The Simple Linear Regression Model: Specification and Estimation

Chapter 2

Chapter 2: The Simple Regression Model

- 2.1 An Economic Model
- 2.2 An Econometric Model
- 2.3 Estimating the Regression Parameters
- 2.4 Assessing the Least Squares Estimators
- 2.5 The Gauss-Markov Theorem
- 2.6 The Probability Distributions of the Least Squares Estimators
- 2.7 Estimating the Variance of the Error Term

Principles of Econometrics, 3rd Edition

Slide 2-.

2.1 An Economic Model

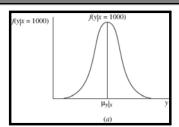


Figure **2.1a** Probability distribution of food expenditure y given income x = \$1000

Principles of Econometrics, 3rd Edition

2.1 An Economic Model

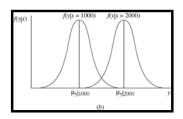


Figure **2.1b** Probability distributions of food expenditures y given incomes x = \$1000 and x = \$2000

Principles of Econometrics, 3rd Edition

Slide 2-4

2.1 An Economic Model

■ The simple regression function

$$E(y|x) = \mu_{y|x} = \beta_1 + \beta_2 x$$
 (2.1)

Principles of Econometrics, 3rd Edition

Slide 2-5

2.1 An Economic Model

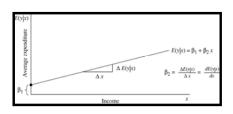


Figure 2.2 The economic model: a linear relationship between average per person food expenditure and income

Principles of Econometrics, 3rd Edition

4	-	Eco						_
H II	88	-0.0	4 T 10 T 10	100		884	2.5	63
_	-	1 1 2 2	-	2000	-	1.7 1.0		

• Slope of regression line

$$\beta_2 = \frac{\Delta E(y|x)}{\Delta x} = \frac{dE(y|x)}{dx}$$
 (2.2)

"Δ" denotes "change in"

Principles of Econometrics, 3rd Edition

Slide 2-7

2.2 An Econometric Model

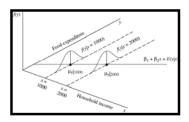


Figure 2.3 The probability density function for y at two levels of income

Principles of Econometrics, 3rd Edition

Slide 2-8

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model – I

The mean value of y, for each value of x, is given by the *linear regression*

Principles of Econometrics, 3rd Edition

2.2 An Econometric Model	
Assumptions of the Simple Linear Regression Model – I	
For each value of x, the values of y are distributed about their mean value, following probability distributions that all have	
the same variance,	
Principles of Econometrics, 3rd Edition Stide 2-10	
2.2 An Econometric Model	
Assumptions of the Simple Linear Regression Model – I	
The sample values of y are all <i>uncorrelated</i> , and have zero	
covariance, implying that there is no linear association among them,	
This assumption can be made stronger by assuming that the	
values of y are all statistically independent.	
Principles of Econometrics, 3rd Edition Slide 2-11	
2 2 An Economotrio Model	
2.2 An Econometric Model	
Assumptions of the Simple Linear Regression Model – I	-
The variable <i>x</i> is not random, and must take at least two different values.	
Principles of Econometrics, 3rd Edition Slide 2-12	

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model – I

(optional) The values of y are normally distributed about their mean for each value of x,

Principles of Econometrics, 3rd Edition

Slide 2-13

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - I

*The mean value of y, for each value of x, is given by the linear regression

 $E(y \mid x) = \beta_1 + \beta_2 x$

•For each value of x, the values of y are distributed about their mean value, distributions that all have the same variance, $var(y \mid x) = \sigma^2$ following probability

•The sample values of y are all *uncorrelated*, and have zero *covariance*, implying that there is no linear association among them, $\frac{\partial y}{\partial x} \left(y - y \right) = 0$

 $\operatorname{cov}(y_i, y_i) = 0$

This assumption can be made stronger by assuming that the values of y are all statistically independent.

The variable x is not random, and must take at least two different values.

(optional) The values of y are normally distributed about their mean for each value of x,

$$y \sim N \left[(\beta_1 + \beta_2 x), \sigma^2 \right]$$

Principles of Econometrics, 3rd Edition

Slide 2-14

2.2 An Econometric Model

- 2.2.1 Introducing the Error Term
 - The random error term is defined as

$$e = y - E(y \mid x) = y - \beta_1 - \beta_2 x$$

Rearranging gives

$$y = \beta_1 + \beta_2 x + e \tag{2.4}$$

y is dependent variable; x is independent variable

Principles of Econometrics, 3rd Edition

Slide 2-15

(2.3)

2.2	An	Ecc	NO.	met	ric	Mo	de
	-	-	нись		ппе		2015

The expected value of the error term, given x, is

The mean value of the error term, given x, is zero.

Principles of Econometrics, 3rd Edition

Slide 2-16

2.2 An Econometric Model

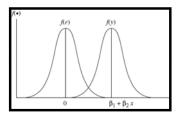


Figure 2.4 Probability density functions for e and y

Principles of Econometrics, 3rd Edition

Slide 2-17

2.2 An Econometric Model

 $Assumptions \ of the \ Simple \ Linear \ Regression \ Model-II$

SR1. The value of y, for each value of x, is

Principles of Econometrics, 3rd Edition

2.2 An Econometric Model	
Assumptions of the Simple Linear Regression Model – II	
SR2. The expected value of the random error e is	
SR2. The expected value of the faildoin error a is	
Which is a window to a second of the	
Which is equivalent to assuming that	
Principles of Econometrics, 3rd Edition Slide 2-19	
2.2 An Econometric Model	
Assumptions of the Simple Linear Regression Model – II	
SR3. The variance of the random error e is	
-	
The random variables y and e have the same variance	
because they differ only by a constant.	
Principles of Econometrics, 3rd Edition Slide 2-20	
2.2 An Econometric Model	
Assumptions of the Simple Linear Regression Model – II	
SR4. The covariance between any pair of random errors, e_i and e_j is	
The stronger version of this assumption is that the random	
of the dependent variable <i>y</i> are also statistically independent.	

2.2 An Econometric Model	
Assumptions of the Simple Linear Regression Model – II	
SR5. The variable x is not random, and must take at least two	
different values.	
Principles of Econometrics, 3rd Edition Slide 2-22	
2.2 An Econometric Model	
Assumptions of the Simple Linear Regression Model – II	
SR6. (optional) The values of e are normally distributed about	
their mean	
if the values of <i>y</i> are normally distributed, and <i>vice versa</i> .	
	-
Principles of Econometrics, 3rd Edition Slide 2-23	
2.2 An Econometric Model	
Assumptions of the Simple Linear Regression Model - II	
•SR1. $y = \beta_1 + \beta_2 x + e$	
•SR2. $E(e) = 0 \Leftrightarrow E(y) = \beta_1 + \beta_2 x$ •SR3. $var(e) = \sigma^2 = var(y)$	
•SR4. $cov(e_i, e_j) = cov(y_i, y_j) = 0$ •SR5. The variable x is not random, and must take at least two different values.	
•SR6. (optional) The values of e are normally distributed about their mean $e \sim N(0, \sigma^2)$	
Principles of Econometrics, 3rd Edition Slide 2-24	

2.2 An Econometric Model

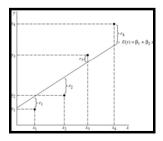


Figure 2.5 The relationship among y, e and the true regression line

Principles of Econometrics, 3rd Edition

Slide 2-25

2.3 Estimating The Regression Parameters

Table 2.1 Food Ex	openditure and Income Data	
Observation (household)	Food expenditure (\$)	Weekly income (\$100
i	y _i	x_i
1	115.22	3.69
2	135.98	4.39
39	257.95	29.40
40	375.73	33.40
	Summary statistics	
Sample mean	283.5735	19.6048
Median	264,4800	20.0300
Maximum	587.6600	33.4000
Minimum	109.7100	3.6900
Std. Dev.	112.7652	6.8478

Principles of Econometrics, 3rd Edition

Slide 2-26

2.3 Estimating The Regression Parameters

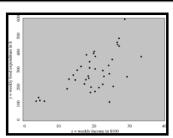


Figure 2.6 Data for food expenditure example

Principles of Econometrics, 3rd Edition

- 2.3.1 The Least Squares Principle
 - The fitted regression line is

$$\hat{y}_i = b_1 + b_2 x_i \tag{2.5}$$

• The least squares residual

$$\hat{e}_i = y_i - \hat{y}_i = y_i - b_1 - b_2 x_i \tag{2.6}$$

Principles of Econometrics, 3rd Edition

Slide 2-28

2.3 Estimating The Regression Parameters

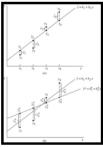


Figure 2.7 The relationship among y, ê and the fitted regression line

Principles of Econometrics, 3rd Edition

Slide 2-29

2.3 Estimating The Regression Parameters

- Any other fitted line
- Least squares line has smaller sum of squared residuals

Principles of Econometrics, 3rd Edition

2.3	Estimating	The Rec	ression	Paramet	ers
4	LOUITIGATING	IIIG INGS	Hessinii	ı cımılcı	

• Least squares estimates for the unknown parameters β_1 and β_2 are obtained my minimizing the sum of squares function

Principles of Econometrics, 3rd Edition

Slide 2-31

OLS

Figure 2A.1 The sum of squares function and the minimizing values b_1 and b_2

Principles of Econometrics, 3rd Edition

Slide 2-32

2.3 Estimating The Regression Parameters

■ The Least Squares Estimators

$$b_2 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$
 (2.7)

$$b_1 = \overline{y} - b_2 \overline{x} \tag{2.8}$$

Principles of Econometrics, 3rd Edition

• 2.3.2 Estimates for the Food Expenditure Function

A convenient way to report the values for b_1 and b_2 is to write out the *estimated* or *fitted* regression line:

Principles of Econometrics, 3rd Edition

Slide 2-34

2.3 Estimating The Regression Parameters

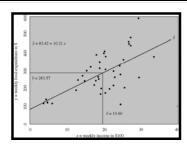


Figure 2 8 The fitted regression line

Principles of Econometrics, 3rd Edition

Slide 2-35

2.3 Estimating The Regression Parameters

- 2.3.3 Interpreting the Estimates
 - The value $b_2 = 10.21$ is an estimate of β_2 , the amount by which weekly expenditure on food per household increases when household weekly income increases by \$100. Thus, we estimate that if income goes up by \$100, expected weekly expenditure on food will increase by approximately \$10.21.
 - Strictly speaking, the intercept estimate b₁ = 83.42 is an estimate of the weekly food expenditure on food for a household with zero income.

Principles of Econometrics, 3rd Edition

- 2.3.3a Elasticities
 - Income elasticity is a useful way to characterize the responsiveness of consumer expenditure to changes in income. The elasticity of a variable y with respect to another variable x is
 - In the linear economic model given by (2.1) we have shown that

Principles of Econometrics, 3rd Edition

Slide 2-37

2.3 Estimating The Regression Parameters

• The elasticity of mean expenditure with respect to income is

$$\varepsilon = \frac{\Delta E(y) / E(y)}{\Delta x / x} = \frac{\Delta E(y)}{\Delta x} \cdot \frac{x}{E(y)} = \beta_2 \cdot \frac{x}{E(y)}$$
(2.9)

 A frequently used alternative is to calculate the elasticity at the "point of the means" because it is a representative point on the regression line.

Principles of Econometrics, 3rd Edition

Slide 2-38

2.3 Estimating The Regression Parameters

- 2.3.3b Prediction
 - Suppose that we wanted to predict weekly food expenditure for a household with a weekly income of \$2000. This prediction is carried out by substituting x = 20 into our estimated equation to obtain
 - We predict that a household with a weekly income of \$2000 will spend \$287.61 per week on food.

Principles of Econometrics, 3rd Edition

■ 2.3.3c Examining Computer Output

Dependent Variable: FOOD_EXP Method: Least Squares Sample: 140 Included observations: 40						
	Coefficient	Std. Error	r-Statistic	Prob.		
c	83.41600	43.41016	1.921578	0.0622		
INCOME	10.20964	2.093264	4.877381	0.0000		
R-squared	0.385002	Mean depender	nt var	283.5735		
Adjusted R-squared	0.368818	S.D. dependent	tvar	112.6752		
S.E. of regression	89.51700	Akaike info cri	iterion	11.8754		
Sum squared resid	304505.2	Schwarz criteri	ion	11.95981		
Log likelihood	-235.5088	Hannan-Quinn	criter	11.9059		
F-statistic	23.78884	Durbin-Watson	stat	1.893880		
Prob(F-statistic)	0.000019					

Figure 2.9 EViews Regression Output

Principles of Econometrics, 3rd Edition

Slide 2-40

2.3 Estimating The Regression Parameters

- 2.3.4 Other Economic Models
 - The "log-log" model

Principles of Econometrics, 3rd Edition

Slide 2-41

2.4 Assessing the Least Squares Estimators

• 2.4.1 The estimator b_2

$$b_2 = \sum_{i=1}^{N} w_i y_i {(2.10)}$$

$$w_i = \frac{x_i - \overline{x}}{\sum (x_i - \overline{x})^2}$$
 (2.11)

$$b_2 = \beta_2 + \sum w_i e_i \tag{2.12}$$

Principles of Econometrics, 3rd Edition

2.4 Assessing the Least Squares Estimators

- 2.4.2 The Expected Values of b₁ and b₂
- We will show that if our model assumptions hold, then

, which means

- We can find the expected value of b_2 using the fact that the expected value of a sum is the sum of expected values

$$E(b_{2}) = E(\beta_{2} + \sum w_{i}e_{i}) = E(\beta_{2} + w_{i}e_{1} + w_{2}e_{2} + \dots + w_{N}e_{N})$$

$$= E(\beta_{2}) + E(w_{i}e_{1}) + E(w_{2}e_{2}) + \dots + E(w_{N}e_{N})$$

$$= E(\beta_{2}) + \sum E(w_{i}e_{i})$$

$$= \beta_{2} + \sum w_{i}E(e_{i}) = \beta_{2}$$
(2.13)

using

and

Principles of Econometrics, 3rd Edition

Slide 2-43

2.4 Assessing the Least Squares Estimators

2.4.3 Repeated Sampling

Table 2.2	Estimates from 10 Samples		
Sample	b_1	b_2	
1	131.69	6.48	
2	57.25	10.88	
3	103.91	8.14	
4	46.50	11.90	
5	84.23	9.29	
6	26.63	13.55	
7	64.21	10.93	
8	79.66	9.76	
9	97.30	8.05	
10	95.96	7.77	

Principles of Econometrics, 3rd Edition

Slide 2-44

2.4 Assessing the Least Squares Estimators

• The variance of b_2 is defined as

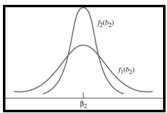


Figure 2.10 Two possible probability density functions for b_2

Principles of Econometrics, 3rd Edition

2.4 Assessing the Least Squares Estimators

- 2.4.4 The Variances and Covariances of b₁ and b₂
- If the regression model assumptions SR1-SR5 are correct (assumption SR6 is not required), then the variances and covariance of b₁ and b₂ are:

$\operatorname{var}(b_i) = \sigma^2 \left[\frac{\sum x_i^2}{N \sum (x_i - \overline{x})^2} \right]$	(2.14)
$\operatorname{var}(b_2) = \frac{\sigma^2}{\sum (x_i - \overline{x})^2}$	(2.15)
$\operatorname{cov}(b_1, b_2) = \sigma^2 \left[\frac{-\overline{x}}{\sum (x_i - \overline{x})^2} \right]$	(2.16)

Principles of Econometrics, 3rd Edition

Slide 2-46

2.4 Assessing the Least Squares Estimators

- 2.4.4 The Variances and Covariances of b_1 and b_2
- The larger the variance term , the greater the uncertainty there is in the statistical model, and the larger the variances and covariance of the least squares estimators.
- The larger the sum of squares, , the smaller the variances of the least squares estimators and the more precisely we can estimate the unknown parameters
- The larger the sample size *N*, the *smaller* the variances and covariance of the least squares estimators.
- The larger this term is, the larger the variance of the least squares estimator b_1 .
- The absolute magnitude of the covariance *increases* the larger in magnitude is the sample mean , and the covariance has a *sign* opposite to that of .

Principles of Econometrics, 3rd Edition

Slide 2-47

2.4 Assessing the Least Squares Estimators

• The variance of b_2 is defined as

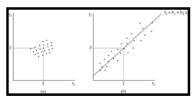


Figure 2.11 The influence of variation in the explanatory variable x on precision of estimation (a) Low x variation, low precision (b) High x variation, high precision

Principles of Econometrics, 3rd Edition

2.5 The Gauss-Markov Theorem

Gauss-Markov Theorem: Under the assumptions SR1-SR5 of the linear regression model, the estimators b_1 and b_2 have the smallest variance of all linear and unbiased estimators of b_1 and b_2 . They are the **Best Linear Unbiased Estimators** (**BLUE**) of b_1 and b_2

Principles of Econometrics, 3rd Edition

Slide 2-49

2.5 The Gauss-Markov Theorem

- 1. The estimators b_1 and b_2 are "best" when compared to similar estimators, those which are linear and unbiased. The Theorem does not say that b_1 and b_2 are the best of all possible estimators.
- 2. The estimators b₁ and b₂ are best within their class because they have the minimum variance. When comparing two linear and unbiased estimators, we *always* want to use the one with the smaller variance, since that estimation rule gives us the higher probability of obtaining an estimate that is close to the true parameter value.
- In order for the Gauss-Markov Theorem to hold, assumptions SR1-SR5 must be true. If any of these assumptions are not true, then b₁ and b₂ are not the best linear unbiased estimators of β₁ and β₂.

Principles of Econometrics, 3rd Edition

Slide 2-50

2.5 The Gauss-Markov Theorem

- The Gauss-Markov Theorem does not depend on the assumption of normality (assumption SR6).
- 5. In the simple linear regression model, if we want to use a linear and unbiased estimator, then we have to do no more searching. The estimators b₁ and b₂ are the ones to use. This explains why we are studying these estimators and why they are so widely used in research, not only in economics but in all social and physical sciences as well.
- The Gauss-Markov theorem applies to the least squares estimators. It does not apply to the least squares estimates from a single sample.

Principles of Econometrics, 3rd Edition

2.6 The Probability Distributions of the Least Squares Estimators

• If we make the normality assumption (assumption SR6 about the error term) then the least squares estimators are normally distributed

$b_{i} \sim N\left(\beta_{i}, \frac{\sigma^{2} \sum x_{i}^{2}}{N \sum (x_{i} - \overline{x})^{2}}\right)$	(2.17)
---	--------

$$b_2 \sim N\left(\beta_2, \frac{\sigma^2}{\sum (x_i - \overline{x})^2}\right) \tag{2.18}$$

A Central Limit Theorem: If assumptions SR1-SR5 hold, and if the sample size *N* is *sufficiently large*, then the least squares estimators have a distribution that approximates the normal distributions shown in (2.17) and (2.18).

Principles of Econometrics, 3rd Edition

Slide 2-52

2.7 Estimating the Variance of the Error Term

The variance of the random error e_i is

if the assumption $E(e_i) = 0$ is correct.

Since the "expectation" is an average value we might consider estimating σ^2 as the average of the squared errors,

Recall that the random errors are

Principles of Econometrics, 3rd Edition

Slide 2-53

2.7 Estimating the Variance of the Error Term

The least squares residuals are obtained by replacing the unknown parameters by their least squares estimates,

There is a simple modification that produces an unbiased estimator, and that is

$$\hat{\sigma}^2 = \frac{\sum \hat{e}_i^2}{N-2}$$

(2.19)

Principles of Econometrics, 3rd Edition

2.7.1 Estimating the Variances and Covariances of the Least Squares Estimators

• Replace the unknown error variance in (2.14)-(2.16) by to obtain:

$\overline{\operatorname{var}}(b_{1}) = \hat{\sigma}^{2} \left[\frac{\sum x_{i}^{2}}{N \sum (x_{i} - \overline{x})^{2}} \right]$	(2.20)
---	--------

$$\operatorname{var}(b_2) = \frac{\hat{\sigma}^2}{\sum (x_i - \overline{x})^2}$$
 (2.21)

$$\overline{\operatorname{Lov}}(b_1, b_2) = \hat{\sigma}^2 \left[\frac{-\overline{x}}{\sum (x_i - \overline{x})^2} \right]$$
 (2.22)

Principles of Econometrics, 3rd Edition

Slide 2-55

2.7.1 Estimating the Variances and Covariances of the Least Squares Estimators

• The square roots of the estimated variances are the "standard errors" of b_1 and b_2 .

$$\operatorname{se}(b_1) = \sqrt{\operatorname{var}(b_1)} \tag{2.23}$$

$$\operatorname{se}(b_2) = \sqrt{\operatorname{var}(b_2)} \tag{2.24}$$

Principles of Econometrics, 3rd Edition

Slide 2-56

2.7.2 Calculations for the Food Expenditure Data

Table 2.	3 Least Squares	Least Squares Residuals		
x	у	ŷ	$\hat{e} = y - \hat{y}$	
3.69	115.22	121.09	-5.87	
4.39	135.98	128.24	7.74	
4.75	119.34	131.91	-12.57	
6.03	114.96	144.98	-30.02	
12.47	187.05	210.73	-23.68	

Principles of Econometrics, 3rd Edition

2.7.2 Calculations for the Food Expenditure	Data	
 The estimated variances and covariances for a regression are arrayed in a rectangular array, or matrix, with variances on the diagonal and covariances in the "off-diagonal" positions. 	l ·	
Principles of Econometrics, 3rd Edition	Slide 2-58	
	_	
2.7.2 Calculations for the Food Expenditure	Data	
For the food expenditure data the estimated covariance matrix is:		
C INCOME C 1884.442 -85.90316 INCOME -85.90316 4.381752		
Principles of Econometrics, 3rd Edition	Slide 2-59	
	_	
2.7.2 Calculations for the Food Expenditure	Data	
Principles of Econometrics, 3rd Edition	Slide 2-60	