

Sports Media, Motorsports, etc.

Andrew Maness, Rho Al January 30, 2020

© Rho Al

Outline for Today's Class

- My background / Rho AI (~3 min.)
- Rightswise (~10 min.)
- Motorsports issues (~2 min.)
- Pit Rho (~10 min.)
- Questions, comments, etc.

About Andrew Maness (pre-Rho)

- Kansas State University, 2006–2010
 - Mathematics
 - Statistics
- Wichita State University, 2010–2012
 - Economics
 - Finance
- Federal Reserve Bank, 2012–2014
 - Housing markets
 - Financial stress-testing
- RACINGnomics (formerly NASCARnomics)
 - Quant.-driven research of auto racing industry
 - Web-based essays, lite consulting

About Rho Al

- Rho AI (formerly Pit Rho), 2014–present
 - Founded in 2012 (4 people now 39; no outside capital)
 - Next-level insight through accurate, unique, fast data
 - e.g., next-level clean water distribution, smart investing
- My role: Tech. director, previously senior / analyst

Data Science and Sports

Rho AI draws from the roots and leadership of the <u>MIT Baseball</u> <u>Hedge Fund</u>, Cargill, MC10, the <u>Houston Rockets</u>, <u>Red Bull</u> <u>Racing</u>, the <u>MIT Sloan Sports Analytics Conference</u>, and leading venture capital firms and startups.

Rho AI was built to develop custom, predictive analytics solutions that provide actionable insights in real-time over distributed hardware.

This is underpinned with tools and capabilities hardened by the demanding environment of <u>real-time motorsports strategy</u> <u>calculations</u>.

Current Partnerships

GM General Motors

///NASCAR

Breakthrough Enerav VENTURES

PrimeTrust

How a Data Scientist Spends Time

- ~82% devoted to data collection/organization
- Source: 2016 Data Science Report

Rightswise Terminal

- Live valuations of sports media rights contracts
 - Ex.: ESPN pays ~\$2.1BN/year for NFL's "MNF"
 - Analogous to stock-market services (e. g., Google Finance)
 - Updates theoretical market price of contracts every minute
- Terminal is proprietary; we'll discuss framework
- Why is the Rightswise valuable / important?
 - Sports media rights market is based mostly on intuition
 - Complements industry experts with rigorous models based off historical events to determine factors of pricing
 - There's a lot of cash involved in this industry currently
 - Lots of changes trying to objectively make sense of it

Size of Sports Media Rights Market

- Total money (BN\$) paid by networks in exchange for broadcasting rights
- Across 21 major sports series; national contracts only, i.e. not international or local

What's Driving This Increase? (I)

- Increase in payments for broadcasting rights
- Sharp increase in size of market, c. 2013
 Ex.: Big 12 received ~\$48MM from Disney/FOX in 1996;

~\$217MM in 2013

- "Law of demand"; demand curve shifts right

 - Change in taste and preferences: "More relevant to people"
 - # buyers ↑: FOX Sports 1 and NBC Sports Network

What's Driving This Increase? (II)

- Sub. revenue (BN\$) by network and year
- ESPN (green), Speed (blue) / FOX Sports 1 (red), OLN (purple) / VS (orange) / NBCSN (blk)

Modeling Contract Prices

- Not all contracts are created equally
 - Sports media rights market is sum of all deals
 - Individual contracts are heterogeneous; not "one size fits all"
 - Difficult to estimate demand of each contract
- Hedonic regression modeling
 - HRM approaches demand from the margins
 - Treats each feature of contract independent of other elements
 - Additive: sum of marginal prices equals contract price
- Annual price of contract = f(local, env.)
 - Annual price of an individual contract is influenced by local and environmental factors
 - Need data on networks, sports series, and contracts to model

Gathering Data: Networks

- Buyers of traditional rights contracts are nets.
 - Ex.: ESPN purchases right to air NFL, NBA games
 - Recently, streaming has become new element in contracts
- Examine reach, fees of 41 nets.; 1994-2019
 - Reach: # households with subscription to network
 - Fee: Per-month-per-household fee paid for network
 - Infer monthly subscription revenue: reach × fee
- 4,793 data points describing buyers / networks
 - Gathered through 544 sources; available upon request
 - Data collected manually (nontrivial)

List of Networks Examined

Network	Years of Data	Availability	Network	Years of Data	Availability
ABC	1994–2018	over-the-air	Golf Channel	1995-2018	cable
AXS TV	2012-2018	cable	HDNet	2001-2011	cable
Big 12 Network	1994-2013	syndication	MLB Network	2008-2018	cable
Big Ten Network	2006-2018	cable	NBA TV	1999-2018	cable
CBS	1994-2018	over-the-air	NBC	1994-2018	over-the-air
CBS Sports Network	2008-2018	cable	NBC Sports Network	2011-2018	cable
CNBC	1994-2018	cable	NFL Network	2003-2018	cable
CNN Sports Illustrated	1996-2002	cable	NHL Network	2007-2018	cable
College Sports TV	2002-2007	cable	Outdoor Life Network	1995-2005	cable
ESPN	1994-2018	cable	Pac-12 Network	2011-2018	cable
ESPN+	1994-2005	syndication	Raycom	1994-2018	syndication
espn2	1994-2018	cable	SEC Network	2013-2018	cable
ESPNU	2005-2018	cable	Speed Channel	1995-2011	cable
FOX	1994-2018	over-the-air	Spike TV	2003-2018	cable
FOX Soccer Channel	1996-2012	cable	TBS	1994-2018	cable
FOX Sports 1	2012-2018	cable	The Tennis Channel	2003-2018	cable
FOX Sports 2	2013-2018	cable	TNN	1994-2002	cable
FOX Sports Net	1996-2018	cable	TNT	1994-2018	cable
Fuel TV	2003-2012	cable	USA Network	1994-2018	cable
FX	1994-2018	cable	Versus	2006-2010	cable
FXX	2013-2018	cable	ACC Network	2019-2019	cable

Examining Reach of Networks

- Reach by network and year; total number of T. V. households in black
- ESPN (green), Speed (blue) / FOX Sports 1 (red), OLN (purple) / VS (orange) / NBCSN (blk)

Subscription Revenue of Networks

Annual rev. (\$BN) from sub. fees by cable net.

Gathering Data: Sports Series

- Sellers of traditional rights contracts are sports series
 - Ex.: NBA holds agreements with Turner, Disney to air events
 - Some series produce coverage for own events, e. g. MLB Network
 - Occasionally, series pay networks to show their own programming
- Examine broad interest of 54 sports series
 - Scrape info. from Google Trends (nontrivial)
 - Create "Interest Index" web interest in sports series / topics
 - "Series Y has X times greater / lesser interest than series Z"
- Example of NFL and MLB

Google Trends Data (I)

Google Trends Data (II)

- Scrape info. from Google Trends
 - Automated weekly pull for each topic + baseline topic
 - # queries expressed as share of wk. queries by topic in sample
 - Greatest share normalized to 100, others scaled from 0 to 100
- Adjustments made to Trends figures
 - Each topic compared to MLB
 - Data are shifted s. t. MLB's first figure in 2008 is 100
 - Account for seasonality with one-year moving average of adj. index
 - Apply other smoothing mechanisms

Westerf	Raw :	<u>Raw Index</u>		d Index
Week of:	MLB	NFL	MLB	NFL
1/6/2008	4	29	100	725
1/13/2008	4	31	100	775
1/20/2008	3	23	75	575
1/27/2008	4	12	100	300
2/3/2008	4	20	100	500
2/10/2008	4	9	100	225
2/17/2008	5	8	125	200
2/24/2008	5	12	125	300
3/2/2008	6	12	150	300
3/9/2008	6	9	150	225

Interest in Coll. Conferences (Old!)

- Chart of interest in five major college conferences as of Oct. 2018
- Measured as one-year moving average of Google Trends' interest index

Interest in Coll. Conferences (New!)

- Chart of interest in five major college conferences as of Jan. 2020
- Measured as one-year moving average of Google Trends' interest index

Interest in "Top" Sports Series

- Chart of interest in major sports series, Jan. '20
- 1-yr m.a. of Google Trends' interest index

Table: Interest in 54 Sports Series

• Sorted by most to least interesting, per Google

Sporte Series	Interest	CAGR	Sporte Series	Interest	CAGR
oports deries	Index	since '04	Sports Series	Index	since '04
NFL	1,437.0	+8.5%	Atlantic Coast Conference	18.8	-0.6%
NBA	1,168.8	+10.8%	Tour de France	18.5	-11.5%
MLB	618.5	+7.5%	Minor League Baseball	17.7	-1.2%
College football	248.4	+6.5%	Big 12 Conference	15.1	-0.3%
National Hockey League	225.9	+10.9%	Monster Energy AMA Supercross An FIM Wc	14.2	+0.8%
WWE	219.9	+2.1%	Pacific-12 Conference	13.3	+2.8%
Ultimate Fighting Championship	215.4	+11.4%	ATP Tour	12.2	-1.5%
NASCAR	137.2	-2.6%	FIBA	11.9	+11.3%
Premier League	135.7	+15.7%	Women's Tennis Association	11.9	-0.9%
College basketball	124.3	+5.3%	Professional Bull Riders	11.5	+0.6%
UEFA Champions League	103.5	+18.3%	NBA G League	9.1	+7.5%
PGA TOUR	99.9	+1.5%	IndyCar	8.5	-1.8%
World Cup	81.2	+3.8%	Augusta National Golf Club	8.3	+0.1%
US Open	70.2	+1.8%	Canadian Football League	8.0	-0.2%
Formula 1	68.1	-1.6%	American Hockey League	8.0	-3.0%
Wimbledon	57.8	+5.4%	International Motor Sports Association	7.4	-0.7%
Olympic Games	56.0	-3.6%	Australian Football League	6.3	-4.1%
MLS	36.8	+0.8%	Triple Crown of Thoroughbred Racing	5.4	+0.6%
U.S. Open	34.5	+3.5%	College ice hockey	5.0	-6.4%
Australian Open	31.4	+4.0%	USA Track & Field	4.4	-3.6%
Open Championship	31.0	+1.9%	National Rugby League	4.4	-4.8%
Big Ten Conference	30.7	+3.7%	Major League Lacrosse	4.1	-4.1%
Southeastern Conference	29.4	+5.2%	U.S. Figure Skating	3.6	-6.9%
Monster Jam	21.9	+11.7%	Arena Football League	3.1	-10.3%
Drag racing	21.4	-5.8%	America's Cup	2.9	-4.5%
College World Series	20.1	+1.6%	World Baseball Classic	1.7	-0.1%
WNBA	19.0	+2.1%	North American Soccer League	1.5	-6.8%

SOURCE: Google. Online queries in U. S. only. Individual daily indices are scaled to a common baseline: 100 = MLB interest on January 1st, 2008. "Interest Index" is a one-year moving average of the daily index for each sports series. Events which are held every four years are presented as four-year moving averages. "CAGR" is the compounded annual growth rate for the interest index from fifteen years ago. Table is current through December 31st, 2019. Calculations by Rho AI.

Gathering Data: Contracts

- Collect contracts between networks, sports series
 - Sample includes 224 contracts across 21 sport series, 1994– 2018
 - Tabulate 16 quantifiable characteristics for each contract
 - Over 5,000 data points aggregated
- Factors tallied include:
 - Contract date
 - Sports series
 - Network(s)
 - # events to air
 - Contract start date
 - Contract end date
 - Contract cancelation date
 - Total price of contract

- Contract renewal?
- # champions from prev. 10 yrs.
- Peak T. V. rating from prev. 3 yrs.
- Avg. T. V. rating from prev. 3 yrs.
- Streaming rights included?
- # international events
- # overnight hours
- # overall programming hours

Ex. Contract (NBA/TNT, 2014)

- NBA signed contract with Turner on 10/6/14
- Turner will pay NBA ~\$12.6BN, 2017-2025
- Renewal from parties' previous contract
- # unique champions, prev. 10 yrs.: 5
- Peak T. V. rating, prev. 3 yrs.: 10.3
- Avg. T. V. rating, prev. 3 yrs.: 1.3
- Turner pays for rights to stream games
- ~318 hours of events per yr.; 28 overnight, 0 int'l
- ~64 games aired on TNT per year

Descriptive Statistics for Contracts

Variable	Minimum	Mean	Median	Maximum	St. Dev
Total value of contract (MM\$)	\$0.0	\$1,329.2	\$214.1	\$16,582.5	\$2,563.5
Length of contract (years)	1.0	6.2	6.0	25.0	3.6
Annual value of contract (MM\$)	\$0.0	\$170.1	\$36.0	\$2,072.8	\$308.0
Number of hours per annum in contract	3.5	102.2	63.0	1,000.0	119.5
Value of each hour (MM\$)	\$0.00	\$2.80	\$0.71	\$40.14	\$5.60
Anticipated average television rating	0.0	3.3	1.6	16.2	3.6
Anticipated top television rating for a given event	0.0	6.9	5.0	35.1	6.9
Annual number of households-by-hours (1,000s)	100	187,053	103,474	1,281,448	228,796
Value of each household-hour	\$0.00	\$0.94	\$0.40	\$16.68	\$1.72
Annual growth rate of U.S. GDP	-2.78%	2.73%	2.69%	4.69%	1.51%
Nielsen television ratings decay value	8.53	11.12	10.34	15.42	2.20
International programming scheduled	0.0%	7.8%	0.0%	91.7%	21.3%
Programming scheduled to air on over-the-air television	0.0%	54.3%	51.0%	100.0%	44.6%
Programming scheduled to air overnight	0.0%	3.4%	0.0%	38.4%	7.6%
Number of champions from previous 10 season	3.0	6.2	6.0	10.0	1.5
Value of S&P 500 Index (stock market) at time of contract	823.1	1,409.5	1,391.7	2,030.4	283.4
1-year MA of sports series' interest index at time of contract	7.8	123.0	46.5	882.9	176.3
Does the contract include a "big four" sport? No=0, Yes=1	0.00	0.22	0.00	1.00	0.41
Does the contract include a college conference? No=0, Yes=1	0.00	0.29	0.00	1.00	0.46
Were live Internet streaming rights included? No=0, Yes=1	0.00	0.28	0.00	1.00	0.45
Was network an incumbent rights-holder? No=0, Yes=1	0.00	0.73	1.00	1.00	0.45

Histogram of Contract Prices

- Over 75% of contracts in sample exchange less than \$200MM annually
- Annual prices follow a negative binomial distribution

Analytics: Interest Metrics, Prices

- All "interest metrics" exhibit positive correlation with annual prices
- Cumulative annual audience strongest
 - Events' annual rating multiplied by number of event hours
 - Suggests that price is influenced by quality and quantity of events

Analytics: Premium on Cable?

- Hourly household price: price paid for each anticipated household-hour
- Cable (x / blue) \uparrow ; broadcast (o / red) \leftrightarrow

GLM / Negative Binomial Model

- Dependent variable follows neg. bin. distrib.
 - Annual price of contract = f(local, environment)
 - Generalized linear model (GLM) with HRM regression
- Theorizations on factors of annual prices
 - Consulted industry experts; must be intuitive
 - Potential factors:

Characteristic	Theory	Characteristic	Theory
Average primetime T. V. rating among top 30 programs	—	Economic Growth	+
Length of Contract	+	International Events	—
Live and Online Streaming	+	Google Trends Interest Index	+
Cumulative Annual Audience	+	College Conference	_
Most Events on Over-the-air Networks	_	Big Four Sports Series	+

GLM / Negative Binomial Results

- Generalized linear model, neg. bin. family
- Most intuitive, meaningful model tested

Dependent Variable: Log Annual Value	Coef.	Std. Err.	t-score	p-value 95% confidence interval
log(Ratings Decay)	-1.854	(0.351)	-5.28	0.00 -2.542 ,-1.166] ***
log(Length of Contract)	0.403	(0.124)	3.26	0.00 [0.160 ,0.645] **
Live streaming rights	0.269	(0.134)	2.01	0.04 [0.007 ,0.531] *
log(Cumulative Annual Audience)	0.597	(0.050)	11.88	0.00 [0.499,0.695] ***
% events that are over-the-air	-0.224	(0.108)	-2.08	0.04 -0.435 ,-0.013] *
U. S. growth domestic product	0.081	(0.035)	2.33	0.02 [0.013 ,0.149] *
% events that are international	-2.098	(0.278)	-7.54	0.00 -2.643 ,-1.553] ***
log(Interest Index)	0.259	(0.045)	5.71	0.00 [0.170 ,0.348] ***
College conference	-0.414	(0.126)	-3.28	0.00[-0.662 ,-0.167] **
Big Four Sports Series	0.810	(0.127)	6.41	0.00 [0.563 ,1.058] ***
Constant	-4.558	(1.221)	-3.73	0.00[-6.952 ,-2.164] ***
Pseudo R-squared	0.1971			
Log-Likelihood	-836.22			
Observations	224			

* Significant at 5%, ** Significant at 1%, *** Significant at 0.1%.

Analysis of Results

- Model holds well to industry experts' beliefs
- Notable effects, *ceteris paribus*:
 - Rate of annual price is about 30% greater with streaming
 - Contracts which emphasize free T. V. are priced ~20% less
 - Annual price runs ~35% less when sellers are college conferences
 - "Big 4" series command a rate >120% than others
 - As anticipated cumulative T. V. audience increased by 10%, expect an annual price about 5% greater
 - A good economy correlates with strong annual prices
 - Longer-term deals associate with an annual price premium
- Forecast / fit each contract based on tested factors

Fitting Contracts

- Comparing size of market (black) to forecasted size of market (red)
- Steady increase apparent, but model predicts a little flatter

Conclusions

- Shortcomings of model
 - Does not capture all nuances of contracts
 - Small sample size
 - Assumes television-only universe within one section of time
- Markets might be overheated; why?
 - Buyers' misjudging magnitude of demand shift
 - Sellers' giving away rights not accounted for in model
 - Adaptive, not rational, expectations
- Is there a bubble?
 - Most networks locked-in for near- and medium-terms
 - Series, networks trying to increase revenue in other areas
 - Next inflection point: college conference renewals in ~2 yrs.

Revenue Over Time

• Median Annual Team Revenue by League

Source: Forbes. NASCAR 'team' defined as Cup Series car (e.g., #18). Data adjusted for inflation. All calculations by Andrew Maness.

Revenue Over Time (cont'd)

- Median Annual Team Revenue, 2006–2017
 - All forms of revenue (i.e., the Forbes values)
 - 10pctile in red, 50pctile (median) in blue

- Annual non-prize revenue per car is normal-ish
 - Data are rarely perfect
 - Be sure to note how far from perfect it is

- Kurtosis: 3.06
- Skewness: -0.30

- Based on knowledge, anecdotes, analysis what are the expected results of this model?
- What influences non-prize revenue?

Characteristic	Theory	Characteristic	Theory
Engine Leasing	+	Number of Wins from Previous Year	+
Technical Alliance	+	Championship from the Previous Year?	+
Average Viewership from Previous Year	+	Any Popular Drivers?	+
Average Finish (Less Wins) from Previous Year		Other ideas?	?

• The actual model (but we have to explain it!)

Dependent Variable: Annual Non-Prize Revenue	Coef.	Std. Err.	t-score	p-value	95% confidence interval
Engines Leased per Race	3.342	(0.881)	3.80	0.00	[1.597, 5.088] ***
Technical Alliances per Race	2.391	(2.388)	1.00	0.32	[-2.343, 7.125]
Average Viewership per Race ^	2.281	(0.420)	5.43	0.00	[1.448, 3.114] ***
Average Finish (less wins) ^	-0.724	(0.162)	-4.46	0.00	[-1.046, -0.402] ***
Number of Wins ^	0.271	(0.162)	1.67	0.10	[-0.051, 0.593]
Championship ^	3.495	(1.673)	2.09	0.04	[0.178, 6.812] *
Dale, Jr., on the team?	24.847	(6.182)	4.02	0.00	[12.594, 37.101] ***
Constant	2.488	(5.754)	0.43	0.67	[-8.919, 13.894]
Adjusted R-squared	0.9714				
Log-Likelihood	-487				
Observations	117				

* Significant at 5%, ** Significant at 1%, *** Significant at 0.1%.

^ Lagged by one year

Includes fixed effects for number of entries

- Each engine lease is worth ~\$3.3MM / year
 This is consistent with expert information
- Technical alliances not statistically significant
 - Should be included; key component to revenue in reality
 Still positive directionally imperfect, but passes sniff test
- For every additional 1mil vwrs / year, expect \$2.3MM additional revenue in following year
- Team performance is important! – Average finish position, wins, and titles matter
- Having Dale, Jr., gets you a full season of sponsorship (no other driver impacts like this)

Actionable Insight

- Median annu rev per car 1.21 MM\$/yr since '06
- Rev. gap btwn. 10pctle and 50pctle growing
- Team performance still matters, though
 - Improve your average finish position
 - Win some races and maybe a championship
- This is where Pit Rho can help teams
 - Improves your average finish by ~1.7 positions
 - More affordable than other potential alternatives
 - − ∴ Relatively great return on investment
- Bottom line: This can still work financially despite broader struggles in the industry

Motorsport: A High-Tech Endeavor

- Computational fluid dynamics
- Wind tunnel technology
- Full vehicle simulators
- Custom materials development
- Precision measurement, monitoring
- Strategy should be high-tech, too!

Motorsport: Team Objectives

- Win races (proper mindset find a way)
- More specifically, score best finish possible
- Better finishes \rightarrow more championship points
- Team with most points at end of season earns title
 - Major incentive to battle for each position
 - Like a marathon; fast, but finish—ultimate engineering exercise

NASCAR: Strategy Basics

- Likelihood that a caution comes out
- Trying to exit pitstop with "clean" track
- Minimizing lap times, slow laps, etc.

NASCAR: Strategy Decisions

- Strategy Recommendation: There's one right answer
- Largely depends on what you think your competition will do
- Risk versus reward!

19BRI1 video example

- Race strategy is critical changes outcome of race
- Quick example: 19BRI1
 - Caution comes out; decisions are made: 3:03:30-3:06:39
 - The final sprint to the finish: 3:10:16-3:13:57

Application Flow Overview

Data Input	-	Data Mgmt.	Data Processing	Data Analysis
Scraped Pit Data	Pi	t Data Correction & Augmentation	Low Level Timing & Scoring	Data Analysis Modes: Live - Replay - Offline
At-Track Pit Data	Opti	onal Auto-Ingestion of At-Track Feeds	Pit Data Processing & Historic Lap Data Revision	Advanced Caching for Full Race Replay for All Races
Timing & Scoring	Timii ai	ng & Scoring Cleanup nd Error Correction	Derived Statistics & Predictive Strategy	>20 Unique Data Views & Custom Configuration
Telemetry	Tel	emetry Cleanup and Error Correction	Raw & Derived Telemetry	Cross Device Support: PC - Mac - Tablet

In-Race Compute Power 21 Cores; 38 GB RAM

During Week Compute Power 4 Cores; 7.5 GB RAM

Calculation Schematic

Brief Overview of Components

- Adjusted Laptimes (bulk of discussion)
- Caution Probability
- Competitor Strategy
- Fuel Mileage (major 2019 focus; why?)
- Pit Road Projections
- Lookahead Model
- Caution Strategy
- Green Flag Strategy
- Strategy Recommendation (actionable insight)

Adjusted Lap Times (Overview)

Inputs	Key Model Attributes	Outputs
Actual lap time	Bayesian regression framework that automatically learns throughout race	Adjusted lap time
Position	• Customized model for each race based on the specific characteristics	
Lans since tires	 Model is updated throughout race.	Relative speed comparison
	automatically incorporating information about new tires, etc.	
Tires last pit	 Performance of every car on every lap is continually updated and 	Predicted future lap times
Traffic density	Validated Walter, Gero; Augustin, Thomas (2009). "Bayesian Linear Regression— Different Conjugate Models and Their (In)Sensitivity to Prior-Data	
Laps since restart	 Gelman, Andrew, Carlin, John B., Stern, Hal S. and Rubin, Donald B. (2003). Bayesian Data Analysis, Second Edition. Boca Raton, FL: Chapman and Hall/CRC. ISBN 1-58488-388-X. 	Tires vs. position trade-off

Adjusted Lap Times (Details)

- Bayesian framework enables race-specific model to update throughout event
 - Naturally learns as the race progresses
 - Tuned to maximize predictive ability from past event data
 - Learning rate is fastest early in the race, continues throughout race
- Traffic density, "passing friction," time to pass
 - Reviewing to include possible driver-specific passing skills
 - Methodical; ensure that it improves already-robust model
- Restart dynamics new as of 2019
- Advanced statistical techniques to separate effect of car and position (multicollinearity; not solvable with OLS)

Adjusted Lap Times (Accuracy)

- Predicted (lines) vs. actual lap times (dots)
- Positive correl. btwn. predicted, actual laptimes
- 17PHX1, #31

17PHX1, #31 (vs. #18 and #42)

- Entire race (in case you are bored)
- Caution comes out <u>3:11:00-3:12:07</u>
- Final strategy decisions <u>3:12:23-3:13:31</u>
- Restart and final two laps <u>3:16:49-3:19:32</u>
- Pit Rho analysis in real-time workspace
 - Race Order
 - Competitor Strategy on Caution
 - Primary and Contingency Strategy Recs.
 - CSS Recommendation (what is this?)
 - Lane Position Gain
 - Driver Positions, Speed Comparison "mic drop" moment

2019: New Rules Package

• Full announcement here

2019: New Rules Package

- What changed engineering-wise? (Ahem, JB.)
- Using statistics / linear regression from VEG test to predict major changes
 - Raw data (from NASCAR T&S)
 - Video clips to understand qualitatively
- Using test (and/or practice) data to "prepare" the advanced in-race models
 - Prepares teams for potential fundamental changes in race strategy (see: 19TEX1 example)
 - Even though we have that safety net of Pit Rho keeping up with track conditions, we have greater peace of mind

2019: New Rules Package (Plan)

- Scrape NASCAR T&S data in real-time
 - Great practice for intake when it matters in-season
 - Parse by practice/test session
- Remove cars that are not competitive
- Analyze only relevant test session(s)
- Review data to determine "position"
 Adjust position based on # of cars in group
- Do the data/model match expectations?

2019: New Rules Package (Model)

- OLS regression model on laptimes
 - Again, imperfect model but still OK; why?
 - Rough adj. model produces sensible adjusted laptimes
 - No significant tire falloff! Jives with physics of new package

Dependent Variable: Lap Time	Coef.	Std. Err.	t-score	p-value	95% confidence interval
Position	0.051	(0.019)	2.64	0.01	** [0.013 ,0.090]
# Cars Competing	-0.042	(0.026)	-1.62	0.11	[-0.092 ,0.009]
Laps on Tires	-0.002	(0.007)	-0.33	0.74	[-0.016 ,0.011]
Constant	31.093	(0.375)	82.88	0.00	[30.354 ,31.832] ***
Adjusted R-squared	0.2932				
Log-Likelihood	-11				
Observations	236				

* Significant at 5%, ** Significant at 1%, *** Significant at 0.1%.

Includes fixed effects for teams

2019: New Rules Package (Pace)

- Fixed effects in model for each car's pace
 - Rough, imperfect but it passes the sanity check
 - Well-funded, traditionally fast cars rank toward the front
 - Not much difference in adjusted pace across field (as expected)

Car	Laps	Avg. Pos.	Avg. Raw Laptime	Avg. Adj. Laptime
2	24	7.625	30.778	30.833
6	24	8.042	30.918	30.953
18	24	3.333	30.686	30.962
14	23	3.696	30.708	30.970
48	24	3.208	30.704	30.986
21	23	6.174	30.857	30.991
95	24	8.458	30.998	31.011
47	16	6.250	30.885	31.045
3	24	1.167	30.681	31.068
1	15	9.467	31.084	31.084
43	24	5.875	31.078	31.286
13	21	3.143	31.015	31.368

19TEX1, #9 (vs. #11, #24, #48)

- Entire race
- Final caution decisions <u>2:52:10-2:52:41</u>
- #9's final pitstop <u>3:13:50-3:14:37</u>
- Pit Rho analysis in real-time workspace
 - Race Order
 - Competitor Strategy on Caution
 - Primary Recommendation
 - Caution Strategy
 - CSS Recommendation
 - Green Flag 2TR vs. 4T
 - Speed Comparison (#9 vs. #11 wow)