number of Burger King restaurant outlets, and the total number of 

McDonald’s and Burger King restaurant outlets are dependent variables respectively.  Table 3 

demonstrates that the number of restaurant outlets is positively related to population, and 

negatively related to percentage of households reported as family.  The variable “Highway” is a 

zero-one dummy variable that equals to 1 when a city/market is within 6 miles of driving 

distance to an interstate highway.  Not surprisingly, locations close to inter-state highways attract 

both restaurants. 

 

Table 3: Reduced-form Regressions 
Variables MAC BK MAC+BK 
Constant 1.447** 1.171** 2.618** 

 (0.226) (0.207) (0.315) 
Pop 0.0391** 0.0289** 0.0680** 

 (0.0023) (0.0018) (0.0036) 
PCI -0.0065 -0.0018 -0.0083 

 (0.0041) (0.0039) (0.0059) 
White -0.0711 -0.274** -0.345* 

 (0.0963) (0.0904) (0.135) 
Male -0.0764 0.465 0.389 

 (0.414) (0.360) (0.563) 
Family -0.778** -1.080** -1.858** 

 (0.180) (0.173) (0.257) 
BA 0.232 -0.016 0.216 

 (0.207) (0.193) (0.299) 
Highway 0.141** 0.174** 0.315** 

 (0.0255) (0.0230) (0.0362) 
Observations 2,506 2,506 2,506 

R-squared 0.411 0.323 0.511 
Notes: The reduced-form regressions are estimated using Ordinary Least Squares (OLS).  We have 
included state dummies.  Robust standard errors are in parentheses. ** indicates statistical 
significance at the 1% level; * indicates statistical significance at the 5% level. 

 

4. Results  

 Recall that in our sample, there are maximum 3 McDonald’s and 3 Burger King 

restaurant outlets in any given market.  Thus there could be up to 20 different possible entry 
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orders for these 6 restaurants.  We begin by focusing on the following four order-of-entry 

specifications: 

(1) McDonald’s outlets move first:  MMMBBB 

(2) Burger King outlets move first:  BBBMMM 

(3) Alternate moves starting with M:  MBMBMB 

(4) Alternate moves starting with B:  BMBMBM 

In Table 4, we report profit function parameter estimates for both chain-type firms under 

each of the four distinct assumed entry orders.  Several results can be drawn from these 

parameter estimates.  First, among the socio-demographic variables we consider, the most robust 

determinants of entry are the size of population in a particular market (Pop), the percentage of 

family households (Family), and if city is within six miles of driving distance to an interstate 

highway (Highway).  These results are consistent with those from the reduced-form regressions 

reported in Table 3.  A location that is within six miles of the nearest interstate highway, which 

has a relatively large population and a small proportion of family households, appears to be most 

conducive for fast food entry.  Both large local population and a nearby highway imply a larger 

market size.  The positive signs from these two variables are consistent with previous literature.  

On the other hand, family households are more likely to cook on their own or go to a finer dining 

restaurant, which is suggested by the negative sign on the Family variable. 

Second, intra-chain competitive effects ( 1δ  and 2δ ) are strong and statistically 

significant, while inter-chain competitive effects ( 1γ , 2γ  and 3γ ) seem to be relatively weak.  

There could be several factors that contribute to these competitive effects results, one of which 

may be that differentiation across the chains are sufficiently strong and brand-loyal customers 

comprise a significant segment of the market.  It is also possible that the weak inter-chain 



 
 

19 

competitive effects result could in part be due to some market characteristics that we the 

researchers cannot observe, and therefore cannot fully control for in the models.12

 

    

Table 4: Estimation Results for the Static Entry Model 

 MMMBBB BBBMMM MBMBMB BMBMBM 

 MAC BK MAC BK MAC BK MAC BK 

Constant 
 

0.6401** 0.3868** 1.0072** 0.4214** 0.7182** 0.3662** 1.0298** 0.4187** 
(0.0581) (0.1085) (0.0675) (0.0793) (0.0730) (0.1153) (0.0644) (0.0742) 

Pop 
 

0.3664** 0.3593** 0.3772** 0.3702** 0.3763** 0.3664** 0.3803** 0.3795** 
(0.0210) (0.0266) (0.0209) (0.0250) (0.0207) (0.0247) (0.0201) (0.0231) 

PCI 
 

-0.1123 0.0439 -0.1093 -0.0624 -0.0808 0.0492 -0.1216 -0.0500 
(0.0861) (0.0955) (0.0749) (0.0821) (0.0862) (0.0961) (0.0748) (0.0843) 

White 
 

-0.0282 -0.1536* -0.0357 -0.0893 -0.0444 -0.1593* -0.0323 -0.0998 
(0.0594) (0.0599) (0.0536) (0.0527) (0.0600) (0.0585) (0.0543) (0.0534) 

Male 
 

-0.1712 -0.2707 -0.1284 -0.1674 -0.1343 -0.2526 -0.1380 -0.2017 
(0.3034) (0.3266) (0.2840) (0.3105) (0.2981) (0.3163) (0.2847) (0.3109) 

Family 
 

-0.6026** -0.8639** -0.5401** -0.6879** -0.6453** -0.8876** -0.5889** -0.7523** 
(0.1223) (0.1301) (0.1083) (0.1171) (0.1189) (0.1273) (0.1122) (0.1163) 

BA 
 

0.0001 -0.0467 -0.0001 -0.0288 0.0016 -0.0393 -0.0041 -0.0328 
(0.0441) (0.0461) (0.0381) (0.0400) (0.0451) (0.0461) (0.0386) (0.0397) 

Highway 
 

0.1423** 0.1455** 0.0868** 0.0973** 0.1619** 0.1570** 0.1065** 0.1164** 
(0.0321) (0.0336) (0.0290) (0.0301) (0.0318) (0.0329) (0.0299) (0.0318) 

1δ  

-1.8296** -1.5484** -1.7625** -1.5270** -1.8511** -1.4784** -1.7883** -1.5448** 
(0.0666) (0.0703) (0.0730) (0.0528) (0.0790) (0.0684) (0.0695) (0.0521) 

2δ  

-0.5825** -0.7901** -0.6490** -0.8781** -0.5862** -0.8346** -0.6576** -0.8281** 
(0.0326) (0.0748) (0.0354) (0.0742) (0.0554) (0.0750) (0.0345) (0.0697) 

1γ  

-0.0048 -0.0001 -0.4500** -0.0001 -0.0867* -0.0001 -0.4589** -0.0001 
(0.0044) (0.0986) (0.0508) (0.0783) (0.0368) (0.1166) (0.0499) (0.0737) 

2γ  

-0.0001 -0.0001 -0.0001 -0.1245 -0.0001 -0.0380 -0.0001 -0.1391 
(0.1019) (0.1230) (0.0546) (0.0640) (0.0713) (0.1006) (0.0546) (0.0825) 

3γ  

-0.0001 -0.7901** -0.2654* -0.8781** -0.0001 -0.8346** -0.1573 -0.8281** 
(21.3754) (0.1160) (0.1299) (0.0670) (42.9599) (0.1129) (0.1355) (0.0885) 

ρ  

0.9687** 0.9887** 0.9741** 0.9841** 
(0.0123) (0.0027) (0.0092) (0.0032) 

Log likelihood -3585.5543 -3493.7479 -3571.5353 -3500.7303 
 
Notes: Models are estimated using Maximum Likelihood.  Standard errors are in parentheses. ** indicates statistical 
significance at the 1% level; * indicates statistical significance at the 5% level. 
  

                                                 
12 We thank an anonymous referee for suggesting this possibility. 
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Despite the relatively small values for most inter-chain competitive effects, two results 

stand out.  First, the negative and statistically significant values of 3γ  in BK profit functions 

suggest that the presence of a third MAC outlet has a distinctively negative impact on the profit 

of BK outlets.  Second, when the assumed entry order is either BK moves first or alternate 

moves that begin with BK, i.e. either BBBMMM or BMBMBM, the presence of the first BK 

outlet has a distinctively negative impact on the profit of MAC outlets ( 1γ  in MAC profit 

function). 

While the magnitudes of coefficients on population are consistent across order-of-entry 

specifications in Table 4, the magnitudes of other coefficients that are statistically significant 

vary across order-of-entry specifications.  Interestingly, coefficients of “Family” and “Highway” 

are the largest for both chains under the entry order assumption MBMBMB, followed by 

MMMBBB, then BMBMBM, with BBBMMM the smallest.  Such result shows that different 

entry order assumptions imply different types of response to changes in socio-demographic 

variables.   

Both the magnitudes and statistical significance of intra and inter-chain competitive 

effects parameters vary across order-of-entry specifications.  For example, the entry of a second 

McDonald’s outlet reduces the profit of the existing McDonald’s outlet by a larger amount under 

entry order MMMBBB ( 1 1.8296δ = − ) compared to BBBMMM ( 1 1.7625δ = − ).  So there is 

evidence that order-of-entry assumptions matter for the resulting parameter estimates, which can 

prove crucial in settings where policy conclusions need to be drawn based on estimated 

parameters.   

Overall, the intra and inter-chain competitive effects parameters seem more sensitive 

across order-of-entry assumptions compared to the sensitivity of parameters associated with the 
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demographic variables.  This result makes sense since the order-of-entry assumptions directly 

relate to strategic interactions between the restaurant outlets.  

Last, the unobserved portion of the profit function of McDonald’s and Burger King are 

highly cross-correlated as indicated by the estimates of ρ .  Note that the estimates of ρ  are 

close to 1, but statistically different from 1. 

As mentioned before, the non-nested likelihood ratio test can be used to test competing 

model specifications even if the models are mis-specified.  The results of the test are reported in 

Table 5.  The non-nested test statistics show that entry orders BBBMMM and BMBMBM are 

statistically indistinguishable at conventional levels of statistical significance, but each of these 

entry orders is statistically preferable to MMMBBB and MBMBMB.  In addition, MBMBMB is 

statistically preferred to MMMBBB.  In summary, among the four entry orders considered thus 

far, entry orders that give Burger King outlets first-mover advantage seem to be statistically 

preferable across the sample of markets in our data set. 

 

Table 5: Results of Non-nested Test 
q 

p BBBMMM MBMBMB BMBMBM 

MMMBBB -5.2165 -2.4345 -5.4747 
BBBMMM - 3.7443 1.5503 
MBMBMB - - -3,8405 

 
 

To further investigate whether the first-mover advantage of Burger King outlets persists 

across a comprehensive set of alternate entry order assumptions, we estimate the entry model 

under each of the possible order-of-entry assumptions and test them against each other.13

                                                 
13 We thank anonymous referees for pointing out the importance of estimating and testing all entry orders, as well as 
the Monte Carlo experiment below.  

  There 
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are a total of 20 entry orders when at most 3 MAC and 3 BK outlets are present in a given 

market.  We report the results of these non-nested tests in Table A-1 in Appendix A.14

A positive number in Table A-1 suggests that the entry order assumption in the row is 

either statistically indistinguishable from the column entry order or statistically dominates the 

column entry order, while a negative number suggests that the column entry order is either 

statistically indistinguishable from the row entry order or statistically dominates the row entry 

order.  An examination of the row that has the BBBMMM entry order reveals that BBBMMM is 

never dominated by any of the 19 alternate entry orders, and it strictly dominates 11 of the 19 

alternate entry orders.  In addition, MMMBBB is statistically dominated by BBBMMM; 

MBMBMB; BMBMBM; MBMMBB; MBBMMB; BMMMBB; BMMBMB; BMMBBM; 

BMBMMB; BBMMMB; and BBMBMM, each of which gives Burger King outlets better first-

mover advantage than the MMMBBB entry order.  In general, the results in Table A-1 suggest 

that entry orders that give Burger King outlets a first-mover advantage are most often statistically 

preferable.    

   

As a cautionary note, the reader is reminded that our sample of markets exclude major 

metropolitan areas, as well as markets that cannot reasonably be considered as “isolated”.  

Therefore, we cannot say whether our findings extend to all markets in the United States.  We 

can only claim that our results suggest Burger King outlets have a first-mover advantage over 

McDonald’s outlets in relatively small isolated markets.   

Last, we use a small-scale Monte Carlo experiment to assess the power of the Vuong 

(1989) test within the context that we use it in this paper.  Details on how we construct and 

                                                 
14 In the interest of space, we do not report the regression estimates of the entry model under the 20 different order-
of-entry assumptions.  However, we are happy to provide these estimates upon request. 
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implement the experiment are provided in Appendix B.  The following discussion only provides 

a “big picture” description of the experiment and its results.  

We first generate 100 data sets, each containing 1000 markets.  Similar to our real data 

set, we allow a maximum of three outlets of each type in each market of a simulated data set.  

Each simulated data set consists of simulated variables that capture market characteristics.  In 

each simulated data set we use: (i) the simulated market characteristic variables; (ii) 

parameterized outlet profit functions; and (iii) a specific order-of-entry assumption, to generate 

the equilibrium number of outlets of each type that will be present in each simulated market.  

Therefore, the advantage we have with each simulated data set relative to the real McDonald’s- 

Burger King data set is that, we actually know the “true” order-of-entry that generate the 

equilibrium market structure in each simulated data set.  

Each simulated data set is generated assuming the entry order is MMMBBB.  For each 

simulated data set we econometrically estimate the entry model under MMMBBB, the “true” 

order-of-entry, as well as under MBMBMB, and then apply the non-nested test to see which of 

the two order-of-entry assumptions is statistically favored by the test.  Given that there are 100 

simulated data sets, this process produces 100 non-nested test statistic values.  Figure 2 

graphically illustrates the results of the non-nested tests. 
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Figure 2: Plot of Computed Non-nested Test Statistic Values from  
Monte Carlo Experiment 
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The vertical axis in Figure 2 measures the computed value of the non-nested test statistic 

for each of the 100 test events.  On the horizontal axis we rank test events by their computed test 

statistic value.  A positive test statistic value that is greater that 1.64 (one-tale cutoff value at the 

5% level of significance) suggests that the MMMBBB order-of-entry assumption is statistically 

preferred to the MBMBMB order-of-entry assumption.  Alternatively, a negative test statistic 

value that is less that -1.64 suggests that the MBMBMB order-of-entry assumption is statistically 

preferred to the MMMBBB order-of-entry assumption.   

Among the 100 test events the results are clear that, at the 5% level of significance, 

MBMBMB is never statistically preferred to MMMBBB, but MMMBBB is statistically 

preferred to MBMBMB in 77 test events.  Therefore, at a 5% level of statistical significance, the 

test reveals the correct order-of-entry entry assumption 77% of the time.  A similar result is 
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obtained when MMMBBB is the order-of-entry used to generate simulation data sets, and tested 

against the BBBMMM order-of-entry assumption.15

 

 

5. Conclusion  

In research that uses static empirical entry models of complete information, it is often 

convenient to assume that players enter sequentially, which makes it necessary to specify a 

suitable order of entry.  In this paper, we show how a Vuong-type non-nested test can be used to 

statistically assess the suitability of entry order assumptions.  As an example, we estimate and 

test alternate order-of-entry assumptions in our entry model on McDonald’s and Burger King 

restaurant outlets.  The data set we use focuses on relatively small “isolated” markets in the 

United States.  In these markets, the results suggest that the more suitable assumption for the 

entry model is that Burger King outlets have a first-mover advantage over McDonald’s.  

Furthermore, there is evidence that order-of-entry assumptions matter for the resulting parameter 

estimates of the type of entry model we consider, which can prove crucial in settings where 

policy conclusions need to be drawn based on estimated parameters.  

We also conducted a small-scale Monte Carlo experiment to assess the reliability of the 

Vuong-type statistical test to reveal the most suitable order-of-entry assumption.  Results from 

the experiment are encouraging, suggesting that at a 5% level of significance the test reveals the 

“true” order-of-entry 77% of the time.   

The estimated entry model also provides some interesting results on the fast food burger 

industry.  We find that, among the socio-demographic variables we consider, the most robust 

determinants of entry of either McDonald’s or Burger King restaurant outlets are:  (1) the size of 

                                                 
15 When testing MMMBBB against BBBMMM at the 5% level of statistical significance, 76 out of 100 test events 
reveal that MMMBBB dominates BBBMMM, while the remaining 24 test events suggest these two order-of-entry 
assumptions are statistically indistinguishable. 
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population in a particular market; (2) the percentage of family households; and (3) if the city is 

within six miles of driving distance to an interstate highway.  We also find that intra-chain 

competitive effects are strong and significant, while most inter-chain competitive effects seem to 

be relatively weak.  There could be several factors that contribute to these competitive effects 

results, one of which may be that differentiation across the chains are sufficiently strong and 

brand-loyal customers comprise a significant segment of the market.  Future research may want 

to explore the robustness of these findings in other sample markets. 
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Appendix A: Comprehensive Set of Non-nested Test Results 

Table A-1 Comprehensive Set of Non-nested Test Results 

                q 
p 

BBBMMM BMBMBM BMMMBB BMMBMB BMMBBM BMBMMB BMBBMM BBMMMB BBMMBM BBMBMM 

MMMBBB -5.2165 -5.4747 -6.5797 -7.3589 -6.6357 -6.7501 0.7357 -6.0480 0.8132 -6.1224 
BBBMMM  1.5503 1.0555 1.3643 1.0649 1.0346 6.8355 1.2263 6.5804 1.2533 
MBMBMB  -3.8405 -4.5121 -4.7561 -4.5361 -4.6022 1.9607 -4.2195 2.0114 -4.2567 
BMBMBM   0.2813 0.9771 0.2879 0.2794 7.0328 0.4329 6.8135 0.4605 
MMBMBB   -10.0394 -9.4194 -10.0540 -10.1130 -5.8098 -9.8807 -5.6938 -9.9943 
MMBBMB   -5.7297 -6.0404 -5.7741 -5.8507 1.2384 -5.3619 1.2466 -5.4275 
MMBBBM   -4.4692 -4.2450 -4.5051 -4.5089 1.1647 -4.3395 1.1250 -4.3775 
MBMMBB   -4.6521 -5.0794 -4.6736 -4.7549 1.8312 -4.3099 1.9307 -4.3428 
MBMBBM   -8.1930 -8.7068 -8.2990 -8.4013 0.1701 -7.5289 0.0706 -7.6639 
MBBMMB   -4.4984 -4.6331 -4.5216 -4.5836 1.9606 -4.2274 1.9783 -4.2652 
MBBMBM   -8.2203 -8.6451 -8.3349 -8.4188 0.3937 -7.5771 0.2526 -7.7156 
MBBBMM   -7.8578 -8.5559 -7.9500 -8.0642 0.4469 -7.1882 0.6313 -7.3040 
BMMMBB    1.3683 0.0473 0.1282 8.2552 0.3461 8.0156 0.4121 
BMMBMB     -1.3534 -1.4838 8.4975 -0.8996 8.7859 -0.8693 
BMMBBM      0.0844 8.3715 0.3503 8.1127 0.4235 
BMBMMB       8.4488 0.2549 8.2282 0.3186 
BMBBMM        -7.6621 -0.0710 -7.8166 
BBMMMB         7.3241 0.3987 
BBMMBM          -7.4436 
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Table A-1 Comprehensive Set of Non-nested Test Results (cont.) 

               q 
p 

MBMBMB MMBMBB MMBBMB MMBBBM MBMMBB MBMBBM MBBMMB MBBMBM MBBBMM 

MMMBBB -2.4345 5.5128 -1.4576 -0.9849 -2.3956 0.7457 -2.2756 0.6460 0.5360 
BBBMMM 3.7443 9.5432 4.5962 3.9913 3.8157 6.7376 3.7179 6.8705 6.7009 
MBMBMB  5.2970 2.6657 0.5230 0.7593 1.9545 -0.4851 1.8806 1.7753 
BMBMBM  9.2869 4.7944 4.1695 3.9325 6.9552 3.8085 7.1039 6.8153 
MMBMBB   -5.4698 -4.7864 -5.2435 -5.8346 -5.3426 -5.7321 -5.7830 
MMBBMB    -0.6486 -2.1698 1.2142 -2.5413 1.1340 1.0031 
MMBBBM     -0.3460 1.1257 -0.6349 1.1349 1.0218 
MBMMBB      1.8529 -0.7497 1.7764 1.7038 
MBMBBM       -1.9435 -0.2759 -0.5235 
MBBMMB        1.8764 1.7639 
MBBMBM         -0.3480 
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Appendix B: Procedure of the Monte Carlo experiment 

 In an effort to assess the reliability of the non-nested test in our context, we have 

implemented a small-scale Monte Carlo experiment.  The following discussion describes the 

procedure we use. 

 

Simulated Market Characteristic Variables 

 Our sample consists of 100 different simulated data sets.  In each simulated data set there 

are 1000 markets.  Each simulated data set contain three independent variables that measure 

market characteristics, and the values taken by these independent variables vary across the 1000 

markets and across the 100 data sets.  A uniform probability distribution is used to generate the 

values of our simulated independent variables.  The minimum and maximum values taken by the 

three simulated independent variables respectively correspond to variables Pop, PCI and Male in 

our real McDonald’s-Burger King sample markets.  The simulated market characteristic 

variables are denoted: Pop_sim; CPI_sim; and Male_sim.  

 

Unobserved Part of Profit – Random Draws 

 Similar to our real McDonald’s-Burger King data set, we assume there are two types of 

competing outlets, denoted M and B respectively, which can populate a simulated market.  Each 

outlet has a profit function of the form specified in equations (1) and (6), i.e. 

( )
1

, ,
1 1

,
f fN N

f M B f f i f j f
i j

N N Xβ δ γ ε
−−

= =

Π = + + −∑ ∑  for ( ),f M B= , where fε  is the unobserved part of 

the profit function.  Just as we did in our entry model, we continue to assume that the unobserved 
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parts of outlet profit ( ),M Bε ε  are distributed bivariate standard normal across outlets, with cross-

correlation parameter ρ . 

For each data set, we draw the unobserved part of outlets’ profit from a bivariate normal 

distribution with 0.6ρ = , which yields a 1000-by-2 matrix of unobserved profit draws ( ),M Bε ε  .  

Each row of this matrix corresponds to a market in a simulated data set.  Each simulated data set 

has a different 1000-by-2 matrix of unobserved profit draws. 

 

Creating a Complete Simulated Data Set 

Given the simulated market characteristic variables 

( )Ones, Pop_sim, CPI_sim, Male_simX = , the unobserved profit draws ( ),M Bε ε  , and the 

assumed profit function parameters in Table B-1 ( ), ,, ,f f i f iβ δ γ 

 , we can use outlet profit 

functions to compute the equilibrium number of outlets of each type ( ),M BN N   that will be 

present in each simulated market under a specific order-of-entry assumption.  In particular, let 

the simulated profit for outlet f be denoted by ( ) ( ), , , ,f M B f f f f fN N Xπ β δ γ εΠ = −   

  .  Since 

outlets must have non-negative profits in equilibrium, we essentially solve for the vector of 

integer values ( ),M BN N   such that ( ), 0f M BN NΠ ≥  .  To obtain a unique solution vector 

( ),M BN N  , we impose the MMMBBB order-of-entry assumption.  This specific order-of-entry 

assumption is imposed in all 100 simulated data sets that we create.   

In the end each simulated data set has data on market characteristic variables, as well as 

number of outlets of each type in each market.  Market structure configurations and their 

associated frequencies in a typical simulated data set are reported in Table B-2.  
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Table B-1 Assumed Parameters 

 MAC BK 
Constant 0.85 3 
Pop_sim 0.2 0.5 
CPI_sim 0.8 2 
Male_sim 0.6 0.06 

1δ   -0.8 -2 

2δ  -0.7 -1.8 

1γ  -0.2 -1.7 

2γ  -0.01 -0.06 

3γ  -0.005 -0.03 
ρ  0.6 

 

Table B-2 A Typical Simulated Data Set 
Mkt. Str. 0, 0 1, 0 2, 0 3, 0 0, 1 1, 1 2, 1 3, 1 0, 2 1, 2 2, 2 3, 2 0, 3 1, 3 2, 3 3, 3 

Obs. 43 107 54 37 143 121 86 64 110 53 65 87 14 0 6 10 
 

Econometric Estimation and Non-nested Test 

Once we have all 100 simulated data sets established, we econometrically estimate the 

entry model on each data set under each of two distinct order-of-entry assumptions, where one of 

the two order-of-entry assumptions is the “true” one used for generating the simulated data.  In 

our experiment, the two distinct order-of-entry assumptions used for estimating the entry model 

are: (i) MMMBBB; and (ii) MBMBMB.  As previously stated, the simulated data are generated 

under the MMMBBB order-of-entry assumption. 

Once the entry model is econometrically estimated under each of the two order-of-entry 

assumptions for a given simulated data set, we then compute the non-nested test statistic 

according to equations (8), (9) and (10) in the paper.  Since there are 100 simulated data sets, this 

process produces 100 computed non-nested test statistics.  The number of cases in which the 

computed value of the non-nested test statistic suggests that MMMBBB is the statistically 
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preferred order-of-entry assumption reveals the percentage of times that the test will yield the 

correct answer on average.     
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