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1 Introduction

Policymakers have expressed skepticism when reviewing airlines�application to form a codeshare

alliance in the event that such an alliance involves potential partners that have signi�cant overlap

in their route networks. The heart of the concern is that these potential partners are direct

competitors in the segments of their networks that overlap, and an alliance between them, which

often requires broad discussions between partners to make their interline1 service seamless, could

facilitate collusion on prices and/or service levels in the partners�overlapping markets. Before

ultimately approving the Delta/Continental/Northwest alliance, which was formed in June 2003,

the U.S. Department of Transportation (DOT) expressed these concerns.2 The DOT�s review of

this proposed alliance points out that the three airlines�service overlap in 3,214 markets accounting

for approximately 58 million annual passengers, which is in contrast to the next largest alliance

between United Airlines and US Airways with overlapping service in only 543 markets accounting

for 15.1 million annual passengers. So unlike much of the literature that focuses on international

airline alliances [Brueckner, Lee and Singer (2011); Brueckner and Proost (2010); Brueckner (2003);

Brueckner and Whalen (2000); Bilotkach (2007); Lederman (2007) among others], we focus on a

U.S. domestic alliance [Ito and Lee (2007); Bamberger, Carlton and Neumann (2004); Gayle (2008)].

Using a reduced-form econometric model similar to that in Bamberger, Carlton and Neumann

(2004), Gayle (2008) has shed some light on price e¤ects associated with the Delta/Continental/Northwest

codeshare alliance. In particular, Gayle (2008) �nds that the alliance is associated with a marginal

price increase, which by itself points to possible collusive e¤ects. But a marginal price increase

is also consistent with increased demand and there is good reason to believe that an alliance has

a demand-increasing e¤ect associated with it. For example, passengers that are members of an

airline�s frequent-�yer program may cumulatively earn and redeem frequent-�yer miles across any

partner in the alliance. The new opportunities for passengers to earn and redeem miles will likely

increase demand for the alliance partners�products. In the case of enhancements to international

frequent-�yer partnerships, Lederman (2007) provides reduced-form econometric evidence suggest-

ing that enhancements to international frequent-�yer partnerships are associated with increases in

domestic airline demand.
1 Interline means that at some point in the trip when passengers change planes they also change airlines.
2See �Termination of review under 49U.S.C. § 41720 of Delta/Northwest/Continental Agreements,�published by

O¢ ce of the Secretary, Department of Transportation, January 2003.
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To better understand the market e¤ects associated with an alliance, both from the demand and

supply sides of a market, it is important to go beyond the reduced-form analyses that currently exist

in the literature. As such, the main contribution of our present paper is to specify and estimate a

structural econometric model that allows us to disentangle demand changes from possible changes in

airline pricing behavior that are associated with a codeshare alliance. The empirical separation of

demand changes from airline pricing behavior changes allows us to: (1) statistically test whether a

codeshare alliance is associated with a demand-increasing e¤ect; and (2) statistically test whether a

codeshare alliance is associated with collusive pricing behavior in the partners�overlapping markets,

as feared by policymakers.

Our key �ndings are as follows: First, the econometric estimates for the air travel demand

equation suggest that the Delta/Continental/Northwest codeshare alliance has a demand-increasing

e¤ect associated with it. Importantly, the demand-increasing e¤ect is only evident in markets that

the partners have a substantial joint passenger share (greater than 49%) prior to implementation of

the alliance. Since a relatively larger proportion of passengers in a market are more likely to have

frequent-�yer membership with at least one of the three carriers in markets that the carriers jointly

dominate prior to the alliance, this �nding is consistent with the argument that these frequent-�yer

passengers will increase their demand for the alliance partners�products given that the alliance

creates new opportunities for passengers to accumulate and redeem frequent-�yer points across

partner carriers.

Second, a statistical non-nested test applied to air travel supply model selection suggests that

Bertrand Nash pricing behavior, rather than collusive pricing behavior, between the three airlines

better �t the data in markets where the three airlines codeshare together. To the best of our

knowledge, this is the �rst paper to explicitly test and statistically reject that collusive pricing

behavior is associated with a codeshare alliance.

The rest of the paper is organized as follows: In the next section we make some key de�nitions

which build the foundation for important issues we subsequently model, analyze, and discuss. In

section 3 we discuss characteristics of our data. We present the structural econometric model in

section 4, while estimation strategy is discussed in section 5. Results are presented and discussed

in section 6. Concluding remarks are o¤ered in section 7.
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2 De�nitions

A market is de�ned as directional round-trip air travel between an origin and a destination airport

during a particular period. The assumption that markets are directional implies that a round-

trip air travel from Atlanta to Detroit is a distinct market than round-trip air travel from Detroit

to Atlanta. Furthermore, this directional assumption allows for the possibility that origin city

characteristics may in�uence market demand [see Gayle (2007a, 2007b, 2013), Berry, Carnall and

Spiller (2006)].

A �ight itinerary is de�ned as a speci�c sequence of airport stops in traveling from the origin to

destination airport. An air travel product is de�ned as a unique combination of airline(s) and �ight

itinerary. Following Ito and Lee (2007), a pure online product means that the same airline markets

and operates all segments of a round-trip. For example, three separate pure online products are:

(1) a non-stop round-trip from Atlanta to Detroit marketed and operated by Delta Air Lines;

(2) a round-trip from Atlanta to Detroit with one stop in Minneapolis marketed and operated by

Delta Air Lines; and (3) a non-stop round-trip from Atlanta to Detroit marketed and operated by

Northwest Air Lines. Note that all three products are in the same market - Atlanta to Detroit.

A codeshare agreement e¤ectively allows one carrier (called the "ticketing carrier" or "marketing

carrier") to sell seats on its partners�plane as if these seats are owned by the carrier selling the

seats. The carrier whose plane that actually transports the passenger is referred to as the "operating

carrier". For example, Northwest may sell tickets for a subset of seats on a Delta operated �ight

between Atlanta and Detroit as if the plane were owned by Northwest. Thus, a passenger that

uses a codeshare itinerary may have bought the round-trip ticket from Northwest, but actually �ies

on a plane operated by Delta.

The literature on domestic airline alliances has identi�ed two main types of codeshare itineraries:

(1) traditional codeshare; and (2) virtual codeshare.3 Traditional codeshare itineraries combine

interline operating services of partner carriers on a given route, where one of these operating carriers

is the sole ticketing carrier for the entire trip. An example of a traditional codeshare product is

a trip from Atlanta to Detroit with one stop in Minneapolis, where the Atlanta to Minneapolis

segment of the trip is operated by Delta, the Minneapolis to Detroit segment of the trip is operated

by Northwest, but the ticket for the entire trip is marketed by Northwest. Brueckner and Whalen

3See Ito and Lee (2007) and Gayle (2008) for discussions of the main types of codeshare products in the U.S.
domestic market.
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(2000), Brueckner (2003), Ito and Lee (2007) and Gayle (2008) �nd evidence that traditional

codesharing tends to lower rather than raise prices. An often cited reason for this price-decreasing

e¤ect of traditional codesharing is that this type of codesharing eliminates double markup that

would otherwise persist when carriers are una¢ liated.4

Owing to the existing robust empirical evidence of a price-decreasing e¤ect associated with

traditional codesharing, this type of codesharing is not the focus of our present analysis. The

type of codesharing we focus on in this research is referred to as virtual codeshare. A passenger

using a virtual codeshare itinerary remains on a single operating carrier�s plane(s) for the entire

round-trip, but the ticket for the trip was marketed and sold by a partner ticketing carrier. Thus

a key distinction between virtual codeshare and traditional codeshare is that traditional codeshare

requires the passenger to travel on di¤erent operating carriers�planes (interline air travel) on a

multi-segment route, while virtual codeshare does not involve interline air travel even when the

passenger changes planes on a multi-segment route. We focus on virtual codesharing because

Gayle (2008) �nds that this is the only type of codesharing that is associated with price increases.

Figure 1 gives an example where two airlines� route networks overlap and the airlines may

virtual codeshare together in the origin-destination market. The �gure shows that Northwest and

Delta both operate non-stop �ights in the Atlanta to Detroit market. If they virtual codeshare

together in this market, then a subset of the passengers on the Delta plane would have bought

their tickets from Northwest, while a subset of the passengers on the Northwest plane would have

bought their tickets from Delta.

4See Gayle (2013) for an empirical investigation of situations in which double markup may persist for traditional
codeshare products. Chen and Gayle (2007) provides an analogous theoretical analysis of this issue.
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Atlanta

Detroit

Northwest plane
with some Delta
ticketed passengers.

Figure 1: Route Network Diagram

Delta plane with
some Northwest
ticketed passengers.

Figure 2 shows an alternate situation in which the airlines�route networks may overlap. In

Figure 2, Northwest operates a non-stop �ight in the Atlanta to Detroit market, while Delta

operates a one-stop itinerary in the Atlanta to Detroit market, but unlike Figure 1, Delta does

not operate a non-stop �ight in this market. Northwest and Delta�s networks are still considered

to be overlapping in Figure 2 even though Delta operates only a one-stop itinerary while Northwest

operates a non-stop itinerary. Both carriers may virtual codeshare together in Figure 2.

Minneapolis

Atlanta

Detroit

Delta plane with some
Northwestticketed
passengers that are
destined for Detroit.

Northwest plane
with some Delta
ticketed passengers.

Figure 2: Modified Route Network Diagram

Delta plane with
some Northwest
ticketed passengers.
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In Figure 2 it might seem counter-intuitive that a passenger would choose a one-stop itinerary

even though a non-stop �ight between the origin and destination is available. However, passengers

often choose less convenient routes (�ight itineraries that require intermediate stops) to get from

their origin to destination when such alternate routing is competitively priced. In other words,

within reasonable bounds, some passengers are willing to trade-o¤ travel itinerary convenience for

a lower price.

Figure 2 can also be used to illustrate a situation in which virtual codesharing is likely to have

a demand-increasing e¤ect associated with it. In the event that Northwest and Delta do not have

a codeshare alliance, Northwest can only o¤er its Atlanta-based customers (some of whom may be

members of Northwest�s frequent-�yer program) a non-stop �ight to Detroit. However, an alliance

with Delta allows Northwest to o¤er its Atlanta-based customers both a non-stop �ight on its own

plane and a one-stop virtual codeshared itinerary operated solely by Delta. While passengers in

Atlanta already had the option, prior to an alliance, to purchase either a pure online one-stop

itinerary from Delta or a pure online non-stop �ight from Northwest, Northwest�s frequent-�yers

could not accumulate frequent-�yer miles on the Delta operated �ights. Thus, the alliance created

a new opportunity for Northwest frequent-�yers to accumulate miles on a Delta operated one-stop

itinerary. Similarly, Delta frequent-�yers that would like to travel on the non-stop Northwest �ight

also have a new opportunity to accumulate frequent-�yer miles on the Northwest operated �ight.

The new opportunity for passengers to accumulate frequent-�yer miles across partner carriers is

one reason we expect a demand-increasing e¤ect to be associated with a codeshare alliance. Our

econometric model is designed to isolate and test for this potential demand-increasing e¤ect.

Figure 2 is also useful to illustrate the main concern the DOT expressed in its review of the

proposed alliance between Delta, Continental and Northwest. Since Delta and Northwest were

competitors in the market shown in Figure 2, the DOT was concerned that forming an alliance

would reduce the amount of competition between the two airlines. The econometric model we

present below is designed to statistically test if collusive pricing behavior, rather than Bertrand

Nash pricing behavior, between the three airlines better �t the data in markets that the three

airlines virtual codeshare together during the post-alliance period.
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3 Data

Data are drawn from the Origin and Destination Survey (DB1B), which is a 10% random sample

of airline tickets from reporting carriers. DB1B is a database that is maintained and published

by the U.S. Bureau of Transportation Statistics. Among other things, the database includes: (1)

number of passengers that choose a given �ight itinerary; (2) the fares of these itineraries; (3) the

speci�c sequence of airport stops that each itinerary uses in getting passengers from the origin to

destination city; (4) the carrier(s) that marketed and sold the travel ticket (ticketing carriers), and

the carrier(s) that passengers actually �y on for their trip (operating carriers); and (5) the distance

�own on each itinerary in a directional market. The distance associated with each itinerary in

a market may di¤er since each itinerary may use di¤erent connecting airports in transporting

passengers from the origin to destination city.

Unfortunately, the DB1B database does not include passenger-speci�c information. For exam-

ple, relevant passenger-speci�c information that we do not have are: (1) whether or not a passenger

has frequent-�yer membership with an airline; (2) the speci�c day of week of the travel; (3) the

length of time in advance of travel that the passenger purchased the ticket; and (4) purpose of

trip - leisure versus business. Therefore, we will have to rely on the econometric model�s ability

to tease out consumer choice behavior patterns from aggregated ticket purchase data. In addi-

tion, the database does not contain certain useful measures of travel itinerary convenience such

as layover times or departure times. Notwithstanding these de�ciencies in the data, we are able

to construct useful measures of itinerary convenience from the available information in the data,

which we discuss below.

The data we use link each product to a directional market rather than a mere non-stop route

or segment of a market. For this research, we focus on U.S. domestic �ights o¤ered and operated

by U.S. carriers in the fourth quarters of 2002 (pre-alliance) and 2003 (post-alliance).5

We arrive at the �nal sample used for estimation by applying a few �lters to the original data

set. First, itineraries with price less than $100 are excluded due to the high probability that

these may be coding errors or passengers redeeming frequent-�yer miles to obtain a discounted

fare. Second, itineraries with an inordinate number of intermediate stops (more than two) were

dropped. Third, we focus on pure online and virtual codeshare products as de�ned previously.

Fourth, following the standard practice for empirical analyses of airline codesharing, we recode

5Collecting data from the same quarter in both years will eliminate potential seasonal e¤ects in demand.
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regional feeder carriers to have their major carrier codes. In the absence of such recoding of feeder

carriers, products that only include a major carrier and its associated regional feeder carrier(s) may

mistakenly be counted as codeshare products since the operating and ticketing carrier codes would

di¤er.6

Based on our previously stated research objectives, we focus on origin-destination markets in

which at least two of the three airlines (Delta, Continental and Northwest) o¤ered competing pure

online products both in the pre and post-alliance periods. In other words, the three carriers�

networks overlap in all of the markets that remain in our �nal sample. In addition, similar to

Berry (1992) and Aguirregabiria and Ho (2012) among others, we focus on airports in the largest

50 U.S. cities as measured by city population estimates from the U.S. Census Bureau. Table 1

reports a list of the cities and airports included in our sample.

6We identify codeshare products as products where the ticketing and operating carriers di¤er.
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Table 1
List of Cities and Airports

City, State Airports City, State Airports
New York City, NY LGA, JFK Boston, MA BOS
Newark, NJ EWR Louisville, KY SDF
Los Angeles, CA LAX Washington, DC DCA, IAD
Chicago, IL ORD, MDW Nashville, TN BNA
Dallas, TX DFW Las Vegas, NV LAS
Phoenix, AZ PHX Portland, OR PDX
Houston, TX IAH Oklahoma City, OK OKC
Philadelphia, PA PHL Tucson, AZ TUS
San Diego, CA SAN Albuquerque, NM ABQ
San Antonio, TX SAT New Orleans, LA MSY
San Jose, CA SJC Cleveland, OH CLE
Detroit, MI DTW Sacramento, CA SMF
Denver, CO DEN Kansas City, MO MCI
Indianapolis, IN IND Atlanta, GA ATL
Jacksonville, FL JAX Omaha, NE OMA
San Francisco, CA SFO Oakland, CA OAK
Columbus, OH CMH Tulsa, OK TUL
Austin, TX AUS Miami, FL MIA
Memphis, TN MEM Colorado Springs, CO COS
Minneapolis & St. Paul, MN MSP St. Louis, MO STL
Baltimore, MD BWI Santa Ana, CA SNA
Charlotte, NC CLT Raleigh & Durham, NC RDU
El Paso, TX ELP Pittsburg, PA PIT
Milwaukee, WI MKE Tampa, FL TPA
Seattle, WA SEA Cincinnati, OH CVG

After applying the above restrictions, we follow Gayle (2007a) and collapsed the data by aver-

aging the price and aggregating the number of passengers purchasing products as de�ned by unique

itinerary-airline(s) combination.7 In other words, before the data are collapsed, there are several

observations of a given itinerary-airline(s) combination that are distinguished by prices paid and

number of passengers paying each of those prices. The �nal sample has 22,485 products contained

in 1,170 origin-destination markets that span the pre and post-alliance periods.

Variables that we gathered and constructed from the database include: "Price", "Hub", "Stops",

"Inconvenient", "Virtual", "Carrier Presence at Origin" and "Carrier Presence at Destination".

These variables are the observable product characteristics. "Price" is the average price paid by
7A product remains in our sample only if at least 9 passengers purchase it throughout a quarter. Berry (1992)

and Aguirregabiria and Ho (2012) among others use similar, and sometimes more stringent, quantity threshold to
help eliminate idiosyncratic product o¤erings that are not part of the normal set of products o¤ered in a market.
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passengers who chose the speci�c itinerary-airline(s) combination. "Hub" is a zero-one dummy

variable that takes the value one if the origin airport is a hub for the ticketing carrier. "Stops" is a

variable that counts the number of intermediate stops associated with each product. For example,

in the case of products that use non-stop �ight itineraries, "Stops" takes the value zero. "Incon-

venient" is the ratio of itinerary distance to the non-stop distance between origin and destination

airports. The presumption is that an itinerary is less convenient the further its "Inconvenient"

measure is from 1. "Virtual" is a zero-one dummy variable that takes the value one if the product is

virtual codeshared. Both the "Carrier Presence at Origin" and "Carrier Presence at Destination"

variables are airline-speci�c and vary across markets for each airline. "Carrier Presence at Origin"

measures the number of di¤erent cities that an airline has non-stop �ights from going into the origin

city of the market, while "Carrier Presence at Destination" measures the number of di¤erent cities

that the airline serves using non-stop �ights from the destination city of the market. We leave

discussing the rationale for using each of these variables until the results section since the main

task now is to provide descriptive information on the data.

As in Berry and Jia (2010) and Berry, Carnal and Spiller (2006), we measure a market�s size

(subsequently denoted by M) by the geometric mean of population sizes across the origin and

destination cities of the market. An air travel product�s quantity sold (subsequently denoted by

qj) is the total number of passengers that purchase each speci�c itinerary-airline(s) combination.

Therefore, a product�s observed market share (subsequently denoted by upper case letter Sj) is

computed as quantity of the product sold divided by our measure of market size, i.e. Sj =
qj
M .

8

How we use information on each product�s observed market share will become clear after the

econometric model and estimation procedure are discussed.

Table 2 provides a list of the airlines in the sample according to type of products the airlines

are involved in. Table 3 reports sample summary statistics of the variables.

8We �nd that our measure of market size results in product shares that are extremely small. As such, we scaled
up all product shares by a common factor. The common factor is the largest integer such that the share of the

outside good (S0 = 1 �
JX
j=1

Sj) remains positive in all markets. In our data set the common factor is 42. We

perform econometric estimations with and without scaling up product shares and �nd that econometric estimates are
qualitatively similar.
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Table 2
List of Airlines in the Data Set

Airlines Involved in Virtual
Codeshare Products

Airlines Involved in Pure Online
Products

Airline Name Code Airline Name Code
Alaska Airlines Inc. AS American Airlines Inc. AA
Continental Air Lines Inc. CO Alaska Airlines Inc. AS
Delta Air Lines Inc. DL JetBlue Airways B6
Northwest Airlines Inc. NW Continental Air Lines Inc. CO
United Air Lines Inc. UA Delta Air Lines Inc. DL
US Airways Inc. US Frontier Airlines F9

AirTran Airways FL
America West Airlines HP
National Airlines N7
Spirit Air Lines NK
Northwest Airlines Inc. NW
Chautauqua Airlines RP
Sun Country Airlines SY
ATA Airlines TZ
United Air Lines Inc. UA
US Airways Inc. US
Midwest Airline YX

Notes:  Note that feeder carriers such as Chautauqua Airlines are not listed as involved in
codeshare products.  This is because we assign these carriers their major carrier codes
(effectively not making a distinction between feeder and major carriers) for products where
feeder carriers operate segment(s) of the trip but the ticketing carrier is the major carrier.
However, the feeder carriers do offer pure online products, which is why they show up in the
column labeled “Airlines involved in Pure Online Products”.  In the data section of the text we
provide discussion on the rationale for assigning feeder carriers their major carrier code prior to
identifying codeshare products.

Table 3
Summary statistics of variables

Variable Mean Std. Dev. Min Max
Price ($) 218.36 67.79 101.37 856.63
HUB 0.15 0.36 0 1
Stops 0.84 0.39 0 2
Inconvenient 1.12 0.18 1 2.65
Virtual 0.031 0.17 0 1
Carrier Presence at Origin 22.91 24.28 0 130
Carrier Presence at Destination 26.53 25.59 1 143
Market Size (mean population across
the endpoint cities of a market) 901,784.90 687,820.50 264,747 5,439,591
Market nonstop flight distance (miles) 1,479.79 609.26 190 2,724
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3.1 Preliminary Descriptive Analysis

Following many event studies [for example see Borenstein (1990) and Kim and Singal (1993)], we

begin by using a di¤erence-in-di¤erences approach to get a sense of before and after relative changes

in key variables of interest. At this point only descriptive evidence is being developed on the key

variables. A more careful analysis of the relevant issues is laid out across subsequent sections of

the paper.

In our study the relevant event is implementation of the codeshare alliance. Therefore, the

di¤erence-in-di¤erences approach seeks to identify e¤ects associated with implementation of the

codeshare alliance based on the extent to which variables of interest change before and after im-

plementation of the codeshare alliance across markets that should be impacted by the alliance

("treatment" markets) versus markets that should not be impacted by the alliance ("control" mar-

kets). Our treatment markets are origin-destination markets in which Delta, Continental and

Northwest codeshare together during the post-alliance period, while our control markets are origin-

destination markets that the three airlines compete in but do not codeshare together during the

post-alliance period. Among the 1,170 origin-destination markets in the data set, the three air-

lines virtual codeshare together in 852 of the markets, and therefore compete but did not virtual

codeshare together in 318 of the markets.

A variable of interest that we apply the di¤erence-in-di¤erences approach to is the three airlines�

average price. Speci�cally, before and after relative change in Delta, Continental and Northwest

average price is computed by:

�DCN_price = log

 
DCN_priceCodeshare_mktpost�alli�period

DCN_priceCodeshare_mktpre�alli�period

!
� log

 
DCN_priceNon�Codeshare_mktpost�alli�period

DCN_priceNon�Codeshare_mktpre�alli�period

!
; (1)

where subscripts post� alli� period and pre� alli� period refer to the time period used for com-

puting the variable; the superscript Codeshare_mkt refers to origin-destination markets in which

Delta, Continental and Northwest codeshare together during the post-alliance period; while super-

script Non�Codeshare_mkt refers to origin-destination markets that the three airlines compete in

but do not codeshare together during the post-alliance period. Therefore,DCN_priceCodeshare_mktpre�alli�period

represents Delta, Continental and Northwest average price during the pre-alliance period in origin-

destination markets that they eventually codeshare together in during the post-alliance period;

DCN_priceCodeshare_mktpost�alli�period represents the three airlines average price during the post-alliance pe-

riod in origin-destination markets that they codeshare together during the post-alliance period;

13



DCN_priceNon�Codeshare_mktpost�alli�period represents the three airlines average price during the post-alliance

period in origin-destination markets that they compete in but do not codeshare together during

the post-alliance period; while DCN_priceNon�Codeshare_mktpre�alli�period represents the three airlines average

price during the pre-alliance period in origin-destination markets that they compete in but do not

codeshare together during the post-alliance period.

Analogous to equation (1), we specify before and after relative changes in the three airlines�

joint passenger tra¢ c and joint passenger share as follows:

�DCN_total_pass = log

 
DCN_total_passCodeshare_mktpost�alli�period

DCN_total_passCodeshare_mktpre�alli�period

!
(2)

� log
 
DCN_total_passNon�Codeshare_mktpost�alli�period

DCN_total_passNon�Codeshare_mktpre�alli�period

!
;

�DCN_pass_share = log

 
DCN_pass_shareCodeshare_mktpost�alli�period

DCN_pass_shareCodeshare_mktpre�alli�period

!
(3)

� log
 
DCN_pass_shareNon�Codeshare_mktpost�alli�period

DCN_pass_shareNon�Codeshare_mktpre�alli�period

!
:

The before and after relative change in the three airlines� average price, �DCN_price, is

0.0179. One way to interpret this before and after relative price change is that changes in the

three airlines�average price leave average price 1.79% higher in their codeshare markets relative to

their non-codeshare markets. Before and after relative change in the three airlines total passenger

tra¢ c, �DCN_total_pass, is -0.018. Therefore, before and after changes in the three airlines�

passenger tra¢ c leave their passenger tra¢ c 1.8% lower in their codeshare markets relative to their

non-codeshare markets. The direction of the relative price and passenger tra¢ c changes suggest

that collusive e¤ects could be associated with virtual codesharing between the three airlines in their

overlapping markets.

Before and after relative change in the three airlines joint passenger share,�DCN_pass_share,

is 0.019. Therefore, changes in the three airlines�joint passenger share leave their joint passenger

share 1.9% higher in their codeshare markets relative to their non-codeshare markets. So even

though the partner airlines�passenger tra¢ c declined in their codeshare markets relative to their

non-codeshare markets, the partners end up making relative gains in passenger share in their

codeshare markets since other airlines�passengers tra¢ c fell by more in these markets. This result
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suggest that there could be a demand-increasing e¤ect associated with virtual codesharing, which

in this case resulted in increase passenger share via slower decline in passenger tra¢ c.

It must be noted that the di¤erence-in-di¤erences analysis captured by equations (1), (2) and

(3), has caveats and provide only rough estimates of the e¤ects associated with virtual codeshar-

ing between the three airlines. For example, these di¤erence-in-di¤erences computations do not

control for persistent demand or cost conditions/shocks that may di¤er across codeshare versus

non-codeshare markets. In evaluating the market e¤ects associated with virtual codesharing be-

tween the three airlines, the formal econometric model presented below, while not perfect, will do

a better job at controlling for potential di¤erences in demand and cost conditions across codeshare

versus non-codeshare markets.

Last, it is also useful to get a sense of exogenous characteristics of origin-destination markets

that may in�uence the three airlines� choice of markets in which to virtual codeshare together

during the post-alliance period. For this descriptive analysis we rely on a reduced-form logit

regression model that uses exogenous market characteristics to explain the three alliance partners�

codeshare versus non-codeshare markets. The variable being explained by the logit regression is

denoted, Codeshare_mkt, which is a zero-one indicator variable that only takes the value 1 if the

three alliance partners virtual codeshare together in the origin-destination market during the post-

alliance period. Results from this logit regression are reported in Table 4. The unit of observation

for data used in the regression is origin-destination level.
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Table 4
Reducedform Codeshare Market Logit Regression

Dependent Variable: Codeshare_mkt = 1 if alliance partners virtual codeshare together in
origindestination market during the postalliance period; otherwise Codeshare_mkt = 0.
Variable Coefficient Standard

Error
Constant 0.89 1.45
Market Size (measured in 10,000,000 people) 52.41** 11.41
(Market Size)2 64.97** 21.52
Market Nonstop Flight Distance (measured in 10,000 miles) 35.85** 9.75
(Market Nonstop Flight Distance)2 45.68 31.18
Market origin fixed effects Yes
Market destination fixed effects Yes
Pseudo R2 0.4752
Log likelihood 359.20
Number of Observations 1170

Notes:  ** indicates statistical significance at the 1% level.  Model is estimated with market origin dummies
and market destination dummies even though these dummy coefficients are not reported in the table.

In addition to observed market characteristics such as market size and nonstop �ight distance,

the regression in Table 4 also controls for unobserved (to the researchers) market endpoint charac-

teristics using a set of dummy variables for origin �xed e¤ects and destination �xed e¤ects. Due

to economy of presentation purposes, the coe¢ cient estimates on these dummy variables are not

reported in the table. The coe¢ cient estimates on Market Size and (Market Size)2 suggest

that markets with mean endpoint population greater than 4,033,400 people9 are more likely to

be codeshare markets. Also, the coe¢ cient estimates on Market Nonstop F light Distance and

(Market Nonstop F light Distance)2 suggest that the probability of a market being a codeshare

market increases monotonically with nonstop �ight distance between the origin and destination.

There is evidence that the regressors jointly do a good job in explaining the Codeshare_mkt

variable. For example, the Pseudo R2 of the logit regression is 0.4752, suggesting that almost 50% of

the variation in Codeshare_mkt is jointly explained by the regressors. Second, the �tted values of

the dependent variable from the logit regression, i.e. Codeshare_mkt_hat =Prob(Codeshare_mkt =

1), has a 0.717 correlation with Codeshare_mkt.

9This population threshold is computed using the coe¢ cient estimates on Market Size and (Market Size)2.
Speci�cally, the population threshold is computed by: 10; 000; 000� 52:41

2�64:97 .
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4 The Model

We proceed by �rst describing the demand-side of the model. The supply-side is then laid out,

which is where we model competitive interactions between airlines.10

4.1 Demand

In the spirit of Peters (2006), Berry, Carnall and Spiller (2006), Gayle (2007a, 2007b, 2013), Gayle

and Wu (2012), Armantier and Richard (2008) and Berry and Jia (2010) among others, air travel

demand is modeled using a discrete choice framework. Speci�cally, we use a nested logit model.11

Potential passenger i in market l during time period � faces a choice between J�l + 1 alternatives.

There are J�l+1 alternatives because we allow passengers the option (j = 0, the outside good) not

to choose either one of the J�l di¤erentiated air travel products considered in the empirical model.

Products in a market are assumed to be organized into G + 1 exhaustive mutually exclusive

groups/nests, g = 0; 1; :::; G, in which the outside good, j = 0, is assumed to be the only member

of group 0. A group or nest here refers to the set of products o¤ered by an airline within a market.

We explore alternate nesting structures in an appendix available upon request.

A passenger solves the following optimization problem:

Max
j2f0;:::;J�lg

�
Uij� l = �j�l + ��i� lg + (1� �) "ij� l

	
; (4)

where Uij� l is the level of utility passenger i will obtain if product j is chosen, while �j�l is the mean

level of utility across passengers that consume product j. �j�l is a function of the characteristics of

product j, which we subsequently describe. �i� lg is a random component of utility that is common

to all products in group g, whereas the random term "ij� l is speci�c to product j and is assumed

to have an extreme value distribution. The parameter � lies between 0 and 1, and measures the

correlation of the consumers�utility across products belonging to the same group. Since products

10Armantier and Richard (2008) also use a structural econometric model to examine a codeshare alliance. However,
a fundamental di¤erence between our model and the model in Armantier and Richard (2008) is that we model both
demand and supply aspects of codesharing, while Armantier and Richard (2008) only model the demand side. This
crucial methodological di¤erence a¤ords us the advantage of being able to separately identify demand and supply
e¤ects of codesharing, which further allows us to more meticulously examine short-run market e¤ects within a market
equilibrium framework.
11We concede that a nested logit model is not as �exible and therefore less desirable compared to a random

coe¢ cients logit model. However, it is well-known that the random coe¢ cients model is more computationally
demanding to estimate relative to the nested logit model. As we discuss further in the results section, our nested
logit demand model provides elasticity estimates that are comparable to much of the literature, including papers
that use a random coe¢ cients logit speci�cation. As such, we decide to go with the less computationally intensive
nested logit model. For checks of robustness of qualitative results we explore alternate nesting structures, as further
discussed in an appendix available upon request.
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are grouped by airlines, � can also be thought of as measuring the correlation of the consumers�

utility across products o¤ered by a given airline. As � approaches 1, the correlation of preferences

among products o¤ered by the same airline within a market increases. Conversely, as � decreases,

the correlation of preferences for products o¤ered by the same airline within a market decreases.

The rationale for the product grouping structure above is to capture the possibility that passen-

gers view an airline�s products as closer substitutes for each other compared to the substitutability

of these products across airlines [Gayle (2007b)]. One reason why this could be the case is that

a passenger may be heavily invested (accumulated miles �own) in a given airline�s frequent-�yer

program and therefore, on the margin, would prefer to choose among alternate �ights o¤ered by

this airline in order to build up accumulated miles towards the required threshold necessary for a

discounted trip. Second, some consumers may just have a strong brand-loyalty to a given airline

based on past experience. In any event, since � is a parameter we estimate, the data will reveal

whether or not a su¢ cient number of passengers are brand-loyal to render � > 0.

The mean level of utility obtained across the population of consumers that consume product j

is given by:

�j�l = xj�l� � �pj�l + ar +mktoriginl +mktdestl + �0Codeshare_mkt (5)

+�1DCN � Codeshare_mkt+ �2T + �3T � Codeshare_mkt

+�4T �DCN + �5T �DCN � Codeshare_mkt

+�6T �DCN � Codeshare_mkt�DCN_pre� alli_pass_share+ �j�l;

where xj�l is a vector of observed product characteristics ["Stops" - the number of intermediate

stops used by an itinerary; "Inconvenient" - the ratio of itinerary distance to the market non-

stop distance; "Hub" - a zero-one dummy variable that takes the value one if the origin airport

is a hub for the carrier o¤ering the product for sale; "Virtual" - a zero-one dummy that takes

the value one if the product is virtual codeshared], � is a vector of consumer taste parameters

(marginal utilities) associated with the product characteristics in xj�l, pj�l is the price of product

j, � represents the marginal utility of price, ar are airline �xed e¤ects, where subscript r indexes

ticketing carriers (ticketing carrier dummies), mktoriginl are market origin �xed e¤ects, mktdestl

are market destination �xed e¤ects, Codeshare_mkt is a zero-one dummy which is equal to 1 if

a virtual codeshare product between Delta, Continental or Northwest was o¤ered in the origin-

destination market, T is a zero-one time dummy which is equal to 1 if the itinerary occurred in the
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post-alliance period, DCN is a zero-one dummy which is equal to 1 if product j is being o¤ered for

sale by either Delta, Continental or Northwest, DCN_pre � alli_pass_share is the pre-alliance

joint passenger share of Delta, Continental and Northwest in the origin-destination market, and �j�l

captures unobserved (by the econometricians but observed by passengers) product characteristics.

It is likely that there exists several non-price characteristics that are responsible for passengers�

choice of one product over others, where these non-price characteristics are observed by passengers

and airlines but not by us the researchers given limitations of the data available. This is the

rationale for including �j�l in the demand model, i.e., the inclusion of �j�l e¤ectively acknowledges

that there will be passenger choice behavior outcomes observed in the data that cannot be fully

explained by the measured product characteristics in the data.

�0, �1, �2, �3, �4, �5, and �6 are taste parameters to be estimated. �0 captures any persistent

di¤erence in mean utility for non-Delta/Continental/Northwest products across markets in which

the three airlines eventually virtual codeshare together compared to markets in which they compete

but do not codeshare together. Likewise, �1 captures any persistent di¤erence in mean utility for

the three airlines�products across markets in which the three carriers eventually virtual codeshare

together compared to markets in which they compete but do not codeshare together. We therefore

control for any persistent systematic di¤erence across the three airlines� codeshare versus non-

codeshare markets that may a¤ect demand.

�2 captures the change in mean utility over the pre and post-alliance periods for products

o¤ered by airlines other than Delta, Continental or Northwest, while �3 captures whether this

change in mean utility for other airlines�products di¤ers across the three airlines codeshare versus

non-codeshare markets. �4 captures the change in mean utility over the pre and post-alliance

periods for products o¤ered by Delta, Continental or Northwest, while �5 captures whether this

change in mean utility for the three airlines�products di¤ers across markets in which they virtual

codeshare together versus markets in which they compete but do not virtual codeshare together.

In other words, �5 > 0 implies that virtual codesharing has a demand-increasing e¤ect associated

with it, which is one of the main hypotheses we want to test. Last, �6 captures whether or not the

demand e¤ect of virtual codesharing depends on the size of the partner airlines�pre-alliance joint

passenger share in a market that they eventually begin to codeshare in.

As we previously discussed, frequent-�yer membership with any one of the three carriers sud-

denly becomes more valuable with implementation of the codeshare alliance, since the alliance
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allows frequent-�yer members of any one of the three carriers to accumulate and redeem frequent-

�yer points across any of the three partner carriers. The larger is the pre-alliance joint passenger

share of Delta, Continental and Northwest in an origin-destination market, then we should expect

a larger proportion of consumers in the market to have frequent-�yer membership with at least one

of the three airlines. If this argument holds true, then we should expect �6 > 0.

The discussion above reveals that a key component of our demand speci�cation that allows

us to identify demand e¤ects associated with the Delta/Continental/Northwest codeshare alliance

(�5 and �6), is that equation (5) e¤ectively compares consumers�choice behavior before and af-

ter implementation of the alliance in markets where the three airlines virtual codeshare together

("treatment" markets) versus markets in which they compete but do not virtual codeshare together

("control" markets). A reasonable criticism to raise at this point is that Codeshare_mkt in equa-

tion (5) is not strictly exogenous since airlines choose the markets in which to codeshare. The

reader will subsequently observe that we do account for the possible endogeneity of Codeshare_mkt

by replacing this variable with the estimated Pr ob(Codeshare_mkt = 1) obtained from the previ-

ously discussed logit regression in Table 4. Therefore, the logit regression in Table 4 serves as one

�rst-stage reduced-form regression that is used to account for possible endogeneity when estimating

the structural demand model.

Finally, the demand for product j is given by,

dj =M � sj(x;p; �;�d);

where M is a measure of market size, which we assume to be the geometric mean of population

sizes across the origin and destination cities of the market, sj (�) is the predicted product share

function based on the nested logit model, 12 x and p are vectors of observed non-price product

characteristics and price, respectively, � is a vector of unobserved (by the researchers) product

characteristics, and �d = (�; �; �; �) is the vector of demand parameters to be estimated. We

dropped the market and time subscripts (l and �) only to avoid a clutter of notation.

12The well-known formula for the predicted share function in the case of the nested logit model is: sj =

exp

�
�j

(1��)

�
D�
g

"
1+

GP
g=1

D
(1��)
g

# , where �j is the previously discussed mean level of utility obtained from consuming product j,

Dg =
P
j2Gg

exp
�

�j
(1��)

�
, and Gg is the set of products in group g.
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4.2 Supply

What is commonly known about how a codeshare agreement works is that the ticketing carrier

markets and sets the �nal price for the round-trip ticket and compensates the operating carrier for

operating services provided. Details on compensation mechanisms actually used by partner airlines

are not usually made known to the public and may even vary across partnerships. Therefore, we

face the challenge of coming up with a modeling approach that captures our basic understanding

of what is commonly known about how a codeshare agreement works without imposing too much

structure on a contracting process about which we have few facts. We concede that the following

is possibly a simplistic approximation of the actual contracting used by partners to compensate

each other for services needed to provide a codeshare product.

One way to proceed, as pointed out in Chen and Gayle (2007) and Gayle (2013), is to think of

a codeshare agreement as a privately negotiated pricing contract between partners (w;�), where w

is a per-passenger price the ticketing carrier pays over to an operating carrier for transporting the

passenger, while � represents a potential lump sum transfer between partners that determines how

the joint surplus is distributed. As we develop the supply-side of the model further, it will become

clear that only the level of w a¤ects equilibrium �nal product prices. Since for the purposes of

this paper we are not concerned how the surplus is distributed between partners through the lump

sum transfer �, we do not attempt to derive an equilibrium value of �.13

Assume that the �nal price of a codeshare product is determined within a sequential price-

setting game. In the �rst stage of the sequential process, the operating carrier sets the price for

transporting a passenger, w, and privately makes it known to its partner ticketing carrier. In the

second stage, conditional on the agreed upon price w for services supplied by the operating carrier,

the ticketing carrier sets the �nal round-trip price p for the codeshare product. The �nal subgame

in this sequential price-setting game is played between ticketing carriers.

Let r = 1; :::; R index competing ticketing carriers in a market and let f = 1; :::; F index

the corresponding operating carriers. Further, let Fr be a subset of the J products, both pure

online and virtual codeshare, that are o¤ered for sale by ticketing carrier r in the origin-destination

13See Chen and Gayle (2007) for a similar theoretical modeling approach of an airline codeshare agreement.
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market.14 Carrier r solves the following pro�t maximization problem for each j 2 Fr:

Max
pj

X
j2Fr

(pj � zj)qj ; (6)

where qj = dj(p) in equilibrium, qj is the quantity of product j o¤ered for sale on the market,

dj(p) is market demand for product j, p represents a J � 1 vector of �nal prices, and zj is the

e¤ective marginal cost that ticketing carrier r incurs by o¤ering product j for sale. In the event

that product j is a codeshare product, then zj = wfj , where w
f
j is the price the ticketing carrier

pays to operating carrier f for its transportation services.15 On the other hand, if product j is a

pure online product, then zj = crj , where c
r
j is the marginal cost that carrier r incurs by using its

own plane(s) to provide product j. Note that in the pure online product case f = r since carrier

r is the sole ticketing and operating carrier of product j.

We posit that the marginal cost function is given by:

zj =Wj + af + �j ; (7)

where Wj is a vector of variables that shift marginal cost ("Itinerary Distance", "Carrier Presence

at Origin", "Carrier Presence at Destination", market origin �xed e¤ects, and market destination

�xed e¤ects) and  is the associated vector of parameters, af captures operating carrier-speci�c

portion of marginal cost, and �j is a mean-zero, random error term that captures unobserved

determinants of marginal cost. When product j is pure online, implying that zj = crj , then

equation (7) simply relates a carrier�s own marginal cost of providing a product to factors that

in�uence this marginal cost. On the other hand, if product j is virtual codeshared, implying that

zj = w
f
j , then equation (7) is saying that w

f
j depends on factors that in�uence the marginal cost of

the carrier that provides operating services for the codeshare product. This is an implication of the

assumed sequential price-setting game that determines equilibrium prices of codeshare products.

The reason is as follows. In the �rst stage of the sequential price-setting game, operating carriers

each optimally choose wfj . Therefore, the equilibrium level of w
f
j in this �rst stage game depends on

the marginal cost of the operating carrier that o¤ers transportation services for codeshare product

j. So, like crj , w
f
j is a function of factors that shift the marginal cost of the operating carrier. As

14For most of the subsequent equations, we intentionally omit a market subscript for variables and equations only to
avoid a notation clutter. Notwithstanding our omission of market subscripts, the reader should continue to interpret
equations in a market-speci�c way.
15We implicitly assume here that the ticketing carrier of a virtual codeshare product only incurs �xed expenses in

marketing the product to potential passengers.
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such, the marginal cost function is e¤ectively:

Wj + af + �j =

8<:
wfj if j is virtual codeshare

crj if j is pure online
(8)

A pure strategy Nash equilibrium in �nal prices requires that pj of any product j o¤ered by

carrier r must satisfy the �rst-order condition:

dj(p) +
X
k2Fr

(pk � zk)
@dk(p)

@pj
= 0:

The �rst-order conditions are a set of J equations, one for each product. A few additional de�nitions

allow for a more convenient representation of the �rst-order conditions using matrix notation.16

First, let 
 be a J � J matrix which describes the ticketing carriers�ownership structure of the

J products. Let 
 (j; k) denote an element in 
, where


 (j; k) =

8<:
1 if products k and j are o¤ered by the same ticketing carrier

0 otherwise.
:

Second, let 4 be a J �J matrix of �rst-order derivatives of product market shares with respect

to �nal prices, where element 4 (j; k) = @dk
@pj
. In vector notation, the system of J �rst-order

conditions for the ticketing carriers can now conveniently be expressed as:

d(p) + (
: � 4) (p� z) = 0; (9)

where d(�), p, and z are J�1 vectors of product demands, �nal prices, and ticketing carriers�e¤ec-

tive marginal costs, respectively, while :� means element-by-element multiplication of two matrices.

Equation (9) implies the following product markups:

mkup (�; �; �; �;
) = p� z = � (
: � 4)�1 d(p); (10)

which reveals that product markups are a function of demand parameters and the product ownership

structure matrix.

In the event that the codeshare alliance allows Delta, Continental and Northwest to practice

collusive pricing in markets where they codeshare together during the post-alliance period, then we

can account for such collusive pricing behavior by appropriately modifying the product ownership

16See Nevo (2000) for similar notation in a merger analysis setting.
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structure matrix. In particular, let 
Collude be the modi�ed J � J product ownership structure

matrix in which the three alliance partners are treated as a single carrier rather than distinct

carriers. Let 
Collude (j; k) denote an element in 
Collude, where


Collude (j; k) =

8>>>><>>>>:
1

if distinct products k and j are o¤ered by the same ticketing carrier,
where Delta, Continental and Northwest are treated as a single carrier

0 otherwise.

:

Therefore, under collusive alliance pricing the appropriate �rst-order conditions in markets

where the three airlines codeshare together during the post-alliance period are:

d(p) +
�

Collude: � 4

�
(p� z) = 0; (11)

where 
 in equation (9) is replaced with 
Collude to obtain equation (11). Product markups under

collusive alliance pricing are:

mkupCollude
�
�; �; �; �;
Collude

�
= �

�

Collude: � 4

��1
d(p); (12)

4.2.1 Alternate Supply Equation Speci�cations

At this point we do not know whether the three alliance partners practice collusive pricing, which

further implies that we do not know which product markup speci�cation, equation (10) versus

equation (12), is most appropriate to characterize pricing behavior. If the codeshare alliance does

not allow Delta, Continental and Northwest to practice collusive pricing in the markets where

they codeshare together during the post-alliance period, then the appropriate parametric supply

equation speci�cation, which we de�ne as Model h, is given by:

Model h : pj =Wjh + af + �j+mkupj ; (13)

where �j is the structural supply error term, and the product markup variable, mkupj , is computed

based on equation (10). On the other hand, if the codeshare alliance allows Delta, Continental

and Northwest to practice collusive pricing in markets where they codeshare together during the

post-alliance period, then the following parametric supply equation speci�cation, which we de�ne

as Model g, should provide a better statistical �t of the data compared to Model h:

Model g : pj =Wjg + af + �j+mkup
Collude
j ; (14)

where the product markup variable, mkupColludej , is computed based on equation (12).
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We �rst estimate the demand parameters, use these demand parameter estimates to compute

product markups under each alternate pricing behavior (mkupj versus mkupColludej ), then use

these product markups as variables when estimating the alternate supply equations, Model h and

Model g. Finally, in the spirit of Villas-Boas (2007), we use non-nested statistical tests based

on Vuong (1989) to see which supply speci�cation best �ts the data. Note that the estimated

markups (mkupj versus mkupColludej ) are di¤erent under each alternate pricing behavior, as such,

the competing estimated supply equations are not nested, which is why a non-nested statistical test

is needed to evaluate which supply model best �ts the data.

5 Estimation

The parameters to be estimated are �d = (�; �; �; �) for demand and  for marginal cost. Following

Berry (1994), the estimation strategy for demand parameters involves choosing parameter values

such that observed product shares, Sj , are equal to predicted product shares, sj , that is,

Sj = sj (�; �) , 8 j: (15)

As previously stated in the data section, observed product shares are computed by Sj =
qj
M . In

the case where the predicted share function, sj (�), is based on the nested logit model, the above

estimation strategy yields the following well-known linear estimating equation:

ln (Sj)� ln (S0) = xj� � �pj + � ln
�
Sjjg

�
+ ar +mkt

origin +mktdest + �0Codeshare_mkt

+�1DCN � Codeshare_mkt+ �2T + �3T � Codeshare_mkt (16)

+�4T �DCN + �5T �DCN � Codeshare_mkt

+�6T �DCN � Codeshare_mkt�DCN_pre� alli_pass_share+ �j ;

where S0 is the observed share of the outside option, Sjjg is the observed within group share of

product j, and �j is the structural demand error term.
17

Provided we have valid instruments for pj and Sjjg, equation (16) is straightforward to es-

timate using a linear instrumental variables technique such as two-stage least squares (2SLS),

which is the estimator we use. As previously discussed, we also instrument for variables associ-

ated with Codeshare_mkt using Prob(Codeshare_mkt = 1) to replace Codeshare_mkt, where

17The observed share of the outside option is computed by S0 = 1�
GP
g=1

Sg, where Sg is computed by
P
j2Gg

Sj . The

observed within group share of product j is computed by Sj=g =
Sj
Sg
.
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Prob(Codeshare_mkt = 1) is computed from a previously estimated reduced-form logit model

reported in Table 4.

Supply Model h and Model g can be re-arranged as pj �mkupj = Wjh + af + �j and pj �

mkupColludej =Wjg+af+�j , where pj�mkupj and pj�mkupColludej are e¤ectively the dependent

variables for the supply regressions respectively. Once we use the estimated demand parameters

to compute alternate product markups, mkupj and mkupColludej , the dependent variables for the

re-arranged supply equations can be constructed, and then marginal cost parameters, h and g,

can be estimated consistently using ordinary least squares.

An alternate estimation strategy would be to estimate the demand and marginal cost para-

meters jointly. However, a crucial objective of the analysis is to �gure out what is the most

appropriate speci�cation for the supply equation - Bertrand Nash versus collusive pricing by the

partner carriers. In other words, the correct speci�cation of the supply equation is unclear a priori.

An incorrectly speci�ed supply equation could introduce bias in demand parameter estimates when

demand and marginal cost parameters are jointly estimated. Therefore, in our case it is preferable

to estimate the demand parameters separately from the marginal cost parameters. Villas-Boas

(2007) also recommends separately estimating demand and marginal cost parameters when the

correct speci�cation of the supply equation is unclear.

5.1 Instruments

We recognize that a product�s price and its within group share (pj and Sjjg respectively) are likely

to be correlated with the residual portion of the product�s quality captured in �j (where �j is

unobserved to the researchers but observed to passengers and airlines). As such, we need to �nd

instruments for pj and Sjjg in equation (16). We make the well-known identifying assumption found

in the literature on discrete choice models of demand that observed non-price product characteristics

are uncorrelated with the residual portion of product quality left in �j .
18 In other words, given that

airline �xed e¤ect, market origin �xed e¤ects, and market destination �xed e¤ects are controlled

for in the regression, then the residual shocks to product quality that are left in �j are unlikely

to be correlated with observed non-price product characteristics. This allows us to use various

combinations of non-price product characteristics to form valid instruments for pj and Sjjg.

The instruments we use include: (1) itinerary distance; (2) the number of competing products

18For example, see Berry and Jia (2010) and Peters (2006) for similar identifying assumptions.
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o¤ered by other airlines with equivalent number of intermediate stops; (3) the number of competitor

products in the market; (4) the number of other products o¤ered by an airline in a market; and (5)

the sums and averages, by airlines in a market, of the "Inconvenient" and "Stops" variables.19 As

described in Gayle (2007a and 2013), instruments (1) to (4) are motivated by supply theory, which

predicts that the equilibrium price is a¤ected by changes in marginal cost and changes in product

markup. For example, itinerary distance (instrument (1)) is a marginal cost-shifting variable,

instruments (2) to (3) proxy for the degree of competition facing a product, which in turn a¤ects

the size of a product�s markup, and instrument (4) recognizes the fact that the more substitute

products an airline o¤ers in a market, ceteris paribus, the airline is better able to charge a higher

markup on each of these products. Last, instruments in (5) are likely to be correlated with reasons

why passengers may prefer the set of products o¤ered by one airline over the set of products o¤ered

by other airlines, and therefore serve as instruments for within group product shares.

6 Results

6.1 Demand Equation Estimates

Results from the demand estimation are reported in Table 5. Estimation A in Table 5 shows

ordinary least squares (OLS) estimates. OLS estimation ignores that price, within group prod-

uct share, and variables associated with the Codeshare_mkt variable are likely endogenous, and

therefore coe¢ cient estimates associated with these variables are most likely biased. In fact, an

immediate red �ag is that the OLS estimate of the coe¢ cient on price is positive, which is contrary

to standard demand theory.

Estimation B and Estimation C each uses two-stage least squares (2SLS) to account for sus-

pected endogeneity. Estimation B only takes into account the suspected endogeneity of price

and within group product share, while Estimation C takes into account all suspected endogenous

variables. In Estimation C the predicted probability variable Prob(Codeshare_mkt = 1), which

is obtained from the previously estimated reduced-form logit model in Table 4, is used to replace

Codeshare_mkt in each demand equation regressor associated with this variable, while in Esti-

mation B variable Codeshare_mkt is used directly in each demand equation regressor associated

with it.

We �rst evaluate the endogeneity of price and within group product share ( pj and Sjjg respec-

19See the data section for de�nition and explanation of the "Inconvenient" and "Stops" variables.
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tively) by using a Hausman statistical test to compare estimates from Estimation A and Estimation

B. The endogeneity of variables associated with the Codeshare_mkt variable are then evaluated

by again using a Hausman test to compare estimates from Estimation B and Estimation C. The

Hausman test in each case con�rms, at conventional levels of statistical signi�cance, that the vari-

ables suspected to be endogenous are indeed endogenous.20 As such, the following discussion of

results in Table 5 is based on Estimation C.

First, as expected, an air travel product�s price has a negative e¤ect on the utility obtained from

choosing the product, ceteris paribus. Second, the more intermediate stops an air travel product

has, the lower the utility obtained from choosing that product, ceteris paribus. The number of

intermediate stops that an air travel product has is one measure of the inherent convenience of the

travel itinerary - the negative coe¢ cient for "Stops" is consistent with our expectation.

Gayle (2007a) points out that the number of intermediate stops may only capture a portion

of the inherent convenience of an itinerary. For example, two itineraries may each have one

intermediate stop, but depending on where the intermediate stop is located in relation to origin

and destination cities, two one-stop itineraries in the same market may have very di¤erent travel

distances and travel time associated with them. As such, passengers could view these two itineraries

as having very di¤erent levels of convenience even though the itineraries have the same number of

intermediate stops. Our "Inconvenient" variable, which measures the ratio of itinerary distance

to non-stop distance between the origin and destination cities, is supposed to capture aspects of

itinerary convenience that are not picked up by number of intermediate stops.21 We therefore

expect the coe¢ cient on "Inconvenient" to be negative, which is indeed the estimated sign in Table

5.

20 In a �rst stage OLS regression in which price is the dependent variable and the instruments are the regressors,
R2 is 0.115. When the dependent variable of such a regression is within group product share, R2 is 0.444. Recall
from the data section that the Pseudo R2 from the reduced-form Codeshare_mkt logit regression is 0.475, while the
correlation between Codeshare_mkt and Prob(Codeshare_mkt = 1) is 0.717. Therefore, the instruments do have
explanatory power of variations in the endogenous variables.
21The minimum value that the "Inconvenient" variable can take on is 1. As such, the further an itinerary�s

"Inconvenient" measure is from 1, the less convenient is the itinerary.
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Table 5
Demand Parameter Estimates

Potential endogeneity of the Codeshare_mkt variable
not taken into account.

Potential endogeneity of the
Codeshare_mkt variable

taken into account by using
its associated fitted values

from a firststage logit
regression.

Estimation A: Ordinary
Least Squares (OLS)

Estimation B:
TwoStage Least Squares

(2SLS)

Estimation C:
TwoStage Least
Squares (2SLS)

Variable Coefficient Standard
Error

Coefficient Standard
Error

Coefficient Standard
Error

Constant 3.62** 0.092 1.41** 0.209 1.60** 0.189
Price (in hundreds of $) 0.21** 0.011 0.96** 0.096 0.66** 0.097
ln (Sj|g) (σ) 0.46** 0.005 0.10** 0.013 0.12** 0.013
Stops 0.82** 0.017 1.20** 0.030 1.13** 0.029
Inconvenient 1.61** 0.038 1.48** 0.051 1.56** 0.049
Hub 0.95** 0.020 0.92** 0.034 0.85** 0.032
Virtual 0.75** 0.036 1.28** 0.057 1.19** 0.054
Codeshare_mkt (λ0) 0.11** 0.029 0.05 0.037 0.42** 0.078
DCN × Codeshare_mkt
(λ1)

0.26** 0.039 0.15** 0.051 0.26** 0.063

T   (λ2) 0.11** 0.030 0.06 0.039 0.07 0.046

T × Codeshare_mkt (λ3)
0.02 0.035 0.02 0.046 0.01 0.06

T × DCN (λ4)
0.05 0.047 0.09 0.062 0.09 0.072

T × DCN × Codeshare_mkt
(λ5)

0.52** 0.062 0.48** 0.081 0.50** 0.097

T × DCN × Codeshare_mkt ×
DCN_ Prealli_Pass_share
(λ6)

0.99** 0.059 0.98** 0.080 1.03** 0.081

Carrier fixed effects Yes Yes Yes
Market origin fixed effects Yes Yes Yes
Market destination fixed
effects

Yes Yes Yes

R2 0.589 0.301 0.407

Hausman  exogeneity test
Estimation A versus Estimation B:
Hausman statistic = 943.87
Critical χ2 (0.95, 2)= 5.99

Estimation B versus
Estimation C:
Hausman statistic = 97.52
Critical χ2 (0.95, 5)= 11.07

Notes:  ** indicates statistical significance at the 1% level.  Models are estimated with ticketing carrier dummies,
market origin dummies and market destination dummies even though these dummy coefficients are not reported in the
table.

It has been argued that passengers are more likely to choose itineraries o¤ered by hub airlines

for the following reasons: (1) �ight schedules o¤ered by hub airlines may be more convenient; and

(2) it is more likely that passengers have frequent-�yer membership with an airline that has a hub

at the passenger�s origin airport.22 As described in the data section, a hub product means that the

origin airport on the itinerary is a hub for the airline that o¤ers the product for sale. Consistent

22See Proussaloglou and Koppelman (1995), Berry (1990), Schumann (1986).
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with our expectation, the coe¢ cient on "Hub" is positive, suggesting that passengers are more

likely to choose hub products, ceteris paribus.

As previously discussed in the data section, data on layover times and departure times, which

are also measures of itinerary convenience, are not available in the DB1B database. Therefore, we

cannot explicitly control for these aspects of itinerary convenience. However, it is reasonable to

assume that the "Hub" dummy variable picks up some of these itinerary conveniences, which also

explains the positive coe¢ cient on this variable.

Ito and Lee (2007) argue that passengers that are members of an airline�s frequent-�yer program

may view the airline�s virtual codeshare product as an inferior substitute to its pure online product

since virtual tickets often do not allow the frequent-�yer to upgrade to �rst class even though the

�ights on the two itineraries (pure online and virtual) are the same. This argument leads us to

expect the negative sign of the coe¢ cient on the "Virtual" dummy variable in Table 5. In other

words, the negative sign suggests that passengers perceive virtual codeshare products as inferior

substitutes to pure online products.

The estimate of � is statistically greater than zero, but its value is closer to zero than one. As

such, there is statistical (but weak economic) evidence that passengers perceive the set of products

o¤ered by an airline as closer substitutes for each other compared to the substitutability of these

products with products o¤ered by other airlines [Gayle (2007b)]. In other words, passengers�

choice behavior does have some element of airline brand-loyalty associated with it, even though

this brand-loyalty does not seem to be very strong.

The estimate of �0 is negative and statistically di¤erent from zero, suggesting that demand

for non-Delta/Continental/Northwest products is persistently/systematically lower across markets

in which the three airlines eventually virtual codeshare together versus markets in which they

compete but do not virtual codeshare together. In contrast, the estimate of �1 is positive and

statistically signi�cant, suggesting persistently higher demand for the three airlines�products across

markets in which the three carriers eventually virtual codeshare together compared to markets in

which they compete but do not virtual codeshare together. �2, �3 and �4 are not statistically

di¤erent from zero, suggesting that: (1) there is no change in demand over the pre and post-

alliance periods for non-Delta/Continental/Northwest products; and (2) in the case of markets

where Delta, Continental and Northwest compete but did not virtual codeshare together, demand

did not change for products o¤ered by the three carriers over the pre and post-alliance periods.
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Interestingly, we �nd that �5 < 0 and �6 > 0 at conventional levels of statistical signi�cance.

In addition,
����5�6 ��� = 0:49. Therefore, the sign pattern and actual values taken by �5 and �6

suggest that markets in which Delta, Continental and Northwest have a joint pre-alliance passenger

share greater than 0:49 and eventually virtual codeshare together during the post-alliance period,

experience an increase in demand for the three carriers products over the pre and post-alliance

periods. In other words, there is evidence of a demand-increasing e¤ect of virtual codesharing, but

this demand-increasing e¤ect is only evident in markets that the partner carriers have a substantial

joint pre-alliance passenger share. Interestingly, these are the type of markets that you would

expect a relatively larger share of consumers to hold frequent-�yer membership with at least one of

the carriers prior to implementation of the alliance. Therefore, this structural demand estimation

result provides strong support for the argument that a key source of the demand-increasing e¤ect of

codesharing is via the new opportunities that consumers have to accumulate and redeem frequent-

�yer points across the partner carriers.

In an appendix available upon request we explore alternate and more detailed nesting structures

for the demand model. We �nd that all qualitative results discussed above are robust to these

alternate nesting structures.

Last, the demand model yields a mean own-price elasticity estimate of -1.52. Oum, Gillen and

Noble (1986), and Brander and Zhang (1990) argue that a reasonable range for own price elasticity

in the airline industry is from -1.2 to -2.0. Peters (2006) study of the airline industry produces

own-price elasticity estimates ranging from -3.2 to -3.6, while Berry and Jia (2010) �nd own-price

elasticity estimates ranging from -1.89 to -2.10 in their 2006 sample. Therefore, the elasticity

estimates generated from our model are reasonable and consistent with evidence in the existing

literature.

6.2 Computed Product Markups and Marginal Costs

Table 6 reports summary statistics on price, computed product markups, and recovered marginal

cost.23 First, we see that during the post-alliance period mean price is lower in markets where

the three partner carriers virtual codeshare together relative to markets in which they compete but

23Each reported sample mean in Table 6 has an associated sample standard error, and these associated sample
standard errors are reported in parentheses. Once the sample mean is more than 2.58 times as large as the associated
sample standard error, then we can conclude that the sample mean is statistically di¤erent from zero at the 1% level
of signi�cance. In Table 6 we use ** to indicate that the sample mean is statistically di¤erent from zero at the 1%
level of signi�cance.
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do not codeshare together. Second, DL, CO and NW products have lower mean price relative to

the mean price of products o¤ered by other airlines, and this relatively lower mean price is more

pronounced in markets that the three partner carriers virtual codeshare together.

Interestingly, product markups generated from the structural model reveal a di¤erent pattern

than we see for price. In particular, even when assuming that the three partner carriers compete

with each other in markets where the three airlines virtual codeshare together, the mean markup

on their products ($157.15) is slightly higher (approximately 1 percent) relative to mean markup

on products o¤ered by other airlines ($155.19) in these markets. Therefore, the higher mean price

of products o¤ered by other airlines in these markets is likely due to cost factors, as evidenced by

recovered marginal cost in the last column of the table.

Table 6
Price, Product Markups and Recovered Product Marginal Cost (in Dollars $)

Price Product Markups Marginal
Cost

Noncodeshare
markets during
the post
alliance period

Codeshare
markets
during the
postalliance
period

Assumption on
pricesetting
behavior of
airlines

Noncodeshare
markets during
the post
alliance period

Codeshare
markets during
the post
alliance period

Codeshare
markets
during the
postalliance
period

Mean

(Std. error)

Mean

(Std. error)

Mean

(Std. error)

Mean

(Std. error)

Mean

(Std. error)

All products 225.30**

(1.342)

213.37**

(0.686)

All compete 155.64**

(0.155)

156.03**

(0.158)

57.34**

(0.681)

Products not
offered by
DL, CO or
NW

226.09**

(1.857)

215.87**

(0.956)

All compete 155.84**

(0.183)

155.19**

(0.087)

60.68**

(0.935)

DL, CO and
NW
products

224.15**

(1.882)

210.06**

(0.965)

All compete 155.34**

(0.271)

157.15**

(0.347)

52.91**

(0.982)

  DL, CO and
NW collude in
their codeshare
markets

 165.91**

(1.043)

44.15**

(1.403)

Notes: ** indicates statistical significance at the 1% level. Marginal cost is recovered from each supply
model as follows: Marginal Cost = p –mkup and Marginal CostCollude = p – mkupCollude, where p is the
vector of observed product prices.

If we assume that DL, CO and NW collude in markets that they virtual codeshare together,

the comparative patterns on mean markups and mean marginal cost described above are more
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pronounced in these markets. In particular, mean markup on products o¤ered by the three

partner carriers ($165.91) is substantially higher than mean markup on products o¤ered by other

carriers ($155.19), and mean marginal cost across products o¤ered by the three carriers ($44.15)

is substantially lower than mean marginal cost across products o¤ered by other carriers ($60.68).

The table also shows that assuming the three partner carriers collude, instead of compete, in

markets that they virtual codeshare together will result in higher mean markups on their products

in these markets ($157.15 versus $165.91). This di¤erence in assumed price-setting behavior yields

a substantial di¤erence in markup on their products both in terms of dollars and percent increase

($8.76 and 5.10% respectively), and the di¤erences are statistically signi�cant at the 1% level.

Note we have not yet resolved which price-setting behavior between the partner carriers in their

codeshare markets is better supported by the data. All we have done so far is to summarize what

markups and marginal cost levels are under each assumed price-setting behavior. To investigate

which assumed price-setting behavior is more appropriate, we subsequently turn to a formal non-

nested statistical test for model selection. But �rst we show estimation results of supply equations

under each assumed price-setting behavior.

6.3 Results from Supply Equation Estimation

Note that the markets in which price-setting behavior is in question are markets in which DL, CO

and NW virtual codeshare together during the post-alliance period. This is because the policy-

relevant issue is whether virtual codesharing together facilitates collusive price-setting behavior

between the partner carriers. As such, the remainder of the analysis focuses on this subsample of

markets. Therefore, the supply equations are estimated on this subsample of markets.

Table 7 reports parameter estimates for supply Model h and Model g respectively. Recall that

Model h assumes Delta, Continental and Northwest do not practice collusive pricing in markets

that they virtual codeshare together during the post-alliance period, while Model g assumes that

they practice collusive pricing in these markets during the post-alliance period. The markup

variables, mkup and mkupCollude, capture this assumed di¤erence in pricing behavior, and are the

only variables that di¤er across Model h and Model g. Note that coe¢ cients on these markup

variables are not estimated, but instead set equal to 1 to be consistent with theoretical derivations

of the supply equations in the model section. This coe¢ cient restriction on the markup variables

e¤ectively implies that pj � mkupj and pj � mkupColludej , which are recovered product marginal
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costs, are the dependent variables in Model h and Model g respectively. As such, the coe¢ cients

that are estimated in the supply equations are marginal cost parameters.

The coe¢ cient estimate on "Itinerary Distance" in each supply model is positive and statistically

signi�cant. This is evidence that marginal cost is increasing in itinerary distance, as we expect.

As previously described in the data section, both the "Carrier Presence at Origin" and "Carrier

Presence at Destination" variables are airline-speci�c and vary across markets for each airline.

"Carrier Presence at Origin" measures the number of di¤erent cities that an airline has non-stop

�ights from going into the origin city of the market, while "Carrier Presence at Destination"

measures the number of di¤erent cities that the airline serves using non-stop �ights from the

destination city of the market. These variables should be correlated with the volume of passengers

an airline channels through a market even though the endpoint cities of the market may not be

the origin or �nal destination for many of the passengers. As such, we use these variables to

indirectly capture the presence of economies of passenger-tra¢ c density. Economies of passenger-

tra¢ c density means that an airline�s marginal cost of transporting a passenger in a market falls as

the volume of passengers that the airline transports in the market increases [Brueckner and Spiller

(1994)].

An anonymous referee correctly points out that since the coe¢ cients on the carrier-presence

variables measure an airport-level e¤ect on a carrier�s prices in individual markets, perhaps these

coe¢ cients capture some blend of economies of density along with the cost of running a hub. As

such, when drawing economic inferences from the sign of these coe¢ cient estimates, it is advisable

to remember that economies of density might not be the only factor that in�uences these coe¢ cient

estimates.

The coe¢ cient estimate on "Carrier Presence at Origin" is positive and statistically signi�-

cant for both supply models, but the coe¢ cient estimate on "(Carrier Presence at Origin)2" is

not statistically signi�cant in Model h, and is positive with weak statistical signi�cance in Model

g. Therefore, results for the "Carrier Presence at Origin" variable are not consistent with the

presence of economies of passenger-tra¢ c density. However, the sign pattern of coe¢ cient esti-

mates on "Carrier Presence at Destination" and "(Carrier Presence at Destination)2" does suggest

the presence of economies of passenger-tra¢ c density once the airline�s "presence" measure at the

destination city is su¢ ciently large. Economies of passenger-tra¢ c density has stronger statisti-

cal support in Model h compared to Model g since the negative coe¢ cient estimate on "(Carrier
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Presence at Destination)2" is statistically signi�cant in Model h, but not statistically signi�cant in

Model g. The coe¢ cient estimates on "Carrier Presence at Destination" and "(Carrier Presence

at Destination)2" in Model h suggest that an airline has to provide nonstop �ight to at least 133

di¤erent cities ( 0:008
2�(0:00003)) from the destination city in order to achieve economies of passenger-

tra¢ c density in the relevant market. This "presence" threshold is not widely attained in the

sample given that the maximum value for the "Carrier Presence at Destination" variable is 143,

with a mean of 26. However, since economies of passenger-tra¢ c density might not be the only

factor driving these coe¢ cient estimates, then these coe¢ cient estimates might not yield a precise

"presence" threshold estimate for achieving economies of passenger-tra¢ c density.

Table 7
Supply Equation Parameter Estimates

Model h: No
collusion between

DL, CO and NW in
postalliance period.

Model g: Collusion between
DL, CO and NW in their

codeshare markets during the
postalliance period.

Variable (1) (2)
Constant 0.596**

(0.122)
0.559**
(0.139)

Itinerary Distance (in 1,000 miles) 0.227**
(0.024)

0.296**
(0.035)

Carrier Presence at Origin 0.005**
(0.001)

0.003**
(0.001)

(Carrier Presence at Origin)2 2.44E07
(0.00001)

0.000018a

(0.000011)
Carrier Presence at Destination 0.008**

(0.001)
0.006**
(0.002)

(Carrier Presence at Destination)2 0.00003**
(8.93E06)

0.000019
(0.000016)

mkup 1 
mkupCollude  1
Carrier fixed effects Yes Yes
Market origin fixed effects Yes Yes
Market destination fixed effects Yes Yes
R2 0.373 0.295
Number of observations: 8,165

Notes:  ** indicates statistical significance at the 1% level. a indicates statistical significance at
the 10% level. Equations are estimated using ordinary least squares. Standard errors are in
parentheses.  The coefficients on the markup variables, mkup and mkupCollude, are not
estimated but set equal to 1 based on theoretical derivations of the supply equations in the model
section. Models are estimated with operating carrier dummies, market origin dummies and
market destination dummies even though these dummy coefficients are not reported in the table

6.4 Statistical Non-nested Tests for Model Selection

To determine which of the two alternate supply model speci�cations provides the best statistical

�t of the data, we rely on a likelihood-based non-nested statistical test in Vuong (1989).24 The

24Similar to how we use a likelihood-based non-nested test for supply model selection, Villas-Boas (2007) and Gayle
(2013) use a generalized methods of moments-based non-nested statistical test for supply model selection.
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non-nested statistical test is a modi�cation of the well-known likelihood ratio test. The likelihood

ratio statistic for comparing Model h and Model g is given by:

LR =
nX
j=1

�
LLhj � LL

g
j

�
; (17)

where j index observations in the data, and n is the sample size. LLhj is the optimal value of the

log likelihood function forModel h evaluated at observation j. Speci�cally, assuming that the error

term of the supply equation is normally distributed, LLhj = log
h
�
�
pj�mkupj�Wjbhb�h

�i
, where � (�) is

the standard normal probability density function, bh is the vector of marginal cost parameter esti-
mates for Model h that we report in Table 7, and b�h is an estimate of the standard deviation of the
residuals fromModel h.25 LLgj is computed analogously, i.e. LL

g
j = log

�
�

�
pj�mkupColludej �Wjbgb�g

��
,

where bg is the vector of marginal cost parameter estimates for Model g that we report in Table 7,
and b�g is an estimate of the standard deviation of the residuals from Model g.

Vuong (1989) shows that the likelihood ratio statistic in (17) can be normalized by its variance:

v2 =
1

n

nX
j=1

�
LLhj � LL

g
j

�2
�

24 1
n

nX
j=1

�
LLhj � LL

g
j

�352 : (18)

Furthermore, the resulting non-nested test statistic:

Q = n�0:5
LR

v
; (19)

is asymptotically distributed standard normal under the null hypothesis that the two models being

compared by the test are asymptotically equivalent.26 As such, for this one-tale test at a 5% level

of signi�cance, Q > 1:64 implies that supply model g is statistically rejected in favor of supply

model h, Q < �1:64 implies that supply model h is statistically rejected in favor of supply model

g, while �1:64 < Q < 1:64 implies that we cannot statistically distinguish between the two models

being compared.

For the estimated supply models in Table 7, we �nd that Q = 5:27, suggesting that model g is

statistically rejected in favor of supply model h. In other words, the supply model that assumes

the three carriers do not collude (Model h) in their codeshare markets during the post-alliance

period is statistically superior to the supply model that assumes the three airlines collude (Model

25Note that supply Model h and Model g are linear regression models. In the case of a linear regression model,
least squares parameter estimates and maximum likelihood parameter estimates are equivalent.
26Equations (17), (18) and (19) above correspond to equations (3.1), (4.2) and (5.6) on pages 312, 314 and 318

respectively in Vuong (1989).
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g) in these markets. To the best of our knowledge, this is the �rst paper to explicitly test and

statistically reject that collusive pricing behavior is associated with a codeshare alliance.

Unlike international alliance partners that often receive antitrust immunity, i.e. antitrust au-

thorities have granted some international partners the right to explicitly collude, domestic alliance

partnerships have not been granted such rights [see Brueckner and Proost (2010); Brueckner, Lee

and Singer (2011); and Brueckner (2003)]. However, even though domestic alliance partners are

forbidden to explicitly collude, it is reasonable to suspect, as policymakers did in the case of the

DL/CO/NW alliance, that the cooperation between domestic partners required to make their in-

terline service seamless, could facilitate illegal tacit collusion. So prior to the formal analysis in

this paper, tacit collusion between domestic partners could not be ruled out.

7 Conclusion

The main contribution of our present paper is to specify and estimate a structural econometric

model that allows us to disentangle demand changes from possible changes in airline pricing behav-

ior that are associated with a codeshare alliance. We focus on the Delta/Continental/Northwest

codeshare alliance, which was formed in June 2003. This alliance is particularly interesting to study

because, before ultimately allowing the alliance to go forward, the U.S. Department of Transporta-

tion expressed concern that the alliance could facilitate collusion on prices and/or service levels

in the partners�overlapping markets. In addition, previous reduced-form econometric analysis of

this alliance found evidence that virtual codesharing between Delta, Continental and Northwest

is associated with higher price [see Gayle (2008)]. Therefore, our analysis focuses on better un-

derstanding the market e¤ects, both from the demand and supply sides of the market, of virtual

codesharing between the three airlines in their overlapping markets.

Our key �ndings are as follows: First, the econometric estimates for the air travel demand

equation suggest that the Delta/Continental/Northwest alliance has a demand-increasing e¤ect

associated with it. Importantly, the demand-increasing e¤ect is only evident in markets that the

partners have a substantial joint passenger share (greater than 49%) prior to implementation of

the alliance. Since a relatively larger proportion of passengers in a market are more likely to have

frequent-�yer membership with at least one of the three carriers in markets that the carriers jointly

dominate prior to the alliance, this �nding is consistent with the argument that these frequent-�yer

passengers will increase their demand for the alliance partners�products given that the alliance
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creates new opportunities for passengers to accumulate and redeem frequent-�yer points across

partner carriers.

Second, a statistical non-nested test applied to air travel supply model selection suggests that

Bertrand Nash pricing behavior, rather than collusive pricing behavior, between the three airlines

better �t the data in markets where the three airlines codeshare together. To the best of our

knowledge, this is the �rst paper to explicitly test and statistically reject that collusive pricing

behavior is associated with a codeshare alliance.

In summary, if increased collusive pricing behavior of the partner carriers is the primary concern

of policymakers with allowing the Delta/Continental/Northwest alliance to go forward, then the

evidence does not suggest implementation of the alliance facilitated collusive pricing.
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