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Abstract

We explore whether total factor productivity (TFP) growth differs across the
manufacturing, service, and agriculture sectors. Sector-level labor produc-
tivity can be calculated directly from available data. However, this measure
depends on sector-level prices and capital/labor ratios as well as TFP. To
isolate the effect of TFP requires a multi-sector model of economic growth
which allows for differential TFP growth. We use a version of the Ngai & Pis-
sarides (2007) model to identify relative productivity growth rates in a large
group of countries. For our benchmark parameterization, we find that TFP
has grown faster in the agriculture sector than in the manufacturing sector
at all income levels, but this difference decreases with per capita output. We
find that TFP for services has grown more rapidly than for manufacturing in
low-income countries. This difference also decreases with per capita output
and is negative at higher levels of income. The findings support differential
TFP growth rates as a source of industrial dynamics and allow such models
to explain a wider set of dynamics.
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1 Introduction

In the early stages of economic development, increased output per capita commonly

coincides with an increased share of the labor force employed in the manufacturing and

service sectors, along with a decreased share employed in agriculture. The share of

an economy’s value added attributable to these sectors follows a similar pattern. At

higher levels of development these relationships in manufacturing weaken and may even

reverse. The relationships persist in the agriculture and service sectors, even as agriculture

approaches very low shares of employment and value added.

Figure 1 provides panel-data evidence of these relationships. The figure shows employ-

ment shares and value added shares at 5-year intervals for a large group of low-, middle-

and high-income countries. The strength of the relationships is striking. For example,

among the lower decile of real GDP per capita observations, the labor and value added

shares for manufacturing average 14% and 46% percent. For the top decile, the averages

are 66% and 77% percent. Analogous measures for agriculture are 79% and 41% for the

lower decile and 3% and 1.5% for the upper decile.

As a central feature of the world’s development experience, explaining these trends has

been a key goal for some researchers exploring the foundations of economic growth. Sev-

eral explanations can be found in the literature. Echevarria (1997), Matsuyama (1992),

Kongsamut et al. (2001), and Laitner (2000) and others model structural change as stem-

ming from differences in income elasticities.1 Matsuyama (2009) and Uy et al. (2013)

identify international trade as an important mechanism for structural change. Buera &

Kaboski (2009) also suggest that these models will match the data better if they include

home production, sector-specific distortions, and differences in human capital accumula-

tion.

The earliest explanation of structural change remains central to the discussion. Sec-

toral differences in Total Factor Productivity (TFP) as the driving force of structural

change was proposed by Baumol (1967). Prominent recent papers exploring this channel

include Ngai & Pissarides (2007) and Acemoglu & Guerrieri (2008). In this literature,

1This mechanism is supported by findings from Comin et al. (2021).
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Figure 1: Patterns of Structural Change

Figure 1 presents scatter plots of the log of GDP per capita against the
sector employment shares and value added shares. The squares represent
low-income countries, the triangles represent middle-income countries and
the circles represent high-income countries. Data on real GDP in 2017 PPP
$ and population are obtained from the Penn World Tables. Shares and
labor productivity in PPP terms are computed from Dieppe et al. (2020).

high TFP in a sector reduces its need for labor, causing labor to shift towards sectors

with lower TFP growth.

From quantitative studies, differential TFP growth rates arises as a potentially im-

portant explanation of these trends.Herrendorf et al. (2014) attributes the decline in

agricultural shares and the corresponding rise in service sector shares in most advanced

countries to the fact that the agricultural sector had the highest TFP growth, while the

service sector recorded the lowest. Świecki (2017) builds a model nesting four different

explanations and finds sector-biased technological progress to be the most significant of

these in explaining the decline in manufacturing shares and the corresponding rise in

service sector shares in developed economies.2

2The literature provides support for other channels as well. For example Świecki (2017) finds that
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This paper contributes to the literature on structural change by exploring cross coun-

try differences in sectoral TFP growth rates in a large number of countries. At the aggre-

gate level, cross-country TFP growth rates can be calculated from residuals in calibrated

production functions. However, in considering TFP at the industry level, additional chal-

lenges arise. Computing sector-level TFP values requires data on sector level nominal

value added, labor inputs, capital inputs, and prices. For most countries the first two of

these are available while the second two are not.3

To study unobserved TFP, we build a sectoral growth model to map available data

to unobserved TFP growth. Specifically, we develop a version of the model presented by

Ngai & Pissarides (2007). Our version of this model has three-sectors; manufacturing,

agriculture, and services. The manufacturing sector produces both investment and con-

sumption goods while other sectors produce only a consumption good. Structural change

arises through general equilibrium adjustments to differential growth rates of TFP by

sector.

Ngai & Pissarides (2007) is a convenient starting point for our investigation. Most

importantly, it allows a wide variety of sector level dynamics to arise from different TFP

growth rates. This includes a hump-shaped pattern for the labor shares for some sectors,

which we discuss below. Moreover, a special case of their model allows balanced growth.

As such, stable growth in aggregate measures arise despite distinctly unstable growth in

the industries comprising these aggregates.4 This proves particularly convenient along

the balanced growth path. Even off the balanced growth path, the model allows simple

expressions for productivity differences.

The mapping require only relative labor shares and the savings rate to find relative

growth rates in productivity. Labor shares by industry are available from the Global

Productivity database. We use the savings rates that arise in a calibrated version of

non-homothetic preferences are essential to explaining the decline in employment shares in agriculture.
3Herrendorf et al. (2014) notes that verifying the characteristics of TFP growth within sectoral value-

added production functions across countries is challenging, largely due to difficulties in accurately com-
puting TFP. One of the main issues is that estimating real value-added requires information on the real
quantity of intermediate inputs, which is seldom available for most countries.

4A related literature considers other underlying trends in labor markets that allow balanced growth
in aggregates. See, for example Blankenau & Cassou (2006).
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the model. We begin by considering a special cases of the model under which a closed-

form solution exists. We then consider cases with a more a realistic calibration and more

realistic dynamics. We conclude our analysis by considering a small open economy version

of the model.

A first implication of our model is that the underlying assumption of differential TFP

growth rates in Ngai & Pissarides (2007) and other work is well supported. We refer to

the TFP growth rate in a sector minus the TFP growth rate in manufacturing as relative

TFP growth. For agriculture, relative TFP growth is positive for each country group we

consider; i.e. TFP growth in agriculture exceeds that in manufacturing. For services,

relative TFP growth is non-zero in each country group. However, this is negative for the

highest income group and positive for other groups.

A second implication is that relative TFP growth varies with per capita income. For

agriculture, we find a significant negative relationship between relative TFP growth and

per capita income. However, for all income levels spanned by our data, the conditional

point estimate for relative TFP growth is positive. For services, we again find a significant

negative relationship. For lower income countries, the conditional point estimate for

relative TFP growth is again positive, but for sufficiently large values this is negative.

Overall, the findings show differential TFP growth rates can be the source of observed

industrial dynamics. In the Ngai & Pissarides (2007) model, when the highest TFP

growth is found outside the manufacturing industry, this industry will see a fall in labor

inputs. Other industries have an increasing labor share eventually, though this may

be hump-shaped along the way. Manufacturing employment will rise.5 We find that

agriculture has the most rapid TFP growth rate. Thus the model can explain the trends

above.

Our finding of falling relative TFP growth can allow for a yet wider set of dynamics.

A number of researchers have found that manufacturing has a hump-shaped pattern

through development.6 The data in Figure 1 hints at this. At high levels of output per

5These results presume an elasticity of substitution for goods less than one, but they consider both
cases.

6This behavior of manufacturing is noted by Van Neuss (2019), Herrendorf et al. (2014), and Duarte
& Restuccia (2010)
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person, the labor share appears to taper off and even fall with per capita output. While

this pattern can arise for other goods in the Ngai & Pissarides (2007) model, it cannot

for manufacturing. However, they consider only the case of differential but constant TFP

growth rates. Our results suggest that manufacturing may eventually be the sector with

the greatest TFP growth rate and will thus begin to eventually lose employment share,

yielding a hump-shape profile of manufacturing employment shares.

In the next section, we present a description of the data to establish the facts about

structural change and provide additional insights. We then present the model in Section

3. In Section 4, we present a description of the calibration of the parameters used. In

Section 5 we present the results and in Section 6 we present the sensitivity analysis. We

then conclude in Section 6.

2 Data Description

We begin by exploring the process of structural change using the Global Productivity

dataset compiled by Dieppe et al. (2020). This dataset contains value added and em-

ployment for nine broad sectors for about 103 countries, ranging from 1950 to 2017.7

They pool data from different sources including the World Bank World Development In-

dicators, the OECD STAN database, KLEMS, the Groningen Growth and Development

Center (GGDC) database (De Vries et al., 2015), the Expanded Africa Sector Database

(EASD) (Mensah et al., 2018)), the APO Productivity Database, UN data, ILOSTAT,

and national sources. We extract data ranging from 1975 to 2017. This is to allow for

enough countries to be included in our sample, especially when we conduct the two-period

analysis in our baseline estimation. Data on the gross domestic product (GDP), popu-

lation, the market exchange rate, and price level of output-side real GDP relative to the

United States are from the Penn World Tables (PWT 10.01).8

7Initial sectors include Agriculture, forestry, and fishing; Mining and quarrying; Manufacturing; Util-
ities; Construction; Trade services; Transport services; Financial and Business Services; and Other
services.

8The price level of output-side real GDP is a purchasing power parity (PPP)-adjusted measure of
prices across countries. 2017 price of US GDP is the base price. We use this to adjust value added in
local currency to PPP terms.
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To allow for cross-country comparison, we convert value added in national prices into

Purchasing Power Parity (PPP) terms. We do this by first converting the market ex-

change rate into PPP form by dividing it by the relative price level of GDP. We then

divide the value added in national prices by the PPP exchange rate to make them compa-

rable. Consistent with much of the empirical growth literature, we concentrate on 5-year

non-overlapping intervals of the data for our analysis.

We consider a three-sector aggregation. That is, we aggregate the nine sectors into

three broad sectors we call manufacturing, agriculture, and services. Our choice of 3

sectors is motivated by the fact that we build our baseline model as a three-sector model.

While the model could be extended to include additional sectors, using three sectors

simplifies the analysis and helps focus on the broader patterns of structural change, as

highlighted by the stylized facts. Details about the aggregation process are provided in

the calibration section.

We classify countries into high-income (HIC), middle-income (MIC), and low-income

(LIC) groups based on the World Bank’s income classifications as cited in Nada et al.

(2022). The World Bank divides countries into four categories: low-income, lower-middle-

income, upper-middle-income, and high-income. For our purposes, we group low-income

and lower-middle-income countries together under LIC, while our middle-income coun-

tries (MIC) correspond to the World Bank’s upper-middle-income countries. Our high-

income countries align directly with the World Bank’s high-income classification. Our

sample contains 43 HICs, 30 MICs, and 30 LICs.

We examine structural change in our dataset by analyzing trends in employment

shares, value-added shares, and labor productivity across the three main sectors. Fig-

ure 1 already gives some insight into the patterns of structural change we observe in our

data. We observe that, with increasing income levels, both manufacturing and service

sectors show rising employment and value-added shares, while the share of agriculture de-

clines. Although not conclusive, manufacturing shares appear to follow the hump-shaped

pattern frequently discussed in the literature. In the subsequent figures, we delve deeper

into sector shares and productivity trends to offer further insights into the dynamics of
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structural change in our data.

Figure 2 shows the evolution of sector employment shares for HICs, MICs, and LICs.

The first column presents the trends for all countries while the second column presents the

annual average across the income groups. Figure 3 and Figure 4 are similarly organized

presentations of value-added shares and labor productivity.

We consider manufacturing in Panels A and B of Figure 2 - Figure 4. We observe

that HICs have higher manufacturing employment and value-added shares compared to

MICs and LICs, though these shares are increasing across all income groups. Labor

productivity in the sector is equally increasing across all countries.

Looking at the agricultural sector, We observe a decline in employment shares for

all countries9 (Panels C and D in Figure 2), in line with the stylized facts of structural

change. Another feature of this data is that LICs have a substantially larger share of

employment in agriculture than MICs and HICs. This pattern corresponds with the

declining value-added share of the agriculture sector portrayed in panels C and D of

Figure 3. It is worth noting that despite the low and declining agricultural employment

shares for HICs, panels A and B in Figure 3 show that the sector is relatively more

productive in HICs compared to MICs and LICs.

Concerning the service sector, the literature notes that the process of structural change

is characterized by a steady increase in its employment share. Panels E and F in Fig-

ure 2 exhibit such trends in the services employment shares. All countries experience a

steady increase in the service employment share over time. However, HICs have higher

employment shares than MICs and LICs. The lowest service sector employment shares

are recorded by LICs. It must be noted, however, that despite the rise in employment

share in the service sector, Panels E and F in Figure 3, show that there is a decline in

its share in value added especially for HICs. For MICs and LICs, the value added is

relatively stable over time. However, Panels E and F of Figure 4 show increasing labor

productivity in the service sector.

9A similar trend is noted by Duarte & Restuccia (2010) using hours worked.
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Figure 2: Sector Employment Shares

Figure 2 shows sector employment shares for manufacturing (panels A and
B), agriculture (panels C and D), and services (Panels E and F). Countries
are grouped into low (dotted lines), middle (dashed lines), and high (thick
lines) income countries. Panels A, C, and E present the data for all countries
in the sample while panels B, D, and F present averages for the various
income groups. Data is in 5-year intervals starting from 1975.
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Figure 3: Sector Value Added Shares

Figure 3 shows sector value-added shares for manufacturing (panels A and
B), agriculture (panels C and D), and services (Panels E and F). Countries
are grouped into low (dotted lines), middle (dashed lines), and high (thick
lines) income countries. Panels A, C, and E present the data for all countries
in the sample while panels B, D, and F present averages for the various
income groups. Data is in 5-year intervals starting from 1975.
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Figure 4: Sector Labor Productivity

Figure 4 shows sector labor productivity for manufacturing (panels A and
B), agriculture (panels C and D), and services (Panels E and F). Countries
are grouped into low (dotted lines), middle (dashed lines), and high (thick
lines) income countries.Panels A, C, and E present the data for all countries
in the sample while panels B, D, and F present averages for the various
income groups. Data is in 5-year intervals starting from 1975.
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As stated in the introduction, differential TFP growth rates have been suggested as

the underlying cause of the data discussed in this section. Of course, the plausibility

of such models requires that TFP growth rates indeed differ. However, this cannot be

ascertained directly from the data. This requires data on nominal value added and labor

inputs, as presented above. However, it additionally requires data on prices (to recover

real output) and capital inputs. This data does not exist for most countries. To isolate

the effect of TFP requires a multi-sector model of economic growth which allows for

differential TFP growth.

3 The model

To identify sector-level relative TFP growth rates, we develop a version of the model pre-

sented in Ngai & Pissarides (2007). Ngai and Pissarides consider how different produc-

tivity growth rates across sectors influence structural change in an economy. In a special

case, they show the aggregate economy reduces to the familiar Ramsey-Cass-Koopman

model. As such, complex patterns of structural change can arise while the aggregate

economy is on its balanced growth path or on a trajectory toward balanced growth. Our

discrete-time version of this model has several additional distinctions which we address

as they arise below. However, the key feature of varied industry-level employment and

output patterns comprising balanced growth remains.

A representative infinitely lived agent has preferences given by

ut (·) ≡
∞∑
j=0

β̃t lnϕt

where

ϕt ≡

(
m−1∑
j=0

ωjc
ε−1
ε

j,t

) ε
ε−1

.

Parameter restrictions are 0 < β̃ < 1, ε,ωj > 0 and
∑m−1

0 ωj = 1. The ϕt term is a

constant elasticity of substitution combination of m distinct consumption goods available

to the consumer in period t. Each good is indexed by j so that cj,t is the quantity of
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good j consumed in period t. This is expressed in intensive form. We provide additional

information regarding this below. The relative importance of good j in consumption is

ωj, the elasticity of substitution between goods is ε, and β̃ discounts future utility flows.

Each consumption good is produced competitively in its own sector by a representative

firm. The production function in industry j is

Yj,t = Kθ
j,t (Aj,tNj,t)

1−θ

where 0 < θ < 1 is the share parameter and Aj,t gauges total factor productively in

sector j. Inputs into the production of good j are capital, Kj,t, and labor, Nj,t. One

of the industries, which we refer to as Good 0 (Manufacturing), produces a good used

for both consumption and investment. Others are used for only consumption. Ngai and

Pissarides show that along the balanced growth path, the growth rate in their model is

equal to the growth rate of A0,t plus the growth rate of the population. This feature

arises also in our model. In anticipation of this, for ease of presentation we normalize

output, consumption, investment, and the capital stock in period t by A0,tNt where Nt

is total population and use lower case variables to express these intensive form values.

Moreover, we find it convenient to express Kj,t and Nj,t as shares of Kt and Nt employed

in industry j.10 Given this, we can express period t resource constraints as

y0,t ≡ (s0,tkt)
θ n1−θ

0,t = c0,t − it (1)

ys,t ≡ (sj,tkt)
θ (aj,tnj,t)

1−θ = cj,t (∀j > 0). (2)

Here kt, i, and cj,t, j ∈ {0, 1, ..m− 1} are total capital stock, total investment, and total

consumption of good j each divided by A0,tNt and aj,t ≡ Aj,t

A0,t
. The shares of Kt and

Nt employed in industry j are given by sj,t and nj,t so sj,t, nj,t ≥ 0 and
∑m−1

0 sj,t =∑m−1
0 nj,t = 1. Since only industry 0 is used to produce capital and some industry 0

10Ngai and Pissarides also express Nj,t as a share of Nt employed in industry j.
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output is consumed, the intensive form law of motion for capital is

kt+1 (1 + γN) (1 + γ0) = (1− δ) kt + y0,t − c0,t. (3)

Here γN , γ0 > −1, are the exogenous growth rates of the population and industry 0

total factor productivity growth while 0 < δ < 1 is the rate at which capital depreciates.

These are also part of 0 < β̃ ≡ β (1 + γN) (1 + γ0) < 1 so that β̃ accounts for both for

time preferences, 0 < β < 1, and these growth rates.

As mentioned above, this model allows structural change in the disaggregated econ-

omy while preserving the transitional and steady state features of the Ramsey model

for the aggregate economy. As in Ngai and Pissarides (2007), structural change in our

model stems from differing total factor productivity growth rates across industries. The

aggregate economy refers to the paths of kt and it as well as

ct ≡
m−1∑
j=0

pjtcj,t

yt ≡
m−1∑
j=0

pjtyj,t.

Proposition 1, demonstrates that the aggregate economy can be tracked without ref-

erence to the disaggregated economy and thus independently of structural change. All

proofs are in the appendix.

Proposition 1. The aggregate economy can be expressed by the following Bellman equa-

tion for the social planner’s problem:

υ (kt) = max
kt+1

{
ln
(
kθ
t + (1− δ) kt − kt+1 (1 + γN) (1 + γ0)

)
+ β̃υ (kt+1)

}
. (4)

With a solution for kt+1 from Equation (4), it is straightforward to find ct
yt
. This ratio

proves to be the only result from aggregate economy which is required to understand

structural change in the disaggregated economy as shown in Proposition 2.
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Proposition 2. The following relationships hold in the disaggregated economy:

s0,t = n0,t =
ct
yt

1

Zt

+ 1− ct
yt

(5)

sj,t = nj,t =
ct
yt

zj,t
Zt

, (∀j > 0) (6)

where

zi,t ≡
(
ωi

ω0

)ε

a
(1−ε)(1−θ)
i,t (7)

Zt ≡ 1 +
m−1∑
j=1

zi,t. (8)

The n0,t and nj,t variables are identical to those in Ngai and Pissarides (2007). From

these relationships, we can find expressions for the relative TFP of a sector, relative to

the sector producing the investment good. This is presented in Proposition 3 below.

Proposition 3. TFP of sector j relative to sector 0 is

ajt =

(
(
ωj

ω0
)ε

zjt

) 1
(1−ε)(1−θ)

(9)

and relative TFP growth for sector j is

(γj − γ0) = ln

(
ai,t
ai0

)
t−1 (10)

where γi and γ0 are the growth rates of TFP in sector j and sector 0 respectively.

Given these relationships between the aggregate and disaggregated economy expressed

in Proposition 2, we proceed by finding ct
yt

from the solution to Equation (4) and using

this in equations of structural change. We do this in several steps. First, we consider a

case with a closed-form solution to the Bellman equation. While requiring that δ = 1, this

has the advantage of providing clear and intuitive results. Moreover, as argued below,

the assumption is a reasonable one when we consider a long time frame. We next allow

δ ̸= 1 but consider only the steady. Again this allows closed-form solutions. Trading
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off our restriction on δ for a steady state restriction has the advantage of allowing us

to consider shorter time frames. Finally, we solve the dynamic programming problem

yielding a value for ct
yt

both along the balanced growth path and in transition. The key

finding here is that our more restricted cases sufficiently capture the results of the model.

A useful observation throughout this analysis arises from Equations (5). Rearranged,

this is

1− n0,t =
ct
yt

Zt − 1

Zt

. (11)

An implication of Equation (8) is that 0 < (Zt − 1)Z−1
t < 1. As such, Equation (11)

requires

1− n0,t <
ct
yt
. (12)

Since (1− n0,t) is the share of both time and capital spent on pure consumption goods,

this is a requirement that the share of output that is consumed must exceed the share

of resources going to produce the pure consumption goods. This is intuitive since part

of ct is the consumption/investment good. However, we will often take n0,t as observable

while ct
yt
arises endogenously from the model. As such there is no assurance the inequality

holds. When it does not the underlying cause is a small observed n0,t. In essence, the

model cannot address the situation of a very small manufacturing sector and we must

drop such economies from consideration by this model. We address this in our sensitivity

analysis where we extend the model to the small open economy case. This loosens the

constraint and allows the inclusion of more countries.

4 Calibrations

We calibrate our model of a three-sector economy. Our strategy is to take the sector

employment shares as observable from the data. The first step is to combine the nine

sectors in the Global Productivity dataset into three sectors called manufacturing, agri-

culture, and service. We take a somewhat different approach to this than is common in

the literature and later show evidence that this aggregation is not driving our results.

Our different approach has two motivations. First, manufacturing is both a consump-

16



tion and an investment good and thus is broader in nature than in some other studies.

More importantly, this sector must produce a large enough share of output to cover sav-

ings and some consumption. This requirement is relaxed, but only modestly, when we

consider the small open economy model. For many developing countries the manufac-

turing sector is small. This necessitates including other sectors in the investment goods

sector.

Our manufacturing sector is made up of the following sectors: manufacturing, mining

and quarrying, utilities, construction, trade services, transport services, and financial and

business services. In contrast Cai (2015), Van Neuss (2019), and Herrendorf et al. (2014)

use mining and quarry, manufacturing, and construction as the manufacturing sector.

We show later that alternative aggregations do not change our results.

With seven of nine sectors included in manufacturing, each remaining sector contains

only one sector. Our agricultural sector is referred to as ‘Agriculture, forestry, and

mining’ and our service sector includes what is referred to as ‘other services’ in the

Global Productivity dataset. As stated earlier we use 5-year intervals between 1975 and

2017.

We generally select parameter values from the economic growth literature. Table 1

contains our parameter calibrations. We follow Schmitt-Grohé & Uribe (2003) and set

the share of capital in output, θ, to 0.32. Gollin (2002) computes labor shares for different

countries and finds that for most countries both developed and developing, labor shares

range between 0.65 and 0.80. This makes the estimate of 0.32 for capital shares reasonable

for all countries. Schmitt-Grohé & Uribe (2003) use a discount factor, β, of 0.96 for annual

data. We use this as our annual measure. This translates to 0.82 for our 5-year interval

data. We set the population growth rate, γN , to 0.01 annually. This implies that the

5-year value of 0.05. We also set the annual GDP growth, γ0, rate as 0.02, translating to

about f0.1 for the 5-year interval. We set annual depreciation rate, δ, at 10% following

DeJong & Dave (2012) and Woodford (1999). This implies a 5-year depreciation rate

of about 0.41. We follow (Ngai & Pissarides, 2004) to set the elasticity of substitution,

ε, across goods to 0.3 as a baseline. This implies that goods from the sectors are poor
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substitutes. In the model presented by (Ngai & Pissarides, 2004), this assumption is

required for the coexistence of structural change and balanced growth. The weighting

parameters, ωi, are chosen as 0.15 for manufacturing, 0.1 for agriculture, and 0.75 for

services following (Cai, 2015).

Table 1: Parameter Values for Calibration

Description Parameter Annual values

Share of capital θ 0.32

Discount factor β 0.96

Population growth rate γN 0.01

GDP growth rate γ0 0.02

Depreciation rate δ 0.1

Elasticity of substitution across goods ϵ 0.3

Weight of good in aggregate consumption

Manufacturing (Good 0) ω0 0.15

Agriculture (Good 1) ω1 0.1

Services (Good 2 ) ω2 0.75

5 Results

5.1 Special Case 1: δ = 1

We start with the special case where we assume full depreciation. With δ = 1 finding the

solution to Equation (4) is straightforward. Using the guess-and-verify approach we find

ct
yt

= 1− β̃θ (13)

where β̃ = (1 + γn)(1 + γ0)β. From the arguments surrounding Equation (11), a value

of Zt consistent with this can be found only if n0,t > β̃θ. This constraint is not severe

but does exclude some developing countries. Setting δ = 1 is justifiable when the time
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frame under consideration is long. We set a time period to be 43 which is the length of

our dataset. This corresponds to a depreciation rate of over .99. Schmitt-Grohé & Uribe

(2003) set β = .96 in a model without γn or γ0. To match this, we set our composite of

these three items to β̃ = .96. This translates to 0.17 for the time period of 43 years.

Computing values for ct
yt

from Equation (13) and applying that to the equations of

structural change illustrated under Proposition 2 and 3 allows us to compute the relative

TFP growth rate for the agricultural and service sectors relative to the manufacturing

sector. These are plotted against the log of GDP per capita in Figure 5. The main

implications of our results are that, sectors have differential TFP growth rates and that

these TFP growth differentials vary with per capita income. From panel (a) of Figure 5,

we observe a negative and significant correlation between the relative TFP growth rates

in agriculture and GDP per capita. Note also that although the relative TFP values are

declining with income levels, they are positive for all countries. This implies that TFP

in the agricultural sector remains higher than in the manufacturing sector, but the dif-

ferences in their growth rates decrease as incomes increase. This relationship establishes

the basis for the decline in the agricultural employment shares and a corresponding rise

in the manufacturing employment shares suggested by Ngai and Pissarides. The main

finding of their paper is that when TFP growth rates differ across sectors, and goods

are poor substitutes, labor tends to move away from the sectors will higher TFP growth

towards the sectors with lower TFP growth rates. Hence, our findings will suggest a shift

of employment away from the agricultural sector towards the manufacturing sector.

Panel (b) also shows a negative and significant correlation between the relative TFP

growth rates in the service sector and GDP per capita. For low-income countries, TFP

grows faster in the service sector compared to manufacturing. Notice that for most of the

developed countries, the relative TFP growth rates are negative, implying that TFP is

growing faster in the manufacturing sector compared to the service sectors. Following the

conclusions of Ngai and Pissarides, this explains the rise in service sector employment

in developed economies compared to manufacturing. This aligns with the predictions

of structural change. As economies become richer, there is a shift towards services as
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manufacturing employment declines.

Figure 5: Sector TFP Growth Rates Relative to Manufacturing

Figure 5 presents scatter plots between the relative TFP growth rates and
the log of GDP per capita. Panel (a) plots the relative TFP growth in agri-
culture and Panel (b) plots the relative TFP growth in Services. The squares
represent low-income countries, the triangles represent middle-income coun-
tries, and the circles represent high-income countries. Both plots show a
negative correlation between the relative TFP growth rates and GDP per
capita. This implies that TFP has grown faster in the agricultural and ser-
vices compared to manufacturing in LICs, the difference in growth rates
decreases as incomes increase. In the case of services, the difference becomes
negative for HICs, implying that TFP growth in manufacturing exceeds that
of services. The coefficient and the t-values for the best-fit line for panel (a)
are -0.1 and -2.17, while that of panel (b) are -0.03 and -7.87 respectively.

20



5.2 Special Case 2: Balanced Growth

In this case, we allow for δ ̸= 1 and consider the steady state. This allows for a closed-form

solution.

Proposition 4. In the general model along the balanced growth path of the aggregate

economy, the consumption share of output is:

ct
yt

= 1− ((1 + γn) (1 + γ0)− (1− δ)) βθ

1− β (1− δ)
.

Since models such as Ngai & Pissarides (2007) rely on differential TFP growth rates

as the drivers of industrial dynamics, we begin with a discussion of whether in fact, these

TFP growth rates differ. We conduct a similar exercise as before and compute relative

TFP values. We use the 5-year interval data and the corresponding calibrations. Table 2

provides convincing evidence that growth rates differ by sector.

Table 2: Test of Significance of Means

Income Group Variable Mean T-statistic Confidence Interval

LIC Agricultural relative TFP growth 0.147 4.28 [0.079, 0.215]
Services relative TFP growth 0.107 3.45 [0.045, 0.169]

MIC Agricultural relative TFP growth 0.125 8.59 [0.096, 0.153]
Services relative TFP growth 0.066 5.07 [0.041, 0.092]

HIC Agricultural relative TFP growth 0.077 14.7 [0.066, 0.088]
Services relative TFP growth -0.010 -2.62 [-0.018, 0.003 ]

Table 2 presents the results for tests of the significance of the means of relative TFP
growth rates across the income groups. We observe that the null hypothesis of no statis-
tical significance is rejected for all means, implying our means are significantly different
from 0.

This table considers the average across income groups of the calculated relative TFP

rates for each of agriculture and services. If non-zero, growth rates differ by sector. We

find that for each country group and for each of agriculture and services, we can reject the

null hypothesis that the average is zero. Moreover, in each case, the higher income group

has the lower average relative TFP growth rate. For services, the average is negative for

the high-income group.
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These results are another indication of generally positive relative TFP growth rates

which decrease with income; that is they are suggestive of the results in Figure 5. We find

further evidence of the robustness of the result from Figure 6. Here we present figures

analogous to Figure 5 but using 5-year periods. The figure plots the log of the TFP

ratios (ai,t) for the agricultural and service sectors relative to manufacturing. Panels A

and C present the plots for all countries while Panels B and D present the averages across

the income groups. Across all countries, we notice increasing TFP ratios for both the

agriculture and service sectors relative to the manufacturing sector. This suggests that

both agriculture and service are getting more productive relative to manufacturing over

time.

However, we note that LICs have much steeper lines compared to the other groups.

The lines for HICs are relatively flatter. These slopes suggest that the growth rates of

these ratios may be slowing down as countries get richer. This is further confirmed in

Figure 7, where we plot the 5-year relative TFP growth rates against the log of GDP

per capita. We set the vertical limits to be between -1 and 1 to improve visualization

even though all values are included in the analysis. Similar to the earlier findings in

Figure 5, we observe a negative relationship exists between the relative TFP growth

rates of agricultural and GDP per capita. This confirms the earlier finding that relative

to the manufacturing sector, TFP in the agricultural and service sectors grows more

slowly in richer countries compared to poorer countries. Hence, the first case, though

simplified generally captures the expected trends in TFP growth.

We also solve for ct
yt

numerically along the transition path to the steady state. This

gives us values for the range of 5-year periods in our data. This can be seen as the scaling

of the equations in proposition 2. Although not reported, the results are very similar to

the earlier findings. This suggests that our results remain robust both on the balanced

growth path and in the transition toward balanced growth.

22



Figure 6: Sector Relative TFP (5-year Intervals)

Figure 6 presents the log of the estimates of TFP ratios relative to the
manufacturing good from our model. We use the 5-year interval data. Panels
A and C present the series for all the countries and Panels B and D present
the mean values grouped by the Income groupings. Countries are grouped
into low (dotted lines), middle (dashed lines), and high (thick lines) income
countries.
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Figure 7: Sector Relative TFP Growth Rates (δ ̸= 1)

Figure 7 presents scatter plots between the relative TFP growth rates and of
the log of GDP per capita for the case where δ ̸= 1 using the 5-year interval
data. The squares represent low-income countries, the triangles represent
middle-income countries, and the circles represent high-income countries.
The coefficient and the t-values for the best-fit line for panel (a) are -0.04
and -5.0, while that of panel (b) are -0.06 and -7.64 respectively.

6 Sensitivity Analysis

6.1 Alternative Aggregation of the Manufacturing sector

We conduct a sensitivity analysis to determine if our results are driven by the number of

sub-sectors aggregated into the manufacturing sector. Recall that that our manufacturing

good was made up of the following sectors in the Global Productivity dataset; Mining

and quarrying; Manufacturing; Utilities; Construction; Trade services; Transport services;

and Financial and Business. It could be argued that our manufacturing sector includes

sectors that are not typically categorized as manufacturing. Hence our results could

be driven by our choice of sectors aggregated into the manufacturing sector. Therefore

we use an alternative aggregation by Cai (2015), Van Neuss (2019), and Herrendorf et
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al. (2014).Their manufacturing sector includes mining and quarry, manufacturing, and

construction. The service sector now includes Utilities; Construction; Trade services;

Transport services; and Financial and Business. The agricultural sector remains the

same. This has a minor consequence on our results. The only effect is the loss of

some countries with very small manufacturing sectors. Otherwise, the results remain

qualitatively similar as shown in Figure 8 and Figure 9.

Figure 8: Sector Relative TFP Growth Rates (Special Case (δ = 1))

Figure 8 presents scatter plots between the relative TFP growth rates and
of the log of GDP per capita under the special case where δ = 1. Com-
pared to Figure 5, this figure has fewer countries because of the narrower
aggregation of the manufacturing sector. The relationships between relative
TFP and GDP per capita remain unchanged. The squares represent low-
income countries, the triangles represent middle-income countries, and the
circles represent high-income countries. The coefficient and the t-values for
the best-fit line for panel (a) are -0.01 and -3.94, while that of panel (b) are
-0.03 and -6.61 respectively.
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Figure 9: Sector Relative TFP Growth Rates (Special Case (δ ̸= 1))

Figure 9 presents scatter plots between the relative TFP growth rates and
the log of GDP per capita under the special case where δ ̸= 1, using the
5-year interval data. Compared to Figure 7, this figure has fewer countries
because of the narrower aggregation of the manufacturing sector. We see
that all the LICs are lost from the data. The relationship between relative
TFP and GDP per capita remains unchanged. The squares represent low-
income countries, the triangles represent middle-income countries, and the
circles represent high-income countries. The coefficient and the t-values for
the best-fit line for panel (a) are -0.18 and -2.36, while that of panel (b) are
-0.15 and -2.01 respectively.

6.2 Small Open Economy

We extend our model to consider the small open economy case as this may be a more

appropriate framework for considering industry dynamics in many of the countries in

our data. Most importantly, the model above requires investment to arise from current

domestic production. For countries with small manufacturing industries, this restriction

potentially leads to misleading findings. To gauge the robustness of our findings, we

modify the model to allow debt finance of investment at an exogenous interest rate.

With the potential for debt financing, output in the manufacturing sector minus

consumption from this sector may not equal investment. Thus we introduce i0,t to denote
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investment through this channel and rewrite the resource constraint in Equation (1) as

y0,t ≡ (s0,tkt)
θ n1−θ

0,t = c0,t − i0,t. (14)

Investment with debt finance is

it = i0,t + dt − (1 + r) dt−1 (15)

where dt is period t debt and (1 + r) dt−1 is the repayment of prior debt at the exogenous

real interest rate r so that the law of motion for capital is

kt+1 (1 + γN) (1 + γ0) = (1− δ) kt + it. (16)

We omit adjustment costs commonly present in similar models to be more succinct and

make the common assumption that β = (1 + r)−1 to allow for balanced growth. Propo-

sition 5 demonstrates that again only ct
yt

is required from the aggregate economy to track

industry dynamics, and that aggregate dynamics can be tracked without knowledge of

industrial dynamics. Moreover, in this case ct
yt
is constant. Note also that we are assuming

that debt is used to finance imports of the investment or manufacturing good and that

only the investment good is imported. This implies that the change in debt is equal to

net exports. That is:

(1 + r) dt−1 − dt = xt −mt. (17)

In this setup, exports (xt) is exogenous. As a result, imports (mt) must adjust to ensure

that this relationship holds. This gives rise to Proposition 5 below:

Proposition 5. In the small open economy model with debt finance, the relationships in

Proposition 2 hold and the aggregate economy can be expressed by

ct
yt

=
c

y
= 1− ((1 + γN) (1 + γ0)− (1− δ)) βθ

1− β (1− δ)
− xt −mt

y
. (18)

Where xt−mt

y
is the share of net exports in GDP. We again take this term as observable

27



and calibrate it using data. We extract data on the share of merchandise exports and

imports in GDP from the Penn World Table. The difference between these two variables

gives us the share of net exports in GDP. We use this alongside the parameter calibrations

to compute values for ct
yt

from equation 18 and further use that to extract the relative

TFP growth rates as before. Under the case where δ = 1, we use the average of the

net export share in GDP over the entire time period for each country as the measure for

xt−mt

y
. In the case where δ ̸= 1, we use the 5-year averages instead.

Figure 10: Sector Relative TFP Growth Rates under Small Open Economy (δ = 1)

Figure 10 presents scatter plots between the relative TFP growth rates and
the log of GDP per capita under the special case where δ = 1 under a small
open economy framework. Compared to Figure 5, The relationship between
relative TFP growth and GDP per capita remains unchanged, also we now
observe a weaker relationship between relative TFP growth in Agriculture
and GDP per capita. The squares represent low-income countries, the trian-
gles represent middle-income countries, and the circles represent high-income
countries. The coefficient and the t-values for the best-fit line for panel (a)
are -0.00 and -0.49, while that of panel (b) are -0.02 and -6.15 respectively.
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Figure 11: Sector Relative TFP Growth Rates under Small Open Economy (δ ̸= 1)

Figure 11 presents scatter plots between the relative TFP growth rates
and the log of GDP per capita under the special case where δ ̸= 1 under a
small open economy framework, using the 5-year interval data. Compared
to Figure 7, the relationship between relative TFP and GDP per capita
remains unchanged. The squares represent low-income countries, the trian-
gles represent middle-income countries, and the circles represent high-income
countries. The coefficient and the t-values for the best-fit line for panel (a)
are -0.03 and -0.011, while that of panel (b) are -0.05 and -4.73 respectively.

We present these results in Figure 10 and Figure 11 respectively. In the case where

δ = 1, we observe results similar to our baseline results. However, we see a weaker

relationship between relative TFP growth in agriculture and GDP per capita. However,

all values are still positive, suggesting that TFP still grows faster in the agricultural sector

compared to the manufacturing sector. The negative correlation between the relative

TFP in services and GDP per capita remains strong with most HICs having TFP in

the manufacturing sector grow faster than the service sector. In Figure 11, we plot the

values for the case where δ ̸= 1. Here, we again observe the same correlations as before.

Essentially, re-specifying the model as a small open economy model does not change the

results.

29



7 Conclusion

Variations in TFP growth rates across different sectors have been identified as one of the

key drivers of structural change. For example, a popular finding of Ngai & Pissarides

(2007) is that differences in TFP growth rates cause labor to shift from sectors with

high TFP growth towards sectors with low TFP growth. This highlights the significance

of TFP growth as a central mechanism in the structural transformation of economies,

reinforcing its importance in shaping long-term economic trajectories.

The problem that arises is that sector-level TFP is mostly unobserved in the data,

complicating the confirmation of the assumption of differential TFP growth rates made

by these models. We contribute to the literature by building a discrete version of the

model by Ngai & Pissarides (2007) and utilizing the features of the model to compute

relative sector TFP growth rates. The model allows for the features of balanced growth

to be maintained at the aggregate level while allowing for the dynamics of structural

change at the sector level. We show that the consumption share of output is the only

thing needed from the aggregate economy to track the dynamics at the sector level.

We proceed to solve for the consumption share of output under assumptions that

allow for a closed-form solution and by dynamic programming. We calibrate the model

as a three-sector model (manufacturing, agriculture, and services) and show that with

data on sector employment shares which is readily available, and some calibrations for

the model parameters, relative TFP growth rates can be computed.

Our results show significant TFP differentials across sectors, with these differentials

varying at different income levels. Relative to manufacturing, TFP growth in agriculture

is higher, with the difference declining with increasing income levels. A similar trend is

observed for the TFP growth in services relative to manufacturing. These trends give

rise to the patterns of structural change suggested by Ngai & Pissarides (2007). TFP

in agriculture grows faster than in manufacturing, leading to employment shifts towards

manufacturing and a decline in employment shares in agriculture. We also observe that

for HICs, TFP in manufacturing grows faster than services, which explains the typical

rise in service employment shares in HICs. In our sensitivity analysis, we show that
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alternate aggregation of the manufacturing good does not change our results. We also

show that re-specifying the model as a small open economy model does not change the

results.

In conclusion, our results underscore the critical role of sectoral TFP growth in driving

structural change across economies. These findings not only reinforce the importance of

sectoral dynamics in economic development but also highlight the value of multi-sector

models in understanding the evolving structure of economies over time.

31



References

Acemoglu, D., & Guerrieri, V. (2008). Capital deepening and nonbalanced economic

growth. Journal of Political Economy , 116 (3), 467–498.

Baumol, W. J. (1967). Macroeconomics of unbalanced growth: the anatomy of urban

crisis. The American Economic Review , 57 (3), 415–426.

Blankenau, W. F., & Cassou, S. P. (2006). Labor market trends with balanced growth.

Journal of Economic Dynamics and Control , 30 (5), 807-842.

Buera, F. J., & Kaboski, J. P. (2009, 05). Can Traditional Theories of Structural Change

Fit the Data? Journal of the European Economic Association, 7 (2-3), 469-477.

Cai, W. (2015). Structural change accounting with labor market distortions. Journal of

Economic Dynamics and Control , 57 , 54–64.

Comin, D., Lashkari, D., & Mestieri, M. (2021). Structural change with long-run income

and price effects. Econometrica, 89 (1), 311–374.

DeJong, D. N., & Dave, C. (2012). Structural macroeconometrics. Princeton University

Press.

De Vries, G., Timmer, M., & De Vries, K. (2015). Structural transformation in africa:

Static gains, dynamic losses. The Journal of Development Studies , 51 (6), 674–688.

Dieppe, A., Celik, S. K., & Kindberg-Hanlon, G. (2020). Global productivity: Trends.

Drivers, and Policies, Washington: International Bank for Reconstruction and Devel-

opment/The World Bank .

Duarte, M., & Restuccia, D. (2010). The role of the structural transformation in aggregate

productivity. The Quarterly Journal of Economics , 125 (1), 129–173.

Echevarria, C. (1997). Changes in sectoral composition associated with economic growth.

International Economic Review , 431–452.

32



Gollin, D. (2002). Getting income shares right. Journal of Political Economy , 110 (2),

458–474.

Herrendorf, B., Rogerson, R., & Valentinyi, A. (2014). Growth and structural transfor-

mation. Handbook of economic growth, 2 , 855–941.

Kongsamut, P., Rebelo, S., & Xie, D. (2001). Beyond balanced growth. The Review of

Economic Studies , 68 (4), 869–882.

Laitner, J. (2000). Structural change and economic growth [Article]. Review of Economic

Studies , 67 (3), 545 – 561. (Cited by: 216)

Matsuyama, K. (1992). Agricultural productivity, comparative advantage, and economic

growth. Journal of Economic Theory , 58 (2), 317-334.

Matsuyama, K. (2009). Structural Change in an Interdependent World: A Global View

of Manufacturing Decline. Journal of the European Economic Association, 7 (2-3),

478-486.

Mensah, E. B., Szirmai, A., et al. (2018). Africa sector database (asd): Expansion and

update. UNU-MERIT Working Paper , 20 .

Nada, H., Catherine, V. R., Eric, M., & Shwetha Grace, E. (2022). New world bank

country classifications by income level: 2022-2023.

Ngai, L. R., & Pissarides, C. (2004). Balanced growth with structural change.

Ngai, L. R., & Pissarides, C. A. (2007). Structural change in a multisector model of

growth. American Economic Review , 97 (1), 429–443.
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8 Appendices

8.1 Proofs of propositions

8.1.1 Propositions 1 and 2

The proofs to Propositions 1 and 2 are intertwined so we present both in a single proof.

Since our model is written in discrete time, considers industry capital shares rather than

the levels (sj,tkt rather than kj,t) and is written in intensive form, the proof differs sub-

stantially in style from various results in Ngai and Pissarides (2007). However, the results

are analogous to their findings.

Define

Ωt ≡ {ci,t, ni,t, si,t} i ∈ {0, 1, ..m− 1} .

The social planner’s problem is

L = max
Ωt,kt+1

∞∑
t=0

β̃tut (·)

+λc,j,t

(
(sj,tkt)

θ (aj,tnj,t)
1−θ − cj,t

)
(∀j > 0)

+λc,0,t

(
(s0,tkt)

θ (a0,tn0,t)
1−θ − it − c0,t

)
+λn,t

(
1−

m−1∑
j=0

nj,t

)

+λs,t

(
1−

m−1∑
j=0

sj,t

)
+λj,t(kt+1 (1 + γn) (1 + γ0)− (1− δ) kt − it)
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For j ∈ {0, 1, ..m− 1} define

yj,t = (sj,tkt)
θ (aj,tnj,t)

1−θ (19)

νj,t ≡ uj
t (·) = ωjc

−1
ε

j,t ϕ
ε−1
t (20)

fs,j,t ≡ θa1−θ
j,t

(
sj,t
nj,t

)θ−1

kθ
t (21)

fn,j,t ≡ (1− θ) a1−θ
j,t

(
sj,t
nj,t

)θ

kθ
t (22)

fk,j,t ≡ θa1−θ
j,t

(
sj,t
nj,t

)θ

kθ−1
t nj,t (23)

For each j ∈ {0, 1, ..m− 1} we have the following first order conditions from derivatives

with respect to cj,t, nj,t, and sj,t, and

β̃tνj,t = λc,j,t (24)

λc,j,tfn,j,t = λn,t (25)

λc,j,tfs,j,t = λs,t (26)

The derivatives with respect to it, and kt+1 are

−λj,t = λc,0,t (27)

λj,t+1 (1− δ) =
m−1∑
j=0

λc,j,t+1fk,j,t + λj,t (1 + γn) (1 + γ0) . (28)

Intratemporal optimality: Proposition 2 In this section, we show that Proposition

1 holds. Note that it uses only equations used from intratemporal optimality. From the

decentralized problem, we know that the ratio of prices for any two goods will equal the

ratio of marginal utilities. This and Equations (24), (25) and (26) lead to the following

relationships ∀j, j′ ∈ {0, 1, ..m− 1}:

pj,t
pj′,t

=
νj,t
νj′,t

=
fs,j′,t
fs,j,t

=
fn,j′,t
fn,j,t

. (29)
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From the third and fourth of these

sj,t
nj,t

=
sj′,t
nj′,t

. (30)

Using Equation (30), the first and fourth relationships give

pj,t
pj′,t

=
a1−θ
j′,t

a1−θ
j,t

. (31)

Since good 0 in time t is our numeraire good and given Equation (19), output is

defined as

yt ≡
m−1∑
j=0

pj,tyj,t
p0,t

=
m−1∑
j=0

pj,t
p0,t

a1−θ
j,t kθ

t s
θ
j,tn

1−θ
j,t =

m−1∑
j=0

pj,t
p0,t

a1−θ
j,t kθ

t

(
sj,t
nj,t

)θ

nj,t.

Since the nj,t values sum to one, with p0,t = 1, and Equations (30), (31), this is

yt = a1−θ
0,t kθ

t

(
s0,t
n0,t

)θ

(32)

Similarly, aggregate consumption is defined as

ct ≡
m−1∑
j=0

pj,tcj,t
p0,t

= c0,t

m−1∑
j=0

pj,t
p0,t

cj,t
c0,t

. (33)

From the relationship
pj,t
pj′,t

=
νj,t
νj′,t

(Equation (29)) along with Equation (20)

cj,t
c0,t

=

(
ω0pj,t
ωjp0,t

)−ε

and

pj,tcj,t
p0,tc0,t

=

(
ωj

ω0

)ε(
pj,t
p0,t

)1−ε

so that with Equation (31) we have

pj,tcj,t
p0,tc0,t

= zj,t (34)
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where

zj,t ≡
(
ωj

ω0

)ε(
a0,t
aj,t

)(1−ε)(1−θ)

It follows from Equations (33) and (34) that

ct = c0,tZt (35)

where

Zt ≡
m−1∑
j=0

zj,t.

Rearranging (35) to solve for c0,t and putting this expression into Equation (34), we

find

pj,tcj,t
p0,t

=
ct
Zt

zj,t (36)

Then using
pj,t
p0,t

= fn,0,t

fn,j,t
from Equation (29) and Equation (2), Equation (36) is

nj,t = ct
zj,t
Zt

(
kts0,t
n0,t

)−θ

a1−θ
0,t

Next on the right-hand side of this, we divide by yt and multiply by its equivalent

from Equation (32). Upon simplifying we find

nj,t =
ct
yt

zj,t
Zt

. (37)

It follows that for j,j′ ̸= 0

nj′,t =
zj′,t
zj,t

nj,t. (38)

Moreover, since shares sum to 1, using Equation (38) we have

1 = n0,t +
m−1∑
j=1

nj,t = n0,t +
m−1∑
j=1

ct
yt

zj,t
Zt

= n0,t +
ct
yt

1

Zt

m−1∑
j=1

zj,t = n0,t +
ct
yt

Zt − 1

Zt
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from which

n0,t = 1− ct
yt

Zt − 1

Zt

. (39)

Similarly, since capital shares sum to 1, we can use Equations (30) and (37) to write

1 = s0,t +
m−1∑
j=1

s0,t
sj,t

nj,t

n0,t

sj,t = s0,t +
s0,t
n0,t

m−1∑
j=1

nj,t = s0,t +
s0,t
n0,t

m−1∑
j=1

ct
yt

zj,t
Zt

= s0,t +
ct
yt

s0,t
n0,t

Zt − 1

Zt

.

Plugging in for n0,t from (39) and solving for s0,t we find s0,t = n0,t. Moreover, from this

and Equation (30)

sj,t = nj,t, ∀j. (40)

This is sufficient for Proposition 2.

Intratemporal optimality: Auxiliary results We next present results that are re-

quired for Proposition 1, but use only intratemporal relationships.

Auxiliary result 1. From Equation (26) we have

λc,j,t =
λc,0,tfs,0,t
fs,j,t

(41)

and from Equations (21) and (23) we have

fk,j,t
fs,j,t

=
sj,t
kt

. (42)

Together Equations (41) and (42) give

λc,j,tfk,j,t = λc,0,tfs,0,tk
−1
t+1sj,t

so that
m−1∑
j=0

λc,0,tfs,0,tk
−1
t sj,t = λc,0,tfs,0,tk

−1
t

m−1∑
j=0

sj,t = λc,0,tfs,0,tk
−1
t (43)
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Auxiliary result 2. From Equations (24) and (27) and the definition of β̃.

β̃tν0,t = λc,0,t = −λj,t (44)

Auxiliary result 3. Note that νj,t =
∂ϕt

∂cj,t
ϕ−1
t . Since ϕt is homogenous of degree 1

ϕt =
m−1∑
j=0

∂ϕt

∂cj,t
cj,t =

m−1∑
j=0

νj,tϕtcj,t

so

1 =
m−1∑
j=0

νj,tcj,t.

From the first relationship in Equation (29) and the definition of ct

1 = νo,t

m−1∑
j=0

pj,tcj,t = νo,tct

so

ν0,t =
1

ct
. (45)

Intertemporal optimality: Proposition 1 From Equation (43) updated to period

t+1, Equations (44) and (45) for both periods t and t+1, Equations (21) and (40) along

with the definition of β̃, we can write Equation (28) as

ct+1

ct
= β

(
θkθ−1

t + 1− δ
)
. (46)

From Equations (32), (40), and (35), into Equation (14) we find

ytn0,t =
ct
Zt

+ it. (47)

Then with Equation (39) into (47) and simplifying

it = yt − ct = y0,t − c0,t
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so that Equation (3) can be written as

kt+1 (1 + γn) (1 + γ0) = kθ
t + (1− δ) kt − ct. (48)

Equations (46) and (48) track the dynamics of ct, kt without reference to the dis-

aggregated economy. It is straightforward to verify that Equation (11) provides for an

equivalent set of equations where we have substituted in for ct.

8.2 Proposition 3

Rearranging equation 7 gives the expression for ait. Note that:

ajt =
Ajt

Aot

=
(1 + γj)

t

(1 + γ0)t
(49)

This implies that, considering a beginning period 0 and an end period t, the ratio of

relative TFP for sector j can be expressed as:

ajt
aj0

=
(1 + γj)

t

(1 + γ0)t
(50)

Solving for (γj − γ0) gives the expression for the relative TFP growth rates.

8.2.1 Proposition 4

Setting kt+1 = kt = k and ct+1 = ct in Equation (46) and solving for k we have

k =

(
βθ

1− β (1− δ)

) 1
1−θ

Dropping time subscripts and solving for c in (48) gives

c = kθ − ((1 + γn) (1 + γ0)− (1− δ)) k.

Dividing the left side by y and the right by the equivalent kθ and substituting in for k

from the previous expression gives the result.
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8.2.2 Proposition 5

Results through Equation (46) in Section 8.1.1 do not use any equations that have been

modified for the small open economy case and so are unchanged. Defining rk to be the

marginal product of capital, a no-arbitrage condition between capital and bonds in the

decentralized economy requires

r = rk − δ = θkθ−1
t − δ. (51)

This into Equation (46) gives

ct+1

ct
= β (1 + r) . (52)

From Equation (52) and our assumption that β = (1 + r)−1, ct+1 = ct = c. From Equa-

tions (51), 32, and (40) kt+1 = kt = k and yt+1 = yt = y.

From Equations (32), (40), and (35), into Equation (1) we find

yn0,t =
c

Zt

+ i0,t. (53)

Then with Equations (39) and (15) into (53) and simplifying

it = y − c+ dt − (1 + r) dt−1.

so that upon solving for c Equation (16) can be written as

c = kθ − k ((1 + γN) (1 + γ0)− (1− δ)) + dt − (1 + r) dt−1.

Noting rkk = (r − δ) k = (r − δ) k = θy, dividing each side by y we have

c

y
= 1− θ

r − δ
((1 + γN) (1 + γ0)− (1− δ)) +

(
dt − (1 + r) dt−1

y

)
.

Finally, (1 + r) dt−1 − dt = xt −mt and 1 + r = β−1 into this expression gives Equation

(18).
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